Reach-based Routing: A New Approach to Shortest Path
Algorithms Optimized for Road Networks

Ron Gutman*

January 6, 2004

Abstract

Past work has explored two strategies for high volume
shortest path searching on large graphs such as road
networks. One strategy, extensively researched by the
academic community, pre-computes paths and avoids
a too expensive all-pairs computation by computing
and storing only enough paths that a path for an
arbitrary origin and destination can be formed by
joining a small number of the pre-computed paths.
This approach, in practice, has been unwieldy for
large graphs - both preprocessing time and the size
of the resulting database are excessively burdensome.
The implementations can be unusually complex. The
other strategy, often used in industry for routes on
road networks, exploits the natural hierarchy in a
road network to prune a Dijkstra search. This is
much less unwieldy, but less reliable as well. The
pruning is based on a heuristic in such a way that
no guarantee about the optimality of the computed
path can be made. In the worst cases, the algorithm
will fail to find a path even though one exists. Both
of these strategies are inflexible or inefficient in the
face of complex requirements such as changes to the
network or queries involving multiple destinations or
origins.

We introduce a new concept called reach which al-
lows shortest path computation speed on par with the
industry approach but computes provably optimum
paths as do the theoretical approaches. It is more ver-
satile than both; for example, it easily handles mul-
tiple origins and destinations. The versatility makes
available a wide range of strategies for dealing with
complex routing problems. In a test on a graph of
400,000 vertices, the new algorithm computed paths
between randomly chosen origins and destinations 10
times faster than Dijkstra. It also combines naturally
with the A* algorithm for an additional reduction in
path query processing time.

*WaveMarket and Yahoo, e-mail: gutman@sbcglobal.net

1 Introduction

Some form of hierarchy is inevitably harnessed to im-
prove the speed of shortest path computations on
large graphs. Many of the well-researched strategies
impose a hierarchy on the graph, usually by parti-
tioning the graph (see [7, 13, 14, 15]). The parti-
tioning permits a trade-off between pre-computation
and query time processing. Results stored from the
preprocessing represent paths from arbitrary vertices
in the graph to vertices at the partition boundaries
and paths between vertices on the partitions. Queries
are serviced by joining stored paths (usually 2 or 3
paths). Some variations of this approach assume pla-
narity of the graph or that the graph is undirected
(e.g., [7, 14, 15]). Road networks cannot be recon-
ciled with either assumption.

It is common in industry to rely on the natural
hierarchy in road networks to improve query speed.
This approach involves no preprocessing. Typically,
roads are classified according to their importance for
longer routes, e.g., freeways are very important and
residential streets are unimportant. Either vertices
or edges in the graph representation may carry the
importance attribute. A modified Dijkstra algorithm
disregards vertices or edges of low importance when
they are far from both origin and destination. A
heuristic rule determines whether a vertex or edge
can be ignored. Effective implementations require
a ”bidirectional” search, that is two Dijkstra algo-
rithms running in tandem, one searching from the
origin toward the destination and the other searching
from the destination in reverse, that is, on a graph in
which every edge (u,v) has been replaced by (v,u).
The heuristic does not guarantee a shortest path, and
reliably good results require tuning. Empirically, the
performance is sub-linear as a function of the ”dis-
tance” between the origin and destination.

Both approaches suffer from inflexibility. Neither
can efficiently address problems that involve multi-
ple destinations and origins; each possible pair of
origin and destination must be handled as a sepa-
rate problem. Neither is easily adapted to a dynam-

ically changing graph. For example, if a traffic jam
increases the weight on the edges representing the
involved roads, a frontage road might become very
important. How can that change in importance be
discovered?

Our approach was inspired by the latter question.
Instead of relying on road classifications, we define a
formal attribute of a vertex that reflects the impor-
tance of the vertex and can be computed from the
graph. The attribute, which we call "reach”, makes
possible a new variation on the Dijkstra algorithm
([4, 5])) that preserves the optimality of the result
while improving computation time significantly. We
show that the modified algorithm preserves optimal-
ity. We also offer efficient algorithms for computing
the attribute.

Our approach offers these advantages:

e Guarantees optimality of computed paths.

e The shortest path computation time is compa-
rable to that of the industry approach.

e Can be combined with other optimizations such
as the A* algorithm (see [10, 11]).

e Storage requirements are not significantly in-
creased by the pre-computed data.

e Preprocessing may be fast enough to handle dy-
namically changing graphs in some applications
(e.g, a metropolitan road network on a parallel
machine with 10-20 CPUs).

e Greatly reduces computation time of shortest
paths for multiple origins or destinations.

We feel that the last of these is the most important
because of the importance of multiple origin and
destinations in fields such as transporation logistics
and the lack of a satisfactory alternative for road
networks.

The computational effectiveness of our approach
depends on properties of the graph. We have not
formalized those properties, so we provide empirical
results on 3 different data sets instead of theoretical
time bounds. Loosely, our approach depends on the
presence of a natural hierarchy in the network. We
believe that most large networks used for transport
will possess some hierarchy due to the motivations of
designers to optimize the network for transport.

Section 2 of this paper introduces the concept of
reach and gives its formal definition and explains
notation and terminology used in this paper. Section
3 presents our shortest path algorithm.

