How Scala Experience Improved Our Java Development

A Case Study at PhET Interactive Simulations

Sam Reid

University of Colorado

reids@colorado.edu

Abstract

PhET Interactive Simulations at the University of Colorado cre-
ates free, open-source educational simulations. After developing
several simulations in Scala, we identified several advantageous
techniques and patterns in Scala which we were able to transfer
to subsequent Java development projects. Specifically, our experi-
ence with Scala helped us attain the following advantages in our
Java development: improved object initialization, improved code
organization, reduced code duplication and improved management
of boilerplate code. These effect of these changes has been to make
our code easier to write, read and maintain. These ideas are not
specific to our application domain, but should work equally well
in broad range of domains. We also discuss how adoption of these
Scala-like patterns in Java code can simplify the learning curve for
Java developers who want to learn Scala.

Keywords Scala, Java, Closures, Declarative Programming, De-
sign Patterns, Functional Programming, Programming Style

1. Introduction

PhET Interactive Simulations at the University of Colorado[PhET]
creates free and publicly available open source software for sci-
ence education. Simulations (sims) in physics, biology, chemistry,
mathematics and other fields help students to visualize, interact
with and experiment with different scientific phenomena. The sim-
ulations are primarily written in Java and Flash, but we have re-
cently used Flex and Scala. Our sims have been translated into
58 languages and are launched over 2 million times per month.
Our Scala sims [Forces and Motion, Ramp: Forces and Motion,
Ladybug Motion 2D, Gravity Force Lab] were launched over 50,000
times in the last month.

Our recent Scala experience provided us an opportunity to re-
flect on patterns and idioms that we took for granted in our Java
development, and we were able to transfer some of Scala’s ad-
vantages to subsequent Java development projects. Specifically,
we were able to improve object initialization, reduce code dupli-
cation in implementations of the observer pattern, keep more re-
lated code together and to improve management of boilerplate code
in functional-style programming. These advantages transferred to
Java through a change in Java programming style, development of
appropriate APIs and usage of IDE features. Many other Scala fea-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

Copyright © 2011 ACM Sam Reid. .. $10.00

tures were valuable to our product development, but in this paper
we restrict our focus to Scala features that helped us to enhance our
Java development.

The techniques we describe for improved Java development
are not specific to our domain of interactive science simulations,
and we expect them to work well on a variety of different Java
projects. Furthermore, since application of these patterns leads to
Java code that is “Scala-flavored”, these patterns have the capacity
to help Java developers learn Scala more quickly. We begin with
a discussion of how Scala provides improved support for object
initialization over idiomatic Java, and how we were able to attain
similar benefits in our Java development.

2. Object Initialization

The best way to configure a Java instance is by passing all config-
urational parameters into the constructor-however, some APIs do
not expose all configurational settings via constructor parameters,
or addition configuration is necessary. In this case, the idiomatic
way to initialize an object in Java is to instantiate the object, then
to call a variety of mutators on the object (see the Java Language
Tutorial [Oracle]). For instance:

//idiomatic Java

JFrame frame = new JFrame(”Test”);

frame . setContentPane (new JButton (”Push me”));
frame . pack () ;

frame.setVisible (true);

//More application code

This mutation-based style of object initialization has several dis-
advantages. First, it requires a name and reference for a temporary
variable (in this case, “frame”) that is only used for configuring the
object, and is not used elsewhere. This extraneous variable declara-
tion pollutes the variable namespace and makes it less apparent to
the maintainer where the variable is relevant, since it can be used
anywhere in its declared scope. Another problem with mutation-
based initialization is that the object transitions through several
states before reaching the final correct state. Having an object in an
incorrect or inconsistent state can lead to introduction of interme-
diate bugs, or difficulty in debugging. For instance, if the developer
introduces additional functionality, it may separate the initializa-
tion code, or lead to a case in which the object is used or inspected
before its initialization is complete.

