
Tree isomorphism

Alexander Smal

St.Petersburg State University of Information Technologies, Mechanics and Optics

Joint Advanced Student School 2008

1 / 22

Motivation

In some applications the chemical structures are often trees with
millions of vertices:

∙ gene splicing,

∙ protein analysis,

∙ molecular biology.

Difference between O(n), O(n log n), and O(n2) isomorphism
algorithms is not just theoretical importance.

2 / 22

Graph isomorphism

Definition
Isomorphism of graphs G1(V1, E1) and G2(V2, E2) is a bijection
between the vertex sets 𝜙 : V1 → V2 such that

∀u, v ∈ V1 (u, v) ∈ E1 ⇔ (𝜙(u), 𝜙(v)) ∈ E2.

Facts

∙ No algorithm, other than brute force, is known for testing
whether two arbitrary graphs are isomorphic.

∙ It is still an open question (!) whether graph isomorphism is
NP complete.

∙ Polynomial time isomorphism algorithms for various graph
subclasses such as trees are known.

3 / 22

Graph isomorphism

Definition
Isomorphism of graphs G1(V1, E1) and G2(V2, E2) is a bijection
between the vertex sets 𝜙 : V1 → V2 such that

∀u, v ∈ V1 (u, v) ∈ E1 ⇔ (𝜙(u), 𝜙(v)) ∈ E2.

Facts

∙ No algorithm, other than brute force, is known for testing
whether two arbitrary graphs are isomorphic.

∙ It is still an open question (!) whether graph isomorphism is
NP complete.

∙ Polynomial time isomorphism algorithms for various graph
subclasses such as trees are known.

3 / 22

Graph isomorphism

Definition
Isomorphism of graphs G1(V1, E1) and G2(V2, E2) is a bijection
between the vertex sets 𝜙 : V1 → V2 such that

∀u, v ∈ V1 (u, v) ∈ E1 ⇔ (𝜙(u), 𝜙(v)) ∈ E2.

Facts

∙ No algorithm, other than brute force, is known for testing
whether two arbitrary graphs are isomorphic.

∙ It is still an open question (!) whether graph isomorphism is
NP complete.

∙ Polynomial time isomorphism algorithms for various graph
subclasses such as trees are known.

3 / 22

Graph isomorphism

Definition
Isomorphism of graphs G1(V1, E1) and G2(V2, E2) is a bijection
between the vertex sets 𝜙 : V1 → V2 such that

∀u, v ∈ V1 (u, v) ∈ E1 ⇔ (𝜙(u), 𝜙(v)) ∈ E2.

Facts

∙ No algorithm, other than brute force, is known for testing
whether two arbitrary graphs are isomorphic.

∙ It is still an open question (!) whether graph isomorphism is
NP complete.

∙ Polynomial time isomorphism algorithms for various graph
subclasses such as trees are known.

3 / 22

Rooted trees

Definition
Rooted tree (V , E , r) is a tree (V , E) with selected root r ∈ V .

Definition
Isomorphism of rooted trees T1(V1, E1, r1) and T2(V2, E2, r2) is
a bijection between the vertex sets 𝜙 : V1 → V2 such that

∀u, v ∈ V1 (u, v) ∈ E1 ⇔ (𝜙(u), 𝜙(v)) ∈ E2

and 𝜙(r1) = r2.

Example

T1 and T2 are isomorphic as graphs . . .

a B

b

c

A CT1 T2

4 / 22

Rooted trees

Definition
Rooted tree (V , E , r) is a tree (V , E) with selected root r ∈ V .

Definition
Isomorphism of rooted trees T1(V1, E1, r1) and T2(V2, E2, r2) is
a bijection between the vertex sets 𝜙 : V1 → V2 such that

∀u, v ∈ V1 (u, v) ∈ E1 ⇔ (𝜙(u), 𝜙(v)) ∈ E2

and 𝜙(r1) = r2.

Example

T1 and T2 are isomorphic as graphs . . .

a B

b

c

A CT1 T2

4 / 22

Rooted trees

Definition
Rooted tree (V , E , r) is a tree (V , E) with selected root r ∈ V .