Because the computation of reach for each vertex
potentially requires an all-pairs shortest path compu-
tation, we present an alternative in sections 4 and 5.
The alternative method computes an upper bound
on the reach of each vertex at much less cost than
an all-pairs computation. An upper bound can be
used in our shortest path algorithms without affect-
ing correctness. Section 4 gives an intuitive descrip-
tion of the approach while section 5 presents theorems
that lead to the actual algorithm for computing up-
per bounds on reach. Though we have proofs for all
of the theorems, space did not permit their inclusion.
Section 6 describes the algorithm for computing the
upper bounds and its implementation.

Section 7 presents experimental results that char-
acterize the performance of our reach bound compu-
tation and shortest path algorithms.

2 The Concept of Reach

Intuitively, the reach of a vertex encodes the lengths
of shortest paths on which it lies. To have a high
value of reach, a vertex must lie on a shortest path
that extends a long distance in both directions from
the vertex.

The notion of ”length” or ”distance” here is not
necessarily the same as the notion of ”weight” or
?cost”, that is, the length of a path is not necessarily
the same as the weight, or cost, of the path. In a
road network, for example, travel time is commonly
used as the cost metric and the weights on the
edges reflect travel time not travel distance. The
definition of reach will also depend on some metric.
The reach metric might be the same as the cost
metric. However, our experimental results showed
that, on road networks, using travel distance as the
reach metric more effectively captured the hierarchy
in the network. In addition, a metric based on
geometric distance permits a more straight forward
implementation of the shortest path algorithm and
one which can be readily adapted to a variety of
problems and strategies for solving them.

For this reason, we use terminology and notation
that distinguishes the weight function of a graph from
a reach metric for the graph. The definition of a
reach metric is identical to the definition of a weight
function: a reach metric for graph G = (V,E) is a
function m : E — R mapping any edge, e, in G to a
real number, m(e). For a path P, we use the notation
m(P) to represent the sum of m(e) over all edges e
of P or zero if P has only 1 vertex. The notation,
m(u,v, P), represents m(Q)) where @ is the subpath
of P from u to v. (In this paper, the term ”path”
always means ”simple path”).

It’s possible for the reach metric to be the same

as the weight function, or cost metric. However, we
found that a reach metric based on distance is more
effective and has other advantages, so the shortest
path algorithm we present uses a reach metric based
on distance. We assume that the graph is ” projected”
into a plane. We use the word ”projected” to
distinguish this notion from the notion of a planar
graph. None of our work assumes planarity of
the graph. We only assume that each vertex has
been assigned coordinates in a some Euclidean space
without requiring that edges do not intersect. We
do assume that the assignment of coordinates is
consistent with the reach metric in this way:

Given an edge, (u,v), m(u,v) > d(u,v)
where d gives the Euclidean distance be-
tween two vertices.

The projection into a Euclidean space is not
strictly needed as long as there is a distance func-
tion consistent with the reach metric, but most net-
works with a distance function are projected into
some space. Note that given a path P from u to
v, m(P) = m(u,v, P) > d(u,v)

Because the term ”shortest path” too easily
brings length or distance to mind, we, instead, use
the term ”least-cost path” for the remainder of the
paper except for the ”Experimental Results” section
(as much for our own sanity as the reader’s). A
?least-cost path tree” is the same as a ”shortest path
tree”.

Definition: Given,
e a directed graph G = (V,E) with positive
weights

e a non-negative reach metric m : E — R

e apath P in G starting at vertex s and ending at
vertex ¢

e 3 vertex v on path P
then the reach of v on P, r(v,P), is
min{m(s,v, P),m(v,t, P)} and the reach of v in
G, r(v,G), is the maximum value of r(v, Q) over all
least-cost paths @) in G containing v.

3 A Reach-based Shortest Path Algorithm

The algorithm we present here assumes a reach
metric that is consistent with the Euclidean distance
function in the manner described above. Let G be
a directed graph G = (V, E) with positive weights,
and reach metric, m consistent with distance function
d:(VxV)—R.

The algorithm is a modification of Dijkstra’s algo-
rithm in which a function, test(v), is called immedi-
ately prior to inserting a vertex, v, into the priority

queue. If test returns true, the vertex is inserted into
the priority queue; otherwise the vertex is not in-
serted into the priority queue. We describe the algo-
rithm for test(v) and prove that the modified Dijkstra
algorithm finds the least cost path. Our tests show
that the algorithm reduces the number of insertions
into the priority queue by an order of magnitude or
more on moderately long paths (more than 25km) in
road networks.

The function test(v) uses the following informa-
tion:

e r(v,G) as defined above

e m(P) where P is the computed path from the
origin, s, to v at the time v is to be inserted into
the priority queue.

e d(v,t) where t is the destination

The value of test(v) is:
e true if 7(v,G) > m(P) or r(v,G) > d(v,t)

o false otherwise

In other words, the value returned by test(v) is
only false if the reach of v is too small for it to lie on
a least-cost path a distance m(P) from the origin and
at a straight-line distance d(v, t) from the destination.