Named variables for object declaration can cause a bug if the
developer copies and pastes initialization code, and neglects to
change some of the variable name references. For instance, the new
program might read:

JFrame framel = new JFrame(” Test”);
framel .setContentPane (new JButton (”Push me”));
framel . pack () ;

framel . setVisible (true);

JFrame frame2 = new JFrame(”Second frame”);

framel .setContentPane (new JButton (”Push me”));//
bug from copy—paste

frame?2 . pack () ;

frame2.setVisible (true);

Second, the “double-brace initialization” version:

The copy-paste bug on line 6 would cause incorrect behavior
because the pack method is called on the wrong instance.

Scala provides a declarative syntax for solving these problems.
The idiomatic Scala technique for instantiating an object (which
does not expose all relevant parameters via constructor arguments)
is to create an anonymous subclass with an initializer block which
calls additional statements [Odersky et al.]:

new JFrame (" Test”){{
setContentPane (new JPanel () {{
add (new JPanel (new GridLayout(2,1)){{
add (new JTextField(”enter numerator™));
add(new JTextField (”enter denominator”));
s
add (new JButton (" evaluate fraction”){{
addActionListener (...) ;
j3OK
add (new JTextField (”result”));
P
pack () ;
}}.setVisible (true);

//idiomatic Scala

new JFrame (”Test”){
setContentPane (new JButton (”Push the button”))
pack ()

}.setVisible (true)

Other modern languages such as JavaFX Script, Flex MXML
and Android XML use a similar declarative syntax for object ini-
tialization.

Fortunately, Java provides a similar, though rarely used, lan-
guage construct called an ‘instance initializer’ or ‘double brace ini-
tialization’. This technique is most commonly applied to initializa-
tion of collection classes, such as:

List<Double> list = new ArrayList<Double>(){{
add (3.0);
add (4.0);

I35

However, this approach can be used productively for any in-
stance initialization, not just for collection instances. For instance,
the previous example could be written:

new JFrame (" Test”){{
setContentPane (new JButton (”Push the button”));
pack () ;

}}.setVisible (true);

Here is a larger example constructed to help accentuate some of
the differences. First, the idiomatic Java version:

JTextField numeratorTextField = new JTextField(”
enter numerator”);

JTextField denominatorTextField = new JTextField (
“enter denominator”);

JPanel textFieldPanel = new JPanel(new
GridLayout(2, 1));

textFieldPanel.add(numeratorTextField);

textFieldPanel .add(denominatorTextField);

JPanel contentPanel = new JPanel();

contentPanel.add(textFieldPanel);

final JButton evaluateFractionButton = new
JButton(“evaluate fraction”);

evaluateFractionButton.addActionListener (...) ;

contentPanel.add(evaluateFractionButton);

JTextField resultTextField new JTextField(”
result”)

contentPanel .add(resultTextField);

JFrame frame = new JFrame(“Test”);
frame .setContentPane (contentPanel);
frame . pack () ;

frame.setVisible (true);

In either version, there are 3 text fields, 2 panels, a button and a
frame. In the idiomatic Java version, all components are created in
the same scope, and in order to understand the relationship between
them, the reader must trace the creation of each instance to its
usage; in this sense it is like a many-to-many map from variable
declarations to usages. In the double-brace initialization example,
the component layout can be understood more quickly because the
code structure mirrors the component layout structure.

Furthermore, the idiomatic Java version has a bottom-up struc-
ture in which the leaves are constructed first then assembled.
In contrast, the double-brace initializer pattern has a top down
structure, where the top level components are described first, and
branches and leaves are created and attached as necessary. The top-
down approach is often a more natural way of thinking about or
describing the system (e.g., “a panel that contains a button”). The
bottom-up style also makes it possible to introduce the commonly-
written bug in which an object is instantiated and configured but
not added to its container. Pollution of the variable namespace in
the bottom-up style also makes it possible for the developer to
inadvertently use or incorrectly modify references after they are
created.

The double-brace initialization pattern can be thought of as a
way to “factor-out” duplicated code, where the code that is removed
is the variable name followed by the dot operator. Also, usage of the
double-brace initialization pattern makes conversion to top-level
classes trivial; the content from the double-brace initializer can be
copied into the main constructor of the new top-level class with-
out modification (the mutation-based approach requires manually
removing duplicated variable name and dot operator usages).

Finally, note that the idiomatic Java version is more verbose,
requiring more code to be read, understood, debugged and main-
tained.