Definition
Isomorphism of rooted trees T1(V1, E1, r1) and T2(V2, E2, r2) is
a bijection between the vertex sets 𝜙 : V1 → V2 such that

∀u, v ∈ V1 (u, v) ∈ E1 ⇔ (𝜙(u), 𝜙(v)) ∈ E2

and 𝜙(r1) = r2.

Example

T1 and T2 are isomorphic as graphs . . .

a B

b

c

A CT1 T2

4 / 22

Rooted trees

Definition
Rooted tree (V , E , r) is a tree (V , E) with selected root r ∈ V .

Definition
Isomorphism of rooted trees T1(V1, E1, r1) and T2(V2, E2, r2) is
a bijection between the vertex sets 𝜙 : V1 → V2 such that

∀u, v ∈ V1 (u, v) ∈ E1 ⇔ (𝜙(u), 𝜙(v)) ∈ E2

and 𝜙(r1) = r2.

Example

T1 and T2 are isomorphic as graphs . . .

a B

b

c

A CT1 T2

4 / 22

Rooted trees

Definition
Rooted tree (V , E , r) is a tree (V , E) with selected root r ∈ V .

Definition
Isomorphism of rooted trees T1(V1, E1, r1) and T2(V2, E2, r2) is
a bijection between the vertex sets 𝜙 : V1 → V2 such that

∀u, v ∈ V1 (u, v) ∈ E1 ⇔ (𝜙(u), 𝜙(v)) ∈ E2

and 𝜙(r1) = r2.

Example

T1 and T2 are isomorphic as graphs but not as rooted trees!

a B

b

c

A CT1 T2

4 / 22

Rooted trees (part 2)

Lemma
If there is O(n) algorithm for rooted trees isomorphism, then there
is O(n) algorithm for ordinary trees isomorphism.

Proof.

1 Let A to be O(n) algorithm for rooted trees.

2 Let T1 and T2 to be ordinary trees.

3 Lets find centers of this trees. There are three cases:

1 each tree has only one center (c1 and c2 respectively)
return A(T1, c1, T2, c2)

2 each tree has exactly two centers (c1, c ′
1 and c2, c ′

2

respectively)
return A(T1, c1, T2, c2) or A(T1, c

′
1, T2, c2)

3 trees has different number of centers
return False

5 / 22

Rooted trees (part 2)

Lemma
If there is O(n) algorithm for rooted trees isomorphism, then there
is O(n) algorithm for ordinary trees isomorphism.

Proof.

1 Let A to be O(n) algorithm for rooted trees.

2 Let T1 and T2 to be ordinary trees.

3 Lets find centers of this trees. There are three cases:

1 each tree has only one center (c1 and c2 respectively)
return A(T1, c1, T2, c2)

2 each tree has exactly two centers (c1, c ′
1 and c2, c ′

2

respectively)
return A(T1, c1, T2, c2) or A(T1, c

′
1, T2, c2)

3 trees has different number of centers
return False

5 / 22

Rooted trees (part 2)

Lemma
If there is O(n) algorithm for rooted trees isomorphism, then there
is O(n) algorithm for ordinary trees isomorphism.

Proof.

1 Let A to be O(n) algorithm for rooted trees.

2 Let T1 and T2 to be ordinary trees.

3 Lets find centers of this trees. There are three cases:

1 each tree has only one center (c1 and c2 respectively)
return A(T1, c1, T2, c2)

2 each tree has exactly two centers (c1, c ′
1 and c2, c ′

2

respectively)
return A(T1, c1, T2, c2) or A(T1, c

′
1, T2, c2)

3 trees has different number of centers
return False

5 / 22

Rooted trees (part 2)

Lemma
If there is O(n) algorithm for rooted trees isomorphism, then there
is O(n) algorithm for ordinary trees isomorphism.

Proof.

1 Let A to be O(n) algorithm for rooted trees.

2 Let T1 and T2 to be ordinary trees.

3 Lets find centers of this trees. There are three cases:

1 each tree has only one center (c1 and c2 respectively)
return A(T1, c1, T2, c2)

2 each tree has exactly two centers (c1, c ′
1 and c2, c ′

2

respectively)
return A(T1, c1, T2, c2) or A(T1, c

′
1, T2, c2)

3 trees has different number of centers
return False

5 / 22

Rooted trees (part 2)

Lemma
If there is O(n) algorithm for rooted trees isomorphism, then there
is O(n) algorithm for ordinary trees isomorphism.