The modified Dijkstra algorithm is equivalent to
the unmodified Dijkstra algorithm performed on a
graph, G', that results by removing the rejected
nodes from G. To prove that the algorithm is correct,
we only need to show that G’ has the same least-cost
path from s to t as G. It is clearly not possible for
the reduced graph to have a lower cost path from
s to t, so it is sufficient to show that a least-cost
path, P, from s to t in G also exists in G'. Induction
shows that P exists in G' if for every v on P, test(v)
is true. Assuming there is a v on P for which test(v)
is not true, leads to a contradiction we now show.
Let v be the first vertex on P for which test(v) is
false. (Note that test(s) is necessarily true). That v
is on P implies that:
1) r(v,G) 2 r(v, P) = min{m(s, v, P),m(v,t, P)}
However, if test(v) is false, then both of the
following are true:

(2)
3)

r(v,G) < m(s,v,P)
r(v,G) < d(v,t) < m(v,t,P)

Taken together, (3) and (2) contradict (1). We
conclude that for any v on P, test(v) is true, that
G' includes P, and that the modified algorithm is
correct.

Note that, test(v) could use, in place of r(v,G),

some upper bound, b, on 7(v,G). In that case, a
correctness proof is the same except that (2) and (3)
must be justified for the modified test(v). (2) and (3)
would follow from these observations:

e b < m(s,v, P) because test(v) failed using b
e b < d(v,t) < m(v,t,P) because test(v) failed

using b
o r(v,G) <b
Definition: We call b a reach bound for v.

If infinity is employed as the reach bound for all v,
then the algorithm becomes the Dijkstra algorithm.

We note, without giving details, that this modifi-
cation can be easily applied to the A* algorithm. For
graphs projected into some space, the A* algorithm’s
estimation function for vertex v might be based on
d(v,t) depending on the cost metric (weight function)
for the graph. That A* and test(v) can share the cost
of computing d(v,t), which is not completely trivial,
is an added benefit of combining the two techniques.

Finally consider a requirement to compute a least-
cost path from an origin s to any vertex in a set T
of vertices. The modified algorithm, with or without
A* readily performs this as long as there is a function
d(v,T) that computes the distance from a vertex v
to the nearest vertex in T. For example, we have
implemented this for 7" where T are the points on
the network that intersect the boundary of a circle or
rectangle (we temporarily add vertices on the edges
where the intersections occur). Then the algorithm
computes the shortest path to the circle or rectangle
boundary.

The performance of our algorithm obviously de-
pends on how many vertices are rejected by the test
function. That, in turn, depends on distribution of
the values of reach for the vertices in the graph. For
road networks and other networks with a high de-
gree of hierarchy, most vertices have low reach values
(short reach) and only a few have high reach values
(long reach). In fact, the distribution approximates
an exponentially decreasing function of reach.

There is a more general algorithm that uses a bidi-
rectional search and requires no Euclidean distance
function, but that approach lacks several advantages
compared to the one we present here and is more
complex.

4 A Fast Algorithm for Computing Reach
Bounds

Computing r(v,G) for every v in G is expensive.

The only method we know is to perform an all-pairs

shortest path computation on G. But as noted at the

end of section 3, an upper bound on r(v,G) can be
used in place of 7(v, G). We describe an algorithm to
compute reach bounds that are close enough to the
actual reach values that our reach-based least-cost
path algorithm, using those reach bounds, yields the
performance results stated in section 7.

Our strategy computes small reach bounds first,
then uses that information to compute larger reach
bounds. This bootstrapping from low to high reach
bounds is repeated until reach bounds for most
vertices have been computed. The remaining vertices
are assigned infinite reach bounds which means that
they are never rejected by the test function described
in section 3.

For a network with a high degree of hierarchy, the
first iteration computes reach bounds for most ver-
tices. The computation is performed by computing
what we call ”"partial least-cost path trees”. A par-
tial least-cost path tree is a tree which is a directed
subgraph of a least-cost path tree and has the same
root as the least-cost path tree. The partial least-
cost path trees that are needed to compute small
reach bounds are small trees so their computation
time is much shorter than that of the complete least-
cost path trees. The theory in the next section shows
how to determine the extent of the required partial
least-cost path trees.

When some reach bounds have been computed for
some vertices, the next iteration is performed on a
graph, G', with those vertices omitted. Because G’
is smaller than G, partial least-cost path trees com-
puted can be extended further on G, at a reasonable
computing cost, than on G. This allows reach bounds
to be computed for additional vertices. The bounds
are computed using least-cost paths in G’ and the pre-
viously computed reach bounds of vertices in G — G’
adjacent to those least-cost paths. The reach bounds
of the adjacent vertices allow the algorithm to infer
how far least-cost paths in G can extend from where
they leave G'.

Tterations of this process with smaller and smaller
G' continue until G’ is small enough to assign its
vertices infinite reach bounds without badly affecting
the performance of path computation.

Implementation details appear in section 6.

5 Theory for Computing Reach Bounds

The theorems in this section answer three key
questions about computation of reach bounds:

e How far should the least-cost path computations
extend in order to compute reach bounds? (The-
orems 5.3 to 5.6)

e Given that extent of computation, for which ver-
tices can a reach bound be computed? (Theo-
rems 5.5 and 5.6)

e For those vertices, what reach bounds can be
determined? (Theorems 5.1 and 5.2)

Theorems 5.3 to 5.6 address the first question by
characterizing the set of least-cost paths that must
be computed. The length of these paths, and hence
the length of the computations, are bounded by
these theorems.

