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Motivation

Hidden Markov Models (HMMs) are widely used in many pattern recognition

areas (speech recognition, biological sequence modeling, etc.)
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In most cases, the HMM structure , also referred to as topology, is defined ac-
cording to some prior knowledge of the application domain

Automatic techniques for inducing HMM topology are interesting as the struc-
tures are sometimes hard to define a priori or need to be tuned after some task
adaptation

Several induction techniques have been developed for probabilistic au-
tomata (PA)

Stressing the links between PA and HMMs offers the possibility to
apply PA induction techniques to learn HMM structures
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Some classical misconceptions

e The only difference between HMMs and PA is that symbols are attached to
states in HMMs while they are attached to transitions in PA

e HMMs are more powerful than PA as they include transition probabilities and
emission probabilities

¢ HMMs and PA are incomparable (except for very special cases)

¢ HMMs and PA are strictly equivalent and one can always transform a HMM into
a PA with the same number of states and conversely

¢ HMMs with or without silent states are defining the same types of distributions
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Outline

e Probabilistic automata

— Sufficient and necessary conditions to define a distribution
— PDFA are strictly less general than PNFA
— PNFA without final probabilities

e HMMs

— HMM with state emission
— HMM with transition emission (HMMT)

e Links between PA and HMMs
e Learnability results

e Open questions

Main results are quoted here. Detailed proofs available in additional reference.
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A semi-probabilistic automaton (semi-PA)
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A semi-probabilistic automaton A = (2, Q, ¢, ¢, T)

¢ X finite alphabet

e () finite set of states

e ¢:Q x X xQ — [0,1] transition probability function
e 1 : @ — [0,1] initial probability dgeotl@) =1
e 7:Q — [0, 1] final probability

VeeQ,m(a)+ > > dlaa,q) =1

ac¥ ¢'eQ

A state ¢ is initial if .(¢) > 0 and final if 7(¢) > 0
Note: ¢ also denotes extensions of the transition probability function
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Generation Probability

Probability of generating prefix Probability of generating word «

Pa(w) = Y ug)¢(q,u.q) Pa(u) = > uq)¢(q,u,q)(q)

q,9'€Q q,9'€Q

Pab) = «(Do(Lb,)7(1) + «(1)o(1,b,2)7(2)
+ u2)0(2,0,1)7(1) + u(2)¢(2,6,2)7(2)
= 0.07

Theorem 1. A semi-PA defines a semi-distribution over X*:
Pa(¥") = ¥ yene Palu) < 1
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Probabilistic automaton

A state ¢ is accessible if there is a strictly positive probability of reaching ¢ from
an initial state
¢(Qla E*a q) >0

A semi-PA A is a probabilistic automaton  (PA) if for any accessible state ¢ there
is a strictly positive probability of reaching a final state

P, (3%) =Y 6(¢,%%,¢)7(¢) > 0.

Theorem 2. Let A be a semi-PA, A is a probabilistic automaton if and only if
P, is a distribution over X*
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A non-probabilistic semi-PA
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Support automaton, PNFA, PDFA

The support automaton of a PA A = (3,Q, ¢,¢,7) is a non-deterministic finite
automaton (NFA) A = (X,Q, 6,1, F) where

e ] the set of initial states
e [ the set of final states

e § C @ x X x @ the transition function: (¢,a,q’) € 6 < ¢(q,a,¢') >0

| a
a Cj‘lll..(:} b

a

Property 1. The language L generated by the support automaton of a PA A is
the support of the distribution P4

A PNFA (respectively PDFA) is a PA the support of which is a non-deterministic
finite automaton (NFA) (respectively a DFA)
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Probabilistic regular languages

A probabilistic language is a distribution ) over ¥*

A probabilistic language is regular if it can be generated by a PNFA or, equiva-
lently, by a probabilistic regular grammar

There exist probabilistic languages, with regular support languages, that are not
regular:

L = {a*} and the distribution 1)(a") = -1, Vn > 0

e.n!?
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PDFA are strictly less general than PNFA

Theorem 3. PDFAC PNFA

Proof (sketch):
Define p(u)
Fal) it P y(u) > 0

Vu € ¥*, p(u) = ¢ Palw) _
0 , otherwise.