Proof.

1 Let A to be O(n) algorithm for rooted trees.

2 Let T1 and T2 to be ordinary trees.

3 Lets find centers of this trees. There are three cases:

1 each tree has only one center (c1 and c2 respectively)
return A(T1, c1, T2, c2)

2 each tree has exactly two centers (c1, c ′
1 and c2, c ′

2

respectively)
return A(T1, c1, T2, c2) or A(T1, c

′
1, T2, c2)

3 trees has different number of centers
return False

5 / 22

Rooted trees (part 2)

Lemma
If there is O(n) algorithm for rooted trees isomorphism, then there
is O(n) algorithm for ordinary trees isomorphism.

Proof.

1 Let A to be O(n) algorithm for rooted trees.

2 Let T1 and T2 to be ordinary trees.

3 Lets find centers of this trees. There are three cases:

1 each tree has only one center (c1 and c2 respectively)
return A(T1, c1, T2, c2)

2 each tree has exactly two centers (c1, c ′
1 and c2, c ′

2

respectively)
return A(T1, c1, T2, c2) or A(T1, c

′
1, T2, c2)

3 trees has different number of centers
return False

5 / 22

Rooted trees (part 2)

Lemma
If there is O(n) algorithm for rooted trees isomorphism, then there
is O(n) algorithm for ordinary trees isomorphism.

Proof.

1 Let A to be O(n) algorithm for rooted trees.

2 Let T1 and T2 to be ordinary trees.

3 Lets find centers of this trees. There are three cases:

1 each tree has only one center (c1 and c2 respectively)
return A(T1, c1, T2, c2)

2 each tree has exactly two centers (c1, c ′
1 and c2, c ′

2

respectively)
return A(T1, c1, T2, c2) or A(T1, c

′
1, T2, c2)

3 trees has different number of centers
return False

5 / 22

Diameter and center

Definition
The diameter of tree is the length of the longest path.

Definition
A center is a vertex v such that the longest path from v to a leaf
is minimal over all vertices in the tree.

Algorithm

1: Choose a random root r .
2: Find a vertex v1 — the farthest form r.
3: Find a vertex v2 — the farthest form v1.
4: Diameter is a length of path from v1 to v2.
5: Centers are median elements of path from v1 to v2.

It is O(n) algorithm.

6 / 22

Diameter and center

Definition
The diameter of tree is the length of the longest path.

Definition
A center is a vertex v such that the longest path from v to a leaf
is minimal over all vertices in the tree.

Algorithm

1: Choose a random root r .
2: Find a vertex v1 — the farthest form r.
3: Find a vertex v2 — the farthest form v1.
4: Diameter is a length of path from v1 to v2.
5: Centers are median elements of path from v1 to v2.

It is O(n) algorithm.

6 / 22

Diameter and center

Definition
The diameter of tree is the length of the longest path.

Definition
A center is a vertex v such that the longest path from v to a leaf
is minimal over all vertices in the tree.

Algorithm

1: Choose a random root r .
2: Find a vertex v1 — the farthest form r.
3: Find a vertex v2 — the farthest form v1.
4: Diameter is a length of path from v1 to v2.
5: Centers are median elements of path from v1 to v2.

It is O(n) algorithm.

6 / 22

Diameter and center

Definition
The diameter of tree is the length of the longest path.

Definition
A center is a vertex v such that the longest path from v to a leaf
is minimal over all vertices in the tree.

Algorithm

1: Choose a random root r .
2: Find a vertex v1 — the farthest form r.
3: Find a vertex v2 — the farthest form v1.
4: Diameter is a length of path from v1 to v2.
5: Centers are median elements of path from v1 to v2.

It is O(n) algorithm.

6 / 22

The idea

Let’s try to find complete invariant of rooted trees isomorphism.

Definition
Isomorphism invariant is a function f (T) such that
f (T1) = f (T2) for all pairs of isomorphic trees T1 and T2.

Definition
Complete isomorphism invariant is a function f (T) such that
two trees T1 and T2 are isomorphic if and only if f (T1) = f (T2).