Scala provides a superior mechanism for object initialization
in named and default parameters. Ideally, a class would provide
constructor arguments for all relevant parameters; in some cases
this number can be overwhelming, but with default and named
parameters, Scala is able to construct the instance properly initially,
without requiring any side-effect based mutation. Unfortunately,
it is only possible to used named parameters if the API exposes
all relevant parameters as constructor arguments (instead of set
methods), which is sometimes not provided by 3rd party code.

//Scala with named parameters and appropriate API
new JFrame (

title = “hello”,

contentPane =

)

//Java with instance initializers
new JFrame () {{
setTitle ("hello”);
setContentPane (...) ;

s

//1diomatic Java

JFrame f = new JFrame () ;
f.setTitle ("hello”);
f.setContentPane (...) ;

2.1 Disadvantages

While the double-brace initialization pattern works well in a variety
of cases, there are a few caveats and contraindications.

One of the primary disadvantages occurs when the inner in-
stance is declared in an outer class with methods with identical
signatures. In this case, there may be some confusion or difficulty
in understanding which instance will receive the method dispatch.
The rule is that the method is dispatched on the object with the in-
nermost scope with a matching method signature, but sometimes
with several nested objects of similar/differing types it can be diffi-
cult to quickly identify the receiving object; further difficulty arises
when it is necessary to call a method on the outer class from the in-
ner class. This problem can be worked around by giving the outer
class a name like so:

interface and structured graphics code. In the next section, we show
how our experience with Scala helped us to reduce code duplication
in implementations of the Observer pattern in Java development.

3. Observer Pattern

When implementing the Observer pattern in Java, we found that we
were often duplicating initialization code, such as:

public View(Model model){
model.addObserver (new Observer () {
public void changed(){
update () ;

s
update () ;//duplicate call

private void update (){
// Update the view state based on the model
state

new JFrame (”Test”){{

JFrame parent = this;
setContentPane (new JButton (”Press Me”){{
Point parentLoc = parent.getLocation ();
IE
1}

When an instance is being supplied as a 2nd or later argument
in a method call, or when this pattern is used to instantiate multiple
instances in a method call, usage of the double brace initialization
pattern can make code harder to read. Since Java doesn’t support
named arguments, IDE support is often necessary in these cases to
understand how the instances are being used. In cases like these,
it can sometimes be beneficial to assign the instance to a declared
variable (which may be initialized with a double-brace initializer)
to simplify its readability at the usage point. Variable declarations
are also appropriate when factoring out duplicated code, when
readability can be improved or when there is a complex interplay
between several instances. But often in the case of object creation,
configuration and passing, temporary variable declarations can be
productively replaced with double-brace initialization.

Since double-brace initialization creates an anonymous sub-
class, this increases the executable file size by the overhead of a new
class. In a complied and Proguarded JAR, this amounts to approxi-
mately 0.67kb per double-brace initialization usage. For projects in
which the runtime size is of utmost importance, it may be necessary
to avoid using the double-brace initialization pattern to avoid this
cost. Similarly, instance initializers in Scala incur this cost of a new
anonymous class. For our projects, this cost is not practically sig-
nificant, as it would take approximately 20 anonymous class decla-
rations to equal 1% of a typical deployed JAR file size. No runtime
time disadvantages were immediately perceptible, but we didn’t ex-
periment quantitatively on the additional time required to load these
anonymous classes, or other runtime performance costs incurred by
this pattern.

Care should be taken to ensure that equality tests according
to the equals() method properly handle anonymous subclasses.
Equality tests that perform class instance equality tests (such as
aClass.equals(bClass)) will always report that double-brace ini-
tialized objects are unequal. Proper implementation of the equals
method will avoid this problem. In our domain, this is rarely prob-
lematic since equality tests are seldom required where double-brace
initialization patterns are applied.