If Ais a PDFA, the set {p(u),u € £*} is necessarily finite

Consider the following PNFA: 06 0.8

p(a™) = 0.6 + 193" is a strictly decreasing series for strictly increasing values of n

= {p(u),u € ¥*} cannot be finite O
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PNFA with no final probabilities
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Vge Q,7(q) =0 204

e Vu € X* Pa(u) =0

¢ such a machine defines probabilities on space of infinite words :°°

o Pa(u)= Y u(q)¢(q,u,q’) can be interpreted as the probability of generat-
7,4'€Q

ing a finite prefix w« of an infinite word

e a PNFA with no final probabilities defines a distribution over any complete
finite prefix-free set
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Complete finite prefix-free sets

A complete finite prefix-free set  can be represented as a «cut> in a infinite
prefix tree of all possible strings on the alphabet: e.g. {aa, ab, b}

A PNFA with no final probabilities generates a family of distributions, one distribu-
tion for each complete finite prefix-free set

A particular case of interest: X", for any n € IN
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2004 Links between PA and HMMs

Hidden Markov Models

A discrete Hidden Markov Model (HMM) (with state emission) M = (3, Q, A, B, 1)

> is a finite alphabet

Q) is a set of states

e A:Q x Q — [0,1] transition probability VgeQ, > Alq,¢)=1
7€qQ
e B:(Q x X — [0,1] state emission probability Vg e Q, >, B(g,a)=1
a€X
e . :Q — [0,1] initial probability Youlg) =1
q€Q
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Hidden Markov Models with Emissions on Transitions

A discrete Hidden Markov Model with transition emission (HMMT)
M= (%,Q,A, B,

e X is a finite alphabet

e () is a set of states

A:Q x Q — [0,1] transition probability

VgeQ, > Alg,d) =1

e

B:Q x ¥ x Q — [0,1] transition emission probability

) ~ [ 1if A(q,q') >0
Vq,q' € Q, 3 B(g,a,q) = { 0 otherwise.

acx
e . : Q — [0, 1] initial probability Youg) =1
qeQ
[20.3]
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Links between PA and HMMs

Theorem 4. HMMs are equivalent to probabilistic automata with no final proba-
bilities

Constructive proof: PNFA = HMMT = HMM = PNFA

Corollary 1.
A HMM can be transformed into an equivalent PNFA with the same number of
states

A PNFA can be transformed into an equivalent HMM but generally not with the
same number of states
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Transformation of a PNFA into an equivalent HMMT

0.4 [203] 0.6
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AN /
Alg,qd) = > 9(g,a.q)
a€EY

#(¢,0,q") it S /
a.q’ q,a,4q ) > O
B(q,a,q’) _ a%:E #(q,a,9") =

0 otherwise.
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Transformation of a HMMT into an equivalent HMM (1)
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Q' ={(q,q) € Q x QlA(q,q") > 0}. The states of Q' represents pairs of states in
Q that are connected by a strictly positive transition probability (= |Q’| = O(|Q?|))

A(ql/’ q///) |f ql — qll

At ={

otherwise.
B((¢,4'),a) = B(g,a,q")
! ((¢,4") = (a)Alg, q')
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Transformation of a HMMT into an equivalent HMM (2)
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a0.8 b1
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Q' =Qx¥=|Q=0(Q x [Z])
V((g,0)) = X yeq (@)A(d, a)B(d', a, q)
B'((q,a),z) = 1if x = a, and 0 otherwise

A'((q,a),(¢',b)) = Aq,q')B(q,b,q')
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¢(q,a,q') = B(q,a)A(q,q")

Vg, 7(q) =0
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Degrees of freedom

Links between PA and HMMs

Transformation of a HMM into an equivalent PNFA

18

Links between PA and HMMs

Consider machines (without final probabilities) with n states and an alphabet of m

letters
Model | Parameters | Degrees of freedom Total
PNFA t(q) n—1
n*m — 1 O(n? x m)
HMMT t(q) n—1
Alq,q") n®—n
B(q,a,q) n*m —n?
n*m—1 O(n? x m)
HMM t(q) n—1
Alg, q) n*—n
B(q,a) nm—n
n*+nm—n—1 | O(nx max(n,m))

A HMM can be transformed into an equivalent PNFA with the same number of
states, but the converse is not true in general.
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PNFA are equivalent to HMMs with final probabilities

A HMM including final probabilities represented with a final silent state
o.4¢ #o.s
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[b0.8] 0.7 [b0.1]