Definition: Given a directed graph G with
positive weights and a path P in G, we say that ” P
is minimal with respect to the reach of v in G”, if
P is a least-cost path including v, r(v, P) = r(v,G),
and, for any proper subpath of P containing v, @',
r(v,Q") < r(v, P).

Intuitively this means that removing an edge from
either end of a path reduces the reach of v on the
path. Obviously, for every vertex v in graph G, there
exists a path P which is minimal with respect to the
reach of v in G.

To illustrate the application of the theorems, sup-
pose we wish to compute reach bounds for all vertices
v in G for which r(v,G) < b. A special case of The-
orem 5.6 tells us that it is sufficient to compute all
least-cost paths, P, in G satisfying

m(P) < 2b+ max{m(f) + m(l)}
where f and [are, respectively, the first and
last edges of P

Longer paths are not needed. For a given v in
G, the maximum value of r(v, P) for all such P is
computed. If that maximum is less than b, then
this special case of Theorem 5.6 further tells us that
among those paths is one which is minimal with
respect to the reach of v in G. Therefore that
maximum value is r(v, G).

This special case (G = G') of Theorem 5.6 is all
that is needed for the first iteration of the algorithm.
For subsequent iterations on successively smaller sub-
graphs of G, the more general theorem is needed to
determine the set of least-cost paths to be computed
and which vertices’ reach bounds are determined by
those paths. Theorem 5.2 is needed to compute the
reach bounds.

Theorem 5.1 provides a bound on the reach of a
node on a path in terms of the reach, in the graph,
of the path’s endpoints.

Theorem 5.1 (Simple Reach Bounding Theo-
rem): Given,

e a directed graph G = (V,E) with positive
weights

e a non-negative reach metricm : £ — R
e avertex v in G
e 3 least-cost path P in G from s to ¢ including v

e asubpath of P, P’, from s’ to t' and including v
then, 7(v, P) < min{r(s',G) + m(s',v,P"),r(t',G) +
m(v,t',P")}

For Theorems 5.2, 5.3, and 5.4, the following are
given:
e a directed graph G = (V,E) with positive
weights
e a non-negative reach metricm : E — R

a subgraph of G, G' = (V', E'), such that E' =
(u,v)|u,v € V', (u,v) € E

a vertex v in G’ such that r(v,G) > 0

a path P which is minimal with respect to the
reach of v in G

In addition, for those theorems, we let
e path P’ = the longest subpath of P containing
v and included in G’

s and s be the first vertices of P and P’,
respectively

t and t' be the last vertices of P and P’,
respectively

f be the first edge of P after s’ (the first edge of
P' if P’ has more than one vertex)

I be the last edge of P before t' (the last edge of
P'if P’ has more than one vertex) (note: f and
1 exist because r(v, P) = r(v,G) > 0, so P must
have at least one edge prior to v and one edge
following v)

Theorem 5.1 cannot be readily applied when the
reach of s’ and ¢’ are unknown. Theorem 5.2, which
follows from Theorem 5.1, can be applied when
the reach of vertices in G — G’ only are known.
Theorem 5.2 will show that computing P’ is a key to
computing a reach bound for v.

Theorem 5.2 (Practical Reach Bounding The-
orem): Let
o g = max{r(z,G) + m(z,s")|(z,s') € E— E'} if
there is a (z,s") € E — E', otherwise g =0,
o b = max{r(y,G) + m(t,y)|(t,y) € E - B} if
there is a (t',y) € E — E', otherwise h =0,

then, 7(v,G) = r(v,P) < min{g + m(s',v,P'),h +
m(v,t', P")}.

With Theorem 5.3, we begin to characterize the
least-cost paths that must be computed to compute
reach bounds by placing bounds on the lengths of
the paths consistent with ensuring that P’ is among
those paths.

Theorem 5.3 (Simple Minimal Path Bounding
Theorem):

m(P') < 2r(v,G") + max{m(l) + m(s,s’, P),m(f) +
m(t',t, P)}

The right-hand side of this inequality contains
terms that are unknown during the computation:
m(s,s', P), m(t',t, P), and r(v,G"). Theorems that
follow will replace the unknown terms with larger
but known values.

Theorem 5.4 (Practical Minimal Path Bound-
ing Theorem): Let

max{r(z,G)|lx € V-V'} if V. # V/,
otherwise 0,

e C =

e d be defined such that if there exists a vertex
u immediately preceding s’ on P, then d =
m(u, s'), and if not, then d = 0,

e ¢ be defined such that if there exists a vertex u
immediately following ¢’ on P, then e = m(t', u),
and if not, then e = 0,

then, m(P') < 2r(v, G")+c+max{m(l)+d, m(f)+e}.

The value of ¢ can be computed by iterating over
V — V', but there remains one term whose value is
unknown during computation of the least-cost paths:
r(v,G"). This problem can be addressed by limiting
v to those vertices of G' for which r(v,G') < b for
some suitably chosen value b. Then b can substituted
into the inequality of Theorem 5.4 in place of
r(v,G"), and all of the values on the right-hand side
of the inequality become readily available during the
computation for such v. However, we must be able to
distinguish vertices v that satisfy r(v,G') < b from
those that don’t. Theorem 5 allows the computation
to make this distinction.