Despite its disadvantages, double-brace initialization has worked
well throughout our Java projects, with the largest benefits in user

This was problematic since inadvertent omission of the update()
call in the constructor would lead to inconsistent startup states for
the view. This also causes the update method implementation (line
9) to become spatially separated from its usages in line 4 and 7. In
Scala, we solved this problem by using a method with a named
parameter that would both invoke the block and register it as a
listener with the instance to be observed:

def invokeAndPass(addListener: (=> Unit) => Unit)
(update: => Unit) = {
update
addListener (update)

This method would be applied like this:

invokeAndPass (model.addListener) {
//Update the view state based on the model
state

Since this invokes the method and registers with the model to be
called back for change events, it solves the problem of duplicated
calls and code dislocation. We also found it productive to create
general wrappers for swing components such as:

class MyCheckBox(text: String,
actionListener: Boolean => Unit,
getter: => Boolean,
addListener: (() => Unit) => Unit)
extends CheckBox(text){...}

This component could be used in application code like so:

add (new MyCheckBox(‘‘visible’’, visible = _,
visible , addListener));

To attain these same benefits in Java, we developed a class
Property<T> which is used to represent the Observable compo-
nent of the Observer pattern, with some additional functionality. To
solve the problem of duplicated update calls, the Property immedi-
ately calls back to the listener’s update method upon listener regis-
tration. Not only does this free the developer from needing to call
update() manually, but it ensures that the view synchronizes with
the model as soon as possible. Since the callback implementation
can be implemented in an anonymous inner class implementation,
the implementation can appear near the point of usage, thus im-
proving code organization. The Property interface also combines

the getter, setter and addListener methods described in the parame-
ters of the MyRadioButton above into a cohesive interface, so that
it can be productively re-used in different types of components.

Once we introduced this pattern, we also found that other du-
plicated code could be productively factored into Property<T>,
such as guarded setting (that is, only notifying observers if the state
truly changed as determined by equals()), and reset functionality,
which is a domain-specific behavior used to reset our simulation
states. By chaining together multiple Property objects, we ensure
that program values are updated instantly whenever dependency
values change. In general, this leads to a tree of dependencies that
cascades changes from the model through to the view. Further-
more, declaring the update tree in the declaration of the proper-
ties has shown to be advantageous because it is consolidated in-
stead of scattered around. By constructing appropriate consumers
of Property<T> instances, such as PropertyRadioButton (analo-
gous to MyCheckBox above), we can approximate a behavior sim-
ilar to variable binding in JavaFX Script, so that the view is auto-
matically synchronized with the model.

For instance, here is an idiomatic Java version, showing the
computation of momentum = mass times velocity (p = mwv) and
providing an interface for listening to changes:

We have also started experimenting with an internal DSL for
combining Property instances. For instance, with the right API
support, the above could be rewritten as:

// Property<I>—based Java with internal DSL
DoubleProperty mass = new DoubleProperty (3.0);
DoubleProperty vel new DoubleProperty (4.0);
DoubleProperty momentum = mass.times(vel);

System.out. println (“momentum. getValue () = +
momentum. getValue ());

//idiomatic Java

double mass = 3;

double velocity = 4;

public double getMomentum () {
return massxvelocity ;

public interface Listener{
void massChanged (double newMass) ;
void velocityChanged (double newVelocity);
void momentumChanged (double newMomentum) ;

public void setMass(double mass){
this . mass = mass;
for (Listener listener listeners){
listener . massChanged (mass) ;
listener . momentumChanged (getMomentum ()) ;

Another advantage of the Property<T> paradigm is that it
isolates and standardizes object mutability; values wrapped in the
Property should be immutable, and the Property provides uniform
and standardized support for managing and observing object state
changes. This pattern also allowed us to reduce a significant amount
of duplicated code in setting up components such as user interface
components, as in the MyCheckBox example above.

The Property<T> paradigm has several disadvantages. First,
it is more verbose than simply using the raw T types, because
getValue() must be called at each usage point. In Scala, this cost
could be mitigated by making this an apply() method, which
could be suppressed in usages. Second, working with types like
Property<Double> and Property <Integer> instead of double and
int can create some additional cognitive overhead since this is not
idiomatic Java. Finally, when the update method is expensive, other
approaches must be taken to ensure that multiple change notifica-
tions can be batched together to avoid the expense of redundant
update calls. Despite these disadvantages, Property <T> paradigm
has helped us to improve our Java development, reduce the number
of lines of code and eliminate buggy alternatives.