So if we find complete isomorphism invariant we can obtain
algorithm from it.

Note
Starting from the next slide tree always means rooted tree!

7 / 22

The idea

Let’s try to find complete invariant of rooted trees isomorphism.

Definition
Isomorphism invariant is a function f (T) such that
f (T1) = f (T2) for all pairs of isomorphic trees T1 and T2.

Definition
Complete isomorphism invariant is a function f (T) such that
two trees T1 and T2 are isomorphic if and only if f (T1) = f (T2).

So if we find complete isomorphism invariant we can obtain
algorithm from it.

Note
Starting from the next slide tree always means rooted tree!

7 / 22

The idea

Let’s try to find complete invariant of rooted trees isomorphism.

Definition
Isomorphism invariant is a function f (T) such that
f (T1) = f (T2) for all pairs of isomorphic trees T1 and T2.

Definition
Complete isomorphism invariant is a function f (T) such that
two trees T1 and T2 are isomorphic if and only if f (T1) = f (T2).

So if we find complete isomorphism invariant we can obtain
algorithm from it.

Note
Starting from the next slide tree always means rooted tree!

7 / 22

The idea

Let’s try to find complete invariant of rooted trees isomorphism.

Definition
Isomorphism invariant is a function f (T) such that
f (T1) = f (T2) for all pairs of isomorphic trees T1 and T2.

Definition
Complete isomorphism invariant is a function f (T) such that
two trees T1 and T2 are isomorphic if and only if f (T1) = f (T2).

So if we find complete isomorphism invariant we can obtain
algorithm from it.

Note
Starting from the next slide tree always means rooted tree!

7 / 22

The idea

Let’s try to find complete invariant of rooted trees isomorphism.

Definition
Isomorphism invariant is a function f (T) such that
f (T1) = f (T2) for all pairs of isomorphic trees T1 and T2.

Definition
Complete isomorphism invariant is a function f (T) such that
two trees T1 and T2 are isomorphic if and only if f (T1) = f (T2).

So if we find complete isomorphism invariant we can obtain
algorithm from it.

Note
Starting from the next slide tree always means rooted tree!

7 / 22

Candidate 1

Observation
The level number of a vertex is a tree isomorphism invariant.

Conjecture

Two trees are isomorphic if and only if they have the same number
of levels and the same number of vertices on each level.

Observation
The number of the leaves is a tree isomorphism invariant.

Contrary instance

a A

1 2 n· · · 1 2 n· · ·

d e D E

T1 T2

8 / 22

Candidate 1

Observation
The level number of a vertex is a tree isomorphism invariant.

Conjecture

Two trees are isomorphic if and only if they have the same number
of levels and the same number of vertices on each level.

Observation
The number of the leaves is a tree isomorphism invariant.

Contrary instance

a A

1 2 n· · · 1 2 n· · ·

d e D E

T1 T2

8 / 22

Candidate 1

Observation
The level number of a vertex is a tree isomorphism invariant.

Conjecture

Two trees are isomorphic if and only if they have the same number
of levels and the same number of vertices on each level.

Observation
The number of the leaves is a tree isomorphism invariant.

Contrary instance

a A

1 2 n· · · 1 2 n· · ·

d e D E

T1 T2

8 / 22

Candidate 1

Observation
The level number of a vertex is a tree isomorphism invariant.

Conjecture

Two trees are isomorphic if and only if they have the same number
of levels and the same number of vertices on each level.

Observation
The number of the leaves is a tree isomorphism invariant.

Contrary instance

a A

1 2 n· · · 1 2 n· · ·

d e D E

T1 T2

8 / 22

Candidate 2

What’s wrong with candidate 1?

We didn’t take into account the degree spectrum of a tree.

Definition
Degree spectrum of tree is the sequence of non-negative integers
{dj}, where dj is the number of vertices that have j children.

Conjecture

Two trees are isomorphic if and only if they have the same degree
spectrum.

9 / 22

Candidate 2

What’s wrong with candidate 1?

We didn’t take into account the degree spectrum of a tree.

Definition
Degree spectrum of tree is the sequence of non-negative integers
{dj}, where dj is the number of vertices that have j children.