Theorem 5.5 (Reach Bound Validation Theo-
rem): Given,
e some b > 0,
o a directed graph G' = (V', E') with positive
weights,
e a non-negative reach metric m : B/ — R/,

e a vertex v € G' such that r(v,G’) > b,

e a path P’ in G' which includes v and is minimal
for r(v,G') > b (which we define to mean that,
for any proper subpath of P, @, including v,
r(v, Q) <),
if f and [are, respectively, the first and last edges of
P' (f and [exist because r(v, P') = r(v,G") > 0),
then m(P') < 2b+ m(f) +m(l).

Theorem 5.6 puts Theorems 5.4 and 5.5 together
to describe a set of least-cost paths from which
the reach bounds for some vertices in G' can be
computed.

Theorem 5.6 (Pruning Theorem for Reach
Bound Computation): Given,
e G, G, m, v, and P as defined for Theorems 5.2,
5.3, and 5.4,

e some b > 0,

e the set S of all least-cost paths in G' such that
each path P’ € S satisfies

P’ has at least one edge, and
m(P') < 2b+c+max{m(l)+d, m(f)+
e;m(f) +m(l)}

where

s" and t' are, respectively, the first and
last vertices of P’,

f and [are, respectively, the first and
last edges of P',

¢ =max{r(z,G)|lr e V-V'}ifV #
V', otherwise 0,

d = max{m(u, s')|(u,s') € E— E'} if
such a u exists, otherwise 0,

e = max{m(t',u)|(t',u) € E — E'} if
such a u exists, otherwise 0,

if max{r(v, P')|P' € S} < b, then r(v,G') < b, and S
includes the longest subpath of P containing v and
included in G’ provided the subpath has at least one
edge.

In other words, for a v meeting the conditions of
Theorem 5.6, the set S includes a path P’ with which
we can apply the reach bound formula of Theorem
5.2. We don’t know which P’ it is, but the maximum
value for all such P’ in S is clearly a safe bound.
6 Algorithm and Implementation for
Computing Reach Bounds

The iterative process that computes reach bounds,
as previously explained, computes partial least-cost
path trees on progressively smaller subgraphs of the

input graph G. As the subgraphs become smaller the
partial least cost path trees extend greater distances
from their roots in order to compute reach bounds for
more vertices. Theorem 5.6 helps determines how far
each partial least-cost path trees must extend while
Theorem 5.2 provides a formula for the reach bounds.

There are three differences between the theory de-
scribed in the preceding section and our actual im-
plementation. We describe those differences, meant
to simplify the implementation and enhance its per-
formance, before describing the algorithm we used.

First, Theorem 5.6 does not actually call for the
computation of least-cost path trees. In general, the
set of paths prescribed by Theorem 5.6 might not
form a tree, but a directed acyclic subgraph of G
because, for given source and target vertices, there
can be multiple least-cost paths. Though computing
least-cost path dags is feasible, it’s much simpler
to compute least-cost path trees using the standard
Dijkstra algorithm. Each iteration computes one
partial least-cost path tree for each vertex in G’
applying Theorem 5.6 to determine their extent. If
all least-cost paths in G' are unique, that is, no two
least-cost paths have the same origin and destination,
then those trees contain all of the paths in the set S
described by Theorem 5.6. If two least-cost paths
have the same origin and destination, then the trees
do not contain all of the paths in S. As a result, there
might be some v for which the reach bound computed
is incorrect. Such a v lies on a least-cost path, P,
which is not unique to its origin and destination.
However, an alternate path with the same origin and
destination in G’ is included in the tree rooted at that
origin. So although the reach bound for v is under-
estimated it never prevents the reach-based Dijkstra
algorithm from finding a least-cost path.

The other two differences improve performance by
helping to limit the size of the trees computed. A par-
tial least-cost path tree can be computed by running
a Dijkstra algorithm that terminates when the tree is
sufficiently large to contain the desired paths. How-
ever, some branches of the tree might be extended
much further than necessary, because the cost-metric,
or weights, of the graph determine how the tree grows
while the reach metric determines whether a particu-
lar branch of the tree has been extended far enough.
An optimization stops exploration on branches that
satisfy Theorem 5.6 before other branches do. A side
effect is that the tree produced contains some paths
which are not least-cost paths. We found that this
optimization only slightly increases the reach bounds
computed, and has no other ill effects, if implemented
conservatively.

The third difference is the most important, calls

for some restatement of theorems, and is reflected
in the psuedocode given at the end of this section.
The test, from Theorem 5.6, to determine whether a
particular path, P’, is needed in the tree,

(4) m(P'") < 2b+ max{r(z,G)|lz € V — V'} +
max{m(l) + d,m(f) + e, m(f) + m(l)}

is difficult to apply efficiently, that is, in such a way
that keeps each partial least-cost path trees small. To
be applied efficiently an inclusion test, I(P), which is
true if path P is be included in the tree, should have
this property:

Given P and @, both paths starting at
the root of the least-cost path tree, such
that P is a subpath of @}, and) has one
more vertex that P, then I(Q) = I(P).
Conversely, not(I(P)) = not(I(Q)).