Theorem 5. HMMs with final probabilities are equivalent to semi-PA

Corollary 2. HMMs with final probabilities, and such that the probabilities of
reaching a final state from any accessible state is strictly positive, generate distri-
butions over X*
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e Probabilistic automata

— Sufficient and necessary conditions to define a distribution
— PDFA are strictly less general than PNFA
— PNFA without final probabilities

¢ HMMs

— HMM with state emission
— HMM with transition emission (HMMT)

e Links between PA and HMMs
e Learnability results

e Open questions
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Learning models

Learning a PNFA or a HMM aims at inducing a machine generating a distribution
P from a sample S drawn according to some unknown target distribution P

A learning model includes a learning protocol specifying:
e the prior knowledge given to the learner

o the required quality of the learned hypothesis P (= performance criterion )
e some possible constraints on the sample S

e some possible bounds on the computational complexity  of learning

Once a learning model is defined, one can ask
e whether a specific class of distributions can be learned?

e how much data is needed to reach a certain quality?

e what is the complexity of learning?
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PAC learning model for distribution learning
Probably Approximately Correct learning

e Assume the data is an independent and identically distributed (iid) sample
from P

e Consider a distance measure D(P, P) between distributions P and P
An hypothesis is e-good if D(P, P) < e

e Given a precision parameter ¢ > 0 and a confidence parameter 0 < § < 1, the
learning algorithm must output, with probability 1 — §, an e-good hypothesis P

e the time complexity must be a polynomial function of ,1 and |P|

Notes:

- |P| typically denotes the number of parameters to define the distributions (see
degree of freedoms)

- Atypical <distance> is the Kullback-Leibler divergence between P and P

- Possible prior knowledges: P can be generated by a HMM, some constraints
on the structure
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(Simplified) learnability results

PAC learnability:

¢ Distributions defined by PDFA over an alphabet of 2 letters are not efficiently
PAC learnable

e Specific subclasses of PDFA are learnable

— p-distinguishable acyclic PDFA are learnable when g is known
— Probabilistic finite suffix automata of order L, equivalent to variable order
Markov chains, are learnable when L is known

When the topology is assumed to be known, the learning problem is reduced
to the problem of training a fixed set of parameters. Polynomial trainability
requires to be able to approximate a model maximizing the sample likelihood in
polynomial time:

e PDFA are polynomially trainable
e 2-states PNFA are not polynomially trainable
e EM algorithm outputs a locally optimal ML solution
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(Simplified) learnability results (contd.)

e PNFA are identifiable in the limit  with probability 1
but this learning model requires an asymptotic identification of the structure
without bounding the total complexity of learning

e Several practical induction algorithms do not fit in a learning model but a
Bayesian learning framework.
The goal is to build a model M maximizing the product of the prior probability
P(M) and the sample likelihood P(S|M)
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Summary

e PNFA with no final probabilities are equivalent to HMMs
They define distributions over complete finite prefix-free sets

¢ HMMs with final probabilities are equivalent to PNFA
They define (semi-)distributions over ©*

e HMMs can be converted into PNFA and conversely, but not necessarily with
the same number of states

e General HMMs (equivalent to PNFA) are hard to learn
e PDFA form a restricted class , hard to learn but easy to train

e Most practical algorithms induce PDFA, often in a Bayesian framework
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Open questions

e New interesting subclasses efficiently learnable or polynomially trainable?
Subclasses of PNFA, left-to-right HMMs, etc?

e Most negative PAC learnability results consider automata with no final prob-
abilities. Can we come up with positive results for learning distributions over
2

¢ Relaxation of the PAC framework? Distance measure different from divergence
but non trivial learning?

e Characterization of the local optimum produced by the EM algorithm in some
cases?

e New robust and fast learning algorithms?

e Links with the learning of probabilistic acceptors defining conditional distribu-
tions P(Y = y|u) with u € £*?
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Additional information

e proofs
e more details on learnability results
e a presentation of several PA/HMM induction algorithms

e Mmany references

P. Dupont, F. Denis and Y. Esposito, Links between Probabilistic Automata and
Hidden Markov Models: probability distributions, learning models and induction
algorithms, to appear in Pattern Recognition: Special Issue on Grammatical In-
ference Techniques & Applications, 2004.

See http://www.info.ucl.ac.be/~pdupont/
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