Conjecture

Two trees are isomorphic if and only if they have the same degree
spectrum.

9 / 22

Candidate 2

What’s wrong with candidate 1?

We didn’t take into account the degree spectrum of a tree.

Definition
Degree spectrum of tree is the sequence of non-negative integers
{dj}, where dj is the number of vertices that have j children.

Conjecture

Two trees are isomorphic if and only if they have the same degree
spectrum.

9 / 22

Candidate 2 (part 2)

Observation
Since a tree isomorphism preserves longest paths from the root,
the number of levels in a tree is a tree isomorphism invariant.

Contrary instance

a A

b c B C

d e D E

1

n

1

n
...

...T1 T2

10 / 22

Candidate 2 (part 2)

Observation
Since a tree isomorphism preserves longest paths from the root,
the number of levels in a tree is a tree isomorphism invariant.

Contrary instance

a A

b c B C

d e D E

1

n

1

n
...

...T1 T2

10 / 22

Candidate 3

Conjecture

Two trees are isomorphic if and only if they have the same degree
spectrum at each level.

If two trees have the same degree spectrum at each level, then
they must automatically have the same number of levels, the same
number of vertices at each level, and the same global degree
spectrum!

Observation
The number of leaf descendants of a vertex and the level number
of a vertex are both tree isomorphism invariants.

11 / 22

Candidate 3

Conjecture

Two trees are isomorphic if and only if they have the same degree
spectrum at each level.

If two trees have the same degree spectrum at each level, then
they must automatically have the same number of levels, the same
number of vertices at each level, and the same global degree
spectrum!

Observation
The number of leaf descendants of a vertex and the level number
of a vertex are both tree isomorphism invariants.

11 / 22

Candidate 3

Conjecture

Two trees are isomorphic if and only if they have the same degree
spectrum at each level.

If two trees have the same degree spectrum at each level, then
they must automatically have the same number of levels, the same
number of vertices at each level, and the same global degree
spectrum!

Observation
The number of leaf descendants of a vertex and the level number
of a vertex are both tree isomorphism invariants.

11 / 22

Candidate 3 (part 2)

Contrary instance

a A

b c B C

d e f D E F

g G1

n

1

n

...
...

level degree spectrum

(0, 0, 1, 0, . . .)

(0, 1, 1, 0, . . .)

(2, 0, 1, 0, . . .)

(1, 1, 0, 0, . . .)

...

(1, 0, 0, 0, . . .)

T1 T2

12 / 22

AHU algorithm

Algorithm by Aho, Hopcroft and Ullman

∙ Determine tree isomorphism in time O(|V |).
∙ Uses complete history of degree spectrum of the vertex

descendants as a complete invariant.

The idea of AHU algorithm

The AHU algorithm associates with each vertex a tuple that
describes the complete history of its descendants.

Hard question

Why our previous invariants are not complete?

Let’s discuss AHU algorithm. We start from O(|V |2) version and
then I tell how to make it faster (O(|V |)).

13 / 22

AHU algorithm

Algorithm by Aho, Hopcroft and Ullman

∙ Determine tree isomorphism in time O(|V |).
∙ Uses complete history of degree spectrum of the vertex

descendants as a complete invariant.

The idea of AHU algorithm

The AHU algorithm associates with each vertex a tuple that
describes the complete history of its descendants.

Hard question

Why our previous invariants are not complete?

Let’s discuss AHU algorithm. We start from O(|V |2) version and
then I tell how to make it faster (O(|V |)).

13 / 22

AHU algorithm

Algorithm by Aho, Hopcroft and Ullman

∙ Determine tree isomorphism in time O(|V |).
∙ Uses complete history of degree spectrum of the vertex

descendants as a complete invariant.

The idea of AHU algorithm

The AHU algorithm associates with each vertex a tuple that
describes the complete history of its descendants.

Hard question

Why our previous invariants are not complete?

Let’s discuss AHU algorithm. We start from O(|V |2) version and
then I tell how to make it faster (O(|V |)).

13 / 22

AHU algorithm

Algorithm by Aho, Hopcroft and Ullman

∙ Determine tree isomorphism in time O(|V |).
∙ Uses complete history of degree spectrum of the vertex

descendants as a complete invariant.