4. Keeping Related Code Together

In idiomatic Java, private methods are employed in order to prevent
code duplication and to isolate specific functionality. However, this
paradigm often has the disadvantage that related code becomes spa-
tially dislocated. For instance, here is an example showing how a
private method is used during a complex object constructor imple-
mentation:

The following Property<T>-based Java code block also sets
momentum to be the product of mass and velocity, but also auto-
matically updates and notifies its listeners whenever mass or veloc-
ity changes. In this model, all 3 variables are independently observ-
able with the same interface, so that different views and controllers
have the potential for code re-use. In this example, type declara-
tions are omitted to improve readability:

// Property<I>—based Java
mass = new Property <Double >(3.0);
velocity = new Property <Double >(4.0);
momentum = new Property <Double >() {{
final VoidFunction0 update = new
VoidFunction0 () {
public void apply () {
setValue (mass.getValue () * velocity.
getValue ());

}

mass.addChangeListener (update);
velocity .addChangeListener (update);

IoE

System.out. println(°‘momentum.getValue() = ’° +
momentum. getValue ());

public PrismGraphic () {

//1Initialization code

this.color = createColor(wavelength);

this .neighborColor = createColor(wavelength
+10);

//Many more lines of complex initialization
code

/7.

private Color createColor (double wavelength){
//code to return the Color for a wavelength
}

Scala provides two features that help the developer to keep re-
lated code together. In Scala, the primary constructor is synony-
mous with the class body, and fields and methods can be declared
at any location in the top level of the class body. Thus in Scala, the
createColor() method could appear immediately adjacent to the us-
ages of createColor(), thus increasing code readability and under-
standability. Furthermore, Scala allows inner function definitions,
which enables the developer to place the createColor() method ad-
jacent to the usages. The other advantage of providing a local inner
function implementation is that it provides an restricted scope in
which the function can be used; defining a private createColor()
function at the class level does not indicate to the maintainer where
the method is intended to be used since it is scoped to the entire
class definition.

Based on these advantages, we started following the same
paradigm in Java by relying more on anonymous inner classes
to provide function implementations. Initially, we just applied this
pattern to anonymous inner class implementations for listener call-
backs (as in Section 3), such as:

JButton button = new <a>"push me”
button.adda <a> new <a>
<p> hello

public View(final Model model){
model.addListener (new ModelListener () {
void modelChanged () {
name = model.getName () ;
repaint () ;
}
b

to create the following code:

JButton button = new JButton(”push me”);

button.addActionListener (new ActionListener (){

public void actionPerformed (ActionEvent e){
System.out. println (”hello”);

}
IOF

But we subsequently found it useful in some scenarios to simu-
late inner functions by using a templated Function declaration, such
as:

In contrast, in the Scala version, the developer only needs to
type approximately the same as in the autocomplete Java version
above:

public PrismGraphic () {
//Initialization code
Functionl <Double , Color> createColor =
new Functionl<Double, Color >(){
void apply (Double d){
//code to return the Color for a
wavelength

}

s

this.color = createColor.apply(wavelength);

this . neighborColor = createColor.apply (
wavelength+10);

//Many more lines of complex initialization
code

/7.

val button = new SButton();
button .addA<a>(() => <p>"hello”);

This creates the more concise Scala implementation:

val button = new SButton();
button.addActionListener (() => println(”hello”));

While more verbose than Scala, this technique ensures that the
code is located near to its usages so that both can be easily seen
simultaneously, and since the createColor function object is local-
ized in scope to the constructor, it immediately cues the maintainer
that it is only relevant to that scope.

Two disadvantages of using anonymous inner classes to imple-
ment functions are: when this pattern is applied recursively it can
lead to many levels of nesting that can be difficult to read at a glance
without proper commenting, and that it introduces additional boil-
erplate code. In the next section, we describe an IDE feature that
helps to mitigate the cost of the additional boilerplate code.

5. IDE Support for Managing Boilerplate Code

One of the most frequently cited advantages of Scala over Java
is the reduction in the amount of boilerplate code, which is code
that is unrelated to the problem at-hand but necessary in order to
implement the solution. Boilerplate entails two costs: the initial up-
front cost of writing the boilerplate code and the increase in the
noise level in the code when reading, debugging or maintaining.
Our experience with Scala helped us to identify this background
noise in Java and to investigate techniques to mitigate it. First,
we discuss the issue of boilerplate creation, and then we discuss
a technique for hiding boilerplate code in closure creation in Java.