This permits the computation to stop at P if I(P)
fails and avoid evaluating I(Q). If I(P) fails, no
least-cost path that extends through and beyond the
endpoint of P need be included in the least-cost path
tree. We call this a "monotonic inclusion test”. The
term e in (4) prevents it from being monotonic. All
of the other terms in (4), except m(l) and e, are fixed
for a given least-cost path tree, so without those two
terms, (4) would be monotonic, but only e prevents
monotonicity.

One way to form a monotonic inclusion test is to
replace e by some constant. Recall that e is the max-
imum length of edges in E— E' leaving the last vertex
of P'. If we replace e by k where k is the maximum
length of any edge in E— E', we get a monotonic test,

(5) m(P') < 2b+ max{r(z,G)lz € V - V'} +
max{m(l) + d,m(f) + k,m(f) +m(l)}

Theorem 6.1: (5) is a monotonic inclusion test.

The disadvantage of (5) is that k can be large. One
remedy is to replace long edges in the graph with
several smaller ones reducing k£ to some maximum
allowed edge length. This might work well in some
road networks.

However, we implemented a simpler approach
though one that requires restatement of some the-
orems. In this approach, the least-cost path trees
are generated, not from G’ alone, but from H whose
edges and vertices, respectively, are

E(H) ={(z,y)|lz € V',y eV}
V(H)=V"'U{v|3(z,v) € E(H)}
So H includes vertices in G' and vertices in G
adjacent to vertices in G':

The following theorems are slight restatements of
earlier theorems to support this refined approach.

Theorem 6.2 (Practical Reach Bounding
Theorem): Given the conditions of Theorem 5.2,
r(v,@) = r(v,P) < min{g + m(s',v,P"),r(t',G) +
m(v, t', P')}

Theorem 6.4 (Monotonic Minimal Path
Bounding Theorem): Given, all of the conditions
and defintions of Theorem 5.4 and H as defined above
with the modification that path P’ be the longest
subpath of P containing v and included in H (instead
of G'), then m(P') < 2r(v,H) + max{r(z,G)|z €
V = V' + max{m(l) + d,m(f)}

From Theorem 6.4, we can derive Theorem 6.6
in the same way that Theorem 5.6 is derived from
Theorem 5.4.

Theorem 6.6 (Pruning Theorem for Reach
Bound Computation): Given,
e G,G’, m, v, P, and b as defined for Theorem 5.6,

e H as defined above,

o the set S of all least-cost paths in H such that
each path P’ in S satisfies

P’ has at least one edge, and
m(P') < 2b 4+ ¢ + max{m(l) +
d,m(f), m(f) +m(l)}

where

s" and t' are, respectively, the first and
last vertices of P’,

f and [are, respectively, the first and
last edges of P’,

¢ =max{r(z,G)|lr e V-V'}ifV #
V', otherwise 0,

d = max{m(u, s')|(u,s') € E} if such
a u exists, otherwise 0,

if max{r(v, P')|P' € S} < b, then, r(v,H) < b, and
S includes a longest subpath of P containing v and
included in H provided the subpath has at least one
edge.

In comparison with Theorem 5.6, Theorem 6.6
eliminates the e term in the inequality that each path
P! in S satisfies.

In the pseudocode of Figure 1,
ReachBoundComputation computes reach bounds
on graph G by calling Iterate repeatedly passing
it graph G and subgraph G'. Iterate attempts to

compute reach bounds for vertices of G' given reach
bounds for vertices of G — G'. Initially G' = G
and reach bounds, held in array bounds, are set
to infinity. Vertices for which finite reach bounds
are computed are removed from G’ after each
iteration. After the last iteration, G’ is expected to
be small enough that assigning each of its vertices
an infinite reach bound, which means those vertices
are never pruned by the routing algorithm, does
not significantly affect query performance. The b
parameter of Iterate (corresponding to b in Theorem
6.6) controls the trade-off between the amount of
computation performed by the iteration and the
amount of reduction in the size of G'.

In each iteration, Theorem 6.6 is applied to
compute least-cost path trees needed to assign reach
bounds to some vertices in V'. Each computed tree
is traversed and Theorem 6.2 is applied to each
vertex, v, in the tree to produce a reach bound
on the assumption that the tree contains, P’, the
longest subpath in G’ of a path which is minimal
with respect to the reach of v in G. The maximum of
the bounds over all of the trees is computed for each
v. At the same time, the reach of each v over all of
the trees is computed and used with Theorem 6.6, to
identify some v for which one of trees contains the
actual P'. For those v, the maximum bound com-
puted over the trees is a valid reach bound for v in G.

7 Experimental Results

We present performance results for both the com-
putation of reach bounds (for all but 3% to 5% of
vertices) and the reach-based variant of Dijkstra’s al-
gorithm. All tests were performed by C++ programs
without compiler optimization on a 2GHz PC run-
ning Linux with sufficient memory to hold all of the
graph representation, reach bounds, and data struc-
tures required by the algorithms.

All of the tests were performed on graphs repre-
senting real road networks. For all tests, the cost
metric was travel time and the reach metric was travel
distance.