The idea of AHU algorithm

The AHU algorithm associates with each vertex a tuple that
describes the complete history of its descendants.

Hard question

Why our previous invariants are not complete?

Let’s discuss AHU algorithm. We start from O(|V |2) version and
then I tell how to make it faster (O(|V |)).

13 / 22

Understanding AHU algorithm

Knuth tuples

Let’s assign parenthetical tuples to all tree vertices.

Knuth tuples example

A

B

E

C

F G

D

14 / 22

Understanding AHU algorithm

Knuth tuples

Let’s assign parenthetical tuples to all tree vertices.

Knuth tuples example

A

B

E

C

F G

D

14 / 22

Understanding AHU algorithm

Knuth tuples

Let’s assign parenthetical tuples to all tree vertices.

Knuth tuples example

A

B

E

C

F G

D

(0) (0) (0)

(0)

14 / 22

Understanding AHU algorithm

Knuth tuples

Let’s assign parenthetical tuples to all tree vertices.

Knuth tuples example

A

B

E

C

F G

D

(0) (0) (0)

(0)((0))

14 / 22

Understanding AHU algorithm

Knuth tuples

Let’s assign parenthetical tuples to all tree vertices.

Knuth tuples example

A

B

E

C

F G

D

(0) (0) (0)

(0)((0)) ((0) (0))

14 / 22

Understanding AHU algorithm

Knuth tuples

Let’s assign parenthetical tuples to all tree vertices.

Knuth tuples example

A

B

E

C

F G

D

(0) (0) (0)

(0)((0)) ((0) (0))

F

14 / 22

Understanding AHU algorithm

Knuth tuples

Let’s assign parenthetical tuples to all tree vertices.

Knuth tuples example

A

B

E

C

F G

D

(0) (0) (0)

(0)((0)) ((0) (0))

G

14 / 22

Understanding AHU algorithm

Knuth tuples

Let’s assign parenthetical tuples to all tree vertices.

Knuth tuples example

A

B

E

C

F G

D

(0) (0) (0)

(0)((0)) ((0) (0))

(((0)) ((0)(0)) (0))

14 / 22

Understanding AHU algorithm

Knuth tuples

Let’s assign parenthetical tuples to all tree vertices.

Knuth tuples example

A

B

E

C

F G

D

(0) (0) (0)

(0)((0)) ((0) (0))

(((0)) ((0)(0)) (0))

B

14 / 22

Understanding AHU algorithm

Knuth tuples

Let’s assign parenthetical tuples to all tree vertices.

Knuth tuples example

A

B

E

C

F G

D

(0) (0) (0)

(0)((0)) ((0) (0))

(((0)) ((0)(0)) (0))

C

14 / 22

Understanding AHU algorithm

Knuth tuples

Let’s assign parenthetical tuples to all tree vertices.

Knuth tuples example

A

B

E

C

F G

D

(0) (0) (0)

(0)((0)) ((0) (0))

(((0)) ((0)(0)) (0))

D

14 / 22

Understanding AHU algorithm (part 2)

There is algorithm Assign-Knuth-Tuples that visits every
vertex once or twice.

Assign-Knuth-Tuples(v)

1: if v is a leaf then
2: Give v the tuple name (0)
3: else
4: for all child w of v do
5: Assign-Knuth-Tuples(w)
6: end for
7: end if
8: Concatenate the names of all children of v to temp
9: Give v the tuple name temp

15 / 22

Understanding AHU algorithm (part 3)

Observation
There is no order on parenthetical tuples.

Example

A

B C

D

a

b

d

c(0)

(0)

(0)

(0)

((0)) ((0))

((0) ((0))) (((0)) (0))

Let’s convert parenthetical tuples to canonical names. We should
drop all “0”-s and replace “(” and “)” with “1” and “0”
respectively.

16 / 22

Understanding AHU algorithm (part 3)

Observation
There is no order on parenthetical tuples.

Example

A

B C

D

a

b

d

c(0)

(0)

(0)

(0)

((0)) ((0))

((0) ((0))) (((0)) (0))

Let’s convert parenthetical tuples to canonical names. We should
drop all “0”-s and replace “(” and “)” with “1” and “0”
respectively.