5.1 Boilerplate Creation

Modern IDEs have solved the problem of boilerplate creation with
features such as smart templates and auto-complete. For instance,
to add an ActionListener to a Swing JButton in Java, in IntelliJ,
the developer types the following text (here <a> stands for an
autocomplete keypress and <p> indicates invocation of a smart
template for printing to System.out.):

Of course, boilerplate creation only provides a savings on the
initial cost of writing the code—the full code is still checked in
to version control and must be read, understood, debugged and
maintained. An IDE feature called closure folding can help mitigate
these remaining costs by helping the developer to focus on the
important parts of the code.

5.2 Boilerplate Folding

IntelliJ Idea provides an IDE setting that allows closures to be
folded. That means that a closure like:

button.addActionListener (new ActionListener (){
public void actionPerformed (ActionEvent e){
System.out. println (”hello”);
}

})

is folded by the IDE editor to read:

button.addActionListener (ActionListener (
ActionEvent e){System.out.println(”hello”);})

While the equivalent Scala expression might be written (given
the appropriate Scala API):

button.addActionListener((e:ActionEvent) =>
println (”hello™))

Specifically, this IDE feature suppresses method names and one
nested scope for anonymous inner implementations that have a sin-
gle method. While closure code folding doesn’t solve the underly-
ing problem of the existence of noisy boilerplate code, it mitigates
the costs by making closure implementations easier to understand
at a glance, and by making it easier to see more related code at the
same time. This makes it easier to employ anonymous inner classes
for functional programming patterns while maintaining code read-
ability.

6. Learning Scala

A Java developer learning Scala is faced with many new concepts,
including syntax, language features, new APIs and different styles.
The techniques described in these papers have the capacity to miti-
gate some of the costs of this learning curve by providing examples

and analogies for some parts of typical Scala style and language
features. First, usage of the double-brace initialization pattern in
Java transfers over directly to idiomatic Scala anonymous subclass
declaration (Section 2). Second, use of Property<T> instances is
a step toward functional programming, where the Property <T> is
like a FunctionO<T> which also signifies when its values have
changed (Section 3). Declaring local functions through anonymous
inner classes is a step toward functional thinking, and toward moe
optimal code organization as it would be done in an idiomatic Scala
program (Section 4). Finally, by using techniques such as boiler-
plate folding (Section 5.2), Java code is made to look more concise
and more similar to Scala code by hiding some of the unnecessary
boilerplate from view.

7. Conclusions

While the techniques proposed in this paper are not idiomatic
Java style, they should be preferred because of their tendency to
improve code organization, avoid bugs and to improve readability
and maintainability. Since we have only recently started applying
and refining these ideas, we are unable to make any large-scale
maintainability claims; we are also unable to comment on how
well a new Java programmer would be able to pick up and move
forward with these paradigms, since they are atypical Java. But
in the short term, our development and maintenance have been
significantly improved. Furthermore, despite the simplicity of the
examples in this paper, we found these approaches to scale up
well to complex real-world problems. Scala also provided many
beneficial language features for which we have not been able to
find an comparably expressive Java implementation, such as traits,
implicit conversions, operator infix notation (valuable for 2d vector
math), for comprehensions and functional programming.

Acknowledgments

Thanks to NSF and the Hewlett Foundation for supporting the
PhET Interactive Simulations project and to the other PhET de-
velopers John Blanco, Chris Malley and Jon Olson.

References
[PhET] http://phet.colorado.edu

[Ladybug Motion 2D] http://phet.colorado.edu/en/simulation/ladybug-
motion-2d

[Forces and Motion] http://phet.colorado.edu/en/simulation/forces-and-
motion

[Ramp: Forces and Motion] http://phet.colorado.edu/en/simulation/ramp-
forces-and-motion

[Gravity Force Lab] http://phet.colorado.edu/en/simulation/gravity-force-
lab

[Odersky et al.] M. Odersky, L. Spoon and B. Venners. Programming in
Scala. 2008

[Oracle] http://download.oracle.com/javase/tutorial/uiswing/components/button.html