Our priority queue was a bucket priority queue (see
[2, 3, 8, 9]).

Table 1 shows a somewhat greater than linear
increase in computation time of reach bounds as
the size of the dataset increases. This is what
we expected. Generally, for hierarchical networks,
we expect each iteration to require computation
proportional to the size of the network, but that
the number of iterations needed will increase as a
sublinear function of size.

With the increase in data size, computation of ex-

ReachBoundComputation(G, B, bounds)

// G is a graph, (E,V), with weight function, w, and reach metric, m.

// B is an array of increasing positive integers.

// bounds is an array indexed by v € V and into which reach bounds are placed

G =G

For each v € V:
bounds[v] := oo

For each index, i, of B, in ascending order:
Call Iterate(G,G", B[i],bounds) // attempts to set finite values in bounds
V' := {v|v € V, bounds[v] = o0} // should become smaller in succesive iterations
E' = {(u,v)|(u,v) e E,ue V', veV'}
G :={V',E'}

Iterate(G,G', b, bounds)
If V =V’ then ¢ := max{bounds[z]|lz € V — V'} else ¢ := 0
For each v € V":
bounds[v] := 0 // will set back to oo if needed
r[v] :== 0 // reach of v in least-cost path trees
Form the graph H:
EH = {(z,y)lzr € V',y € V}
VH :=V'U{v|3(z,v) € EH}
H:= {VH EH}
For each vertex s’ € V':
If there exists (z,s') € E — E'
g := max{bounds[z] + m(z,s")|(z,s') € E— E'}
d := maz{m(z,s')|(z,s') € E— E'}
else
g:=d:=0
T := partial least-cost path tree of H rooted at s’ containing all P’ such that
m(P') < 2b+c+d+m(f) +m(l), where f and [are the first and last edges of P’
// this inequality is simpler but slightly looser than Theorem 6.6 requires
Traverse T' (once) to do the following for each vertex, v, in T"
Compute 7(v,T)
Over all paths, P’, in T that begin at s', include v, and end at a leaf, ¢', of T
Ift'ev -V’
rt := bounds[t']
else
rt := 0 // in this case, Theorem 6.6 guarantees that P terminates at ¢’
rb := min{g + m(s’,v, P'),rt + m(v,t', P')} // application of Theorem 6.2
if rb > bounds[v]
bounds[v] := rb
if r(v,T) > r[v]
rv] = r(v,T)
For each v € V":
If r[v] > b // apply Theorem 6.6
bounds[v] := oo // reach bound not validated

Figure 1: Pseudocode for Reach Bound Computation

region

number of vertices

exact reach computation

reach bound computation

Alameda County

San Francisco Bay Area

97240
393368

233 minutes
4415 minutes

28 minutes
161 minutes

Table 1: Exact Reach and Reach Bound Computations

algorithm avg route length cpu time (1000 routes) priority queue insertions per path
Dijkstra 26 kilometers 62 seconds 44122
A* 26 kilometers 60 seconds 27395
Reach 26 kilometers 14 seconds 5058
Reach + A* 26 kilometers 12 seconds 3711
Exact Reach 26 kilometers 9 seconds 3199

Table 2

: Shortest Path Computation for Alameda

algorithm avg route length cpu time (1000 routes) priority queue insertions per path
Dijkstra 56 kilometers 289 seconds 179263
A* 56 kilometers 194 seconds 79293
Reach 56 kilometers 28 seconds 10043
Reach + A* 56 kilometers 17 seconds 5314
Exact Reach 56 kilometers 15 seconds 5797

Table 3: Shortest Path Computation for the Bay Area

algorithm avg route length cpu time (1000 routes) priority queue insertions per path
Dijkstra 52 kilometers 334 seconds 141464
A* 52 kilometers 140 seconds 50692
Reach 52 kilometers 27 seconds 7910
Reach + A* 52 kilometers 13 seconds 3473

Table 4: Shortest Path to Box Computation for the Bay Area

act reach values increased 19 times, roughly in pro-
portion to the square of the size of the dataset as we’d
expect from an all-pairs shortest path computation.

We compared the performance of shortest path
computations for four Dijkstra variations. In each
case, 1000 random routes were computed. Each
route was chosen randomly by randomly choosing
two vertices from the graph. The random choices
of the two vertices were independent, so the average
distances between them were roughly proportionate
to the geographic width and length of the road
network.

Comparing the tests on the smaller network (Table
2) with the tests on the larger network (Table 3), sug-
gests a linear increase in computation as a function
of path length using the reach algorithm and sub-
linear using the combination of reach and A*. The
computation time of the Dijkstra algorithm on road
networks is commonly considered to increase with the
square of the distance as rule of thumb. The improve-
ment in performance provided by the reach algorithm
is consistent with the heuristic approach using road
classifications often used in industry.

The numbers of priority queue insertions per path
computation give some insight into the factors deter-
mining performance. The A* algorithm, for instance,
exhibits a reduction in priority queue insertions out
of proportion to the reduction in computation time.
That suggests that the cost of the estimate function,
which involves an expensive square root, is itself sig-
nificant.

The improvements provided by reach and by A*
appear to be independent from each other and com-
plimentary.