16 / 22

Understanding AHU algorithm (part 3)

Observation
There is no order on parenthetical tuples.

Example

A

B C

D

a

b

d

c(0)

(0)

(0)

(0)

((0)) ((0))

((0) ((0))) (((0)) (0))

Let’s convert parenthetical tuples to canonical names. We should
drop all “0”-s and replace “(” and “)” with “1” and “0”
respectively.

16 / 22

Understanding AHU algorithm (part 3)

Observation
There is no order on parenthetical tuples.

Example

A

B C

D

a

b

d

c10

10

10

10

1100 1100

1 10 1100 0 1 1100 10 0

Let’s convert parenthetical tuples to canonical names. We should
drop all “0”-s and replace “(” and “)” with “1” and “0”
respectively.

16 / 22

Understanding AHU algorithm (part 3)

Observation
There is no order on parenthetical tuples.

Example

A

B C

D

a

b

d

c10

10

10

10

1100 1100

1 10 1100 0 1 10 1100 0

Let’s convert parenthetical tuples to canonical names. We should
drop all “0”-s and replace “(” and “)” with “1” and “0”
respectively.

16 / 22

Understanding AHU algorithm (part 4)

Assign-Canonical-Names(v)

1: if v is a leaf then
2: Give v the tuple name “10”
3: else
4: for all child w of v do
5: Assign-Canonical-Names(v)
6: end for
7: end if
8: Sort the names of the children of v
9: Concatenate the names of all children of v to temp

10: Give v the name 1temp0

17 / 22

Understanding AHU algorithm (part 5)
We should discuss some important questions.

Invariant?
Is canonical name of a root a tree isomorphism invariant?

Complete invariant?

Is canonical name of a root a complete tree isomorphism invariant?

AHU-Tree-Isomorphism(T1, T2)

1: r1 ← root(T1)
2: r2 ← root(T2)
3: Assign-Canonical-Names(r1)
4: Assign-Canonical-Names(r2)
5: if name(r1) = name(r2) then
6: return True
7: else
8: return False
9: end if

18 / 22

Understanding AHU algorithm (part 5)
We should discuss some important questions.

Invariant?
Is canonical name of a root a tree isomorphism invariant?

Complete invariant?

Is canonical name of a root a complete tree isomorphism invariant?

AHU-Tree-Isomorphism(T1, T2)

1: r1 ← root(T1)
2: r2 ← root(T2)
3: Assign-Canonical-Names(r1)
4: Assign-Canonical-Names(r2)
5: if name(r1) = name(r2) then
6: return True
7: else
8: return False
9: end if

18 / 22

Understanding AHU algorithm (part 5)
We should discuss some important questions.

Invariant?
Is canonical name of a root a tree isomorphism invariant?

Complete invariant?

Is canonical name of a root a complete tree isomorphism invariant?

AHU-Tree-Isomorphism(T1, T2)

1: r1 ← root(T1)
2: r2 ← root(T2)
3: Assign-Canonical-Names(r1)
4: Assign-Canonical-Names(r2)
5: if name(r1) = name(r2) then
6: return True
7: else
8: return False
9: end if

18 / 22

Understanding AHU algorithm (part 5)
We should discuss some important questions.

Invariant?
Is canonical name of a root a tree isomorphism invariant?

Complete invariant?

Is canonical name of a root a complete tree isomorphism invariant?

AHU-Tree-Isomorphism(T1, T2)

1: r1 ← root(T1)
2: r2 ← root(T2)
3: Assign-Canonical-Names(r1)
4: Assign-Canonical-Names(r2)
5: if name(r1) = name(r2) then
6: return True
7: else
8: return False
9: end if

18 / 22

AHU algorithm improvement

Observation
To compute the root name of a tree of n vertices in one long
strand, takes time proportional to 1 + 2 + · · ·+ n, which is Ω(n2).

Observation
For all levels i , the canonical name of level i is a tree isomorphism
invariant.

Observation
Two trees T1 and T2 are isomorphic if and only if for all levels i
canonical level names of T1 and T2 are identical.

The idea 1
Assign canonical names for level, sort by level, and check by level
that the canonical level names agree.

The idea 2
Assign canonical names for level and if canonical level names agree
than replace canonical names with integers.

19 / 22

AHU algorithm improvement

Observation
To compute the root name of a tree of n vertices in one long
strand, takes time proportional to 1 + 2 + · · ·+ n, which is Ω(n2).

Observation
For all levels i , the canonical name of level i is a tree isomorphism
invariant.

Observation
Two trees T1 and T2 are isomorphic if and only if for all levels i
canonical level names of T1 and T2 are identical.

The idea 1
Assign canonical names for level, sort by level, and check by level
that the canonical level names agree.

The idea 2
Assign canonical names for level and if canonical level names agree
than replace canonical names with integers.

19 / 22

AHU algorithm improvement

Observation
To compute the root name of a tree of n vertices in one long
strand, takes time proportional to 1 + 2 + · · ·+ n, which is Ω(n2).

Observation
For all levels i , the canonical name of level i is a tree isomorphism
invariant.

Observation
Two trees T1 and T2 are isomorphic if and only if for all levels i
canonical level names of T1 and T2 are identical.

The idea 1
Assign canonical names for level, sort by level, and check by level
that the canonical level names agree.

The idea 2
Assign canonical names for level and if canonical level names agree
than replace canonical names with integers.

19 / 22

AHU algorithm improvement

Observation
To compute the root name of a tree of n vertices in one long
strand, takes time proportional to 1 + 2 + · · ·+ n, which is Ω(n2).

Observation
For all levels i , the canonical name of level i is a tree isomorphism
invariant.

Observation
Two trees T1 and T2 are isomorphic if and only if for all levels i
canonical level names of T1 and T2 are identical.

The idea 1
Assign canonical names for level, sort by level, and check by level
that the canonical level names agree.

The idea 2
Assign canonical names for level and if canonical level names agree
than replace canonical names with integers.

19 / 22

AHU algorithm improvement

Observation
To compute the root name of a tree of n vertices in one long
strand, takes time proportional to 1 + 2 + · · ·+ n, which is Ω(n2).

Observation
For all levels i , the canonical name of level i is a tree isomorphism
invariant.

Observation
Two trees T1 and T2 are isomorphic if and only if for all levels i
canonical level names of T1 and T2 are identical.

The idea 1
Assign canonical names for level, sort by level, and check by level
that the canonical level names agree.

The idea 2
Assign canonical names for level and if canonical level names agree
than replace canonical names with integers.

19 / 22

AHU algorithm example

Example

A

B C

D E

a

b

d e

c 0

1

20 / 22

AHU algorithm example

Example

A

B C

D E

a

b

d e

c

0D 0E 0d 0e

0

1

20 / 22

AHU algorithm example

Example

A

B C

D E

a

b

d e

c

1D 1E 1d 1e

0

11,1 1,1

20 / 22

AHU algorithm example

Example

A

B C

D E

a

b

d e

c

1 1 1 1

0

11,1 1,1

20 / 22

AHU algorithm example

Example

A

B C

D E

a

b

d e

c

1 1 1 1

00B 0c1 1b1 1C

1

20 / 22

AHU algorithm example

Example

A

B C

D E

a

b

d e

c

1 1 1 1

1B 1c2b2C

11,2 1,2

20 / 22

AHU algorithm example

Example

A

B C

D E

a

b

d e

c

1 1 1 1

1 122

11,2 1,2

20 / 22

AHU algorithm example

Example

A

B C

D E

a

b

d e

c

1 1 1 1

1 122

1 2A 1 2a

1

20 / 22

AHU algorithm example

Example

A

B C

D E

a

b

d e

c

1 1 1 1

1 122

1A 1a

11 1

20 / 22

AHU algorithm example

Example

A

B C

D E

a

b

d e

c

1 1 1 1

1 122

1 1

11 1

20 / 22

AHU algorithm example

Example

A

B C

D E

a

b

d e

c

1 1 1 1

1 122

1 1

1OK

20 / 22

Resume

Resume

∙ We have made three unsuccessful attempts to construct
complete tree isomorphism invariant.

∙ We discussed O(|V |2) version of AHU algorithm.

∙ We discussed ways of AHU algorithm improvement to make it
work in O(|V |) time.

21 / 22

Thank you for your attention!

Any questions?

22 / 22