The performance of the path computation using
exact reach values (without A*) suggests that there
is considerable room for trade-off between reach
preprocessing time and query performance and/or
that the preprocessing can benefit from tuning.

Tests with two road networks in Asia demon-
strated similar reductions in computation time com-
pared to Dijkstra ranging from a 5 times reduction
to 10 times reduction.

To validate the reach algorithms and their im-
plemetation, we compared the cost of each path com-
puted among the various algorithm implementations.
There were no differences.

In a parallel series of tests (Table 4), the destina-
tions were regions bounded by latitude and longitude
lines (which we call "boxes”). The origin was a ver-
tex chosen at random. The center of the box and its
size were randomly chosen. Combinations in which
the origin vertex was inside the box were discarded.
This simulates an application in which it is desirable

to know how soon a mobile device can enter a region
using the road network. These tests demonstrate the
versatility of the reach-based algorithms and suggest
that reach-based algorithms would provide the fastest
possible means of computing paths to multiple desti-
nations or from multiple origins - given the difficulties
other approaches face.

8 Further Work

It’s desirable to characterize the performance of our
algorithms as functions of easily computed network
properties. Under some conditions, we think, the
computation time of our shortest path algorithm is
a linear, or near linear, as a functon of some metric
on the path computed. Such a bound would be
considered meaningful in road network applications.
Considering the distribution of reach values would
play a role in the analysis.

We also think that, under some conditions, there is
a dynamic, or incremental, approach that allows fast
update to the reach bounds when there are localized
changes to the graph.

9 Acknowledgements

This research was performed at Wavemarket, Inc in
Emeryville, California.

Thanks to Wavemarket, Inc. and Scott Hotes
at Wavemarket for making this research and paper
possible.

Thanks to Dave Blackston at Wavemarket for his
comments on this paper.

Patents related to the ideas in this paper have been
filed by Wavemarket, Inc.

References

[1] G. Ausiello, G. F. Italiano, A. M. Spaccamela,
and U. Nanni. Incremental Algorithms for Minimal
Length Paths. Journal of Algorithms, 12(4):615-638,
1991.

[2] B. V. Cherkassky, A. V. Goldberg, and C. Silver-
stein. Buckets, Heaps, Lists, and Monotone Prior-
ity Queues. Siam Journal of Computing, 28(4):1326-
1346, 1999.

[3] B. V. Cherkassky, A. V. Goldberg, and C. Silver-
stein. Buckets, Heaps, Lists, and Monotone Priority
Queues. In Proceedings of the Eight Annual ACM-
SIAM Symposium on Discrete Algorithms, pages 83-
92, 1997.

[4] T. H. Cormen, C. E. Leiserson, R. E. Rivest, and
Clifford Stein. Introduction to Algorithms. Second
Edition, MIT Press, 2001.

[5] E. W. Dijkstra. A Note on Two Problems in Con-
nexion with Graphs. Numer. Math., 1:269-271, 1959.

[6]

[7]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

Hristo N. Djidjev, Grammati E. Pantziou, Christos
D. Zaroliagis. Improved Algorithms for Dynamic
Shortest Paths. Algorithmica, 28(4):367-389, 2000.
H. N. Djidjev. Efficient Algorithms for Shortest
Path Queries in Planar Digraphs. In Proceedings of
the 22nd Workshop on Graph Theoretic Concepts
in Computer Science, Lecture Notes in Computer
Science, pages 151-165. Springer Verlag, 1996.

A. V. Goldberg and C. Silverstein. Implementations
of Dijkstra’s Algorithm Based on Multi-Level Buck-
ets. Technical Report 95-187, NEC Research Insti-
tute, Princeton, NJ 1995.

R. Gutman. Priority Queues for Motorists. Dr.
Dobb’s Journal, 340:89-94, 2002.

P. Hart, N. Nilsson, and B. Raphael. A Formal Basis
for the Heuristic Determination of Minimum Cost
Paths. IEEE Transactions on Systems Science and
Cybernetics, 4(2):100-107, 1968.

P. Hart, N. Nilsson, and B. Raphael. Correction to
”A Formal Basis for the Heuristic Determination
of Minimum Cost Paths”. SIGART Newsletter, no.
37:28-29, 1994.

R. Jacob, M. Marathe, and K. Nagel. A Compu-
tational Study of Routing Algorithms for Realis-
tic Transportion Networks. ACM Journal of Ezper-
imental Algorithms, 4(6), 1999.

N. Jing, Y. W. Huang, and E. Rundensteiner.
Hierarchical Encoded Path Views for Path Query
Processing: an Optimal Model and its Performance
Evaluation. IEEE Transactions on Knowledge and
Data Engineering, 10(3):409-431, 1998.

P. Klein, and S. Subramanian. A Fully Dynamic Ap-
proximation Scheme for Shortest Path Problems in
Planar Graphs. Algorithmica, 22(3):235-249, 1998.
P. Klein, S. Rao, M. Rauch, and S. Subramanian.
Faster Shortest-Path Algorithms for Planar Graphs.
Special issue of Journal of Computer and System
Sciences on selected papers of STOC 1994, 55(1):3-
23, 1997.

R. E. Tarjan. Data Structures and Network Algo-
rithms. Society for Industrial and Applied Mathe-
matics, Philadelphia, PA, 1983.

