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Motivation

Hidden Markov Models (HMMs) are widely used in many pattern recognition
areas (speech recognition, biological sequence modeling, etc.)
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In most cases, the HMM structure , also referred to as topology, is defined ac-
cording to some prior knowledge of the application domain

Automatic techniques for inducing HMM topology are interesting as the struc-
tures are sometimes hard to define a priori or need to be tuned after some task
adaptation

Several induction techniques have been developed for probabilistic au-
tomata (PA)

Stressing the links between PA and HMMs offers the possibility to
apply PA induction techniques to learn HMM structures
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Some classical misconceptions

• The only difference between HMMs and PA is that symbols are attached to
states in HMMs while they are attached to transitions in PA

• HMMs are more powerful than PA as they include transition probabilities and
emission probabilities

• HMMs and PA are incomparable (except for very special cases)

• HMMs and PA are strictly equivalent and one can always transform a HMM into
a PA with the same number of states and conversely

• HMMs with or without silent states are defining the same types of distributions

• . . .

Pierre Dupont 2

2004 Links between PA and HMMs

Outline

• Probabilistic automata

– Sufficient and necessary conditions to define a distribution
– PDFA are strictly less general than PNFA
– PNFA without final probabilities

• HMMs

– HMM with state emission
– HMM with transition emission (HMMT)

• Links between PA and HMMs

• Learnability results

• Open questions

Main results are quoted here. Detailed proofs available in additional reference.
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A semi-probabilistic automaton (semi-PA)
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A semi-probabilistic automaton A = 〈Σ, Q, φ, ι, τ〉

• Σ finite alphabet

• Q finite set of states

• φ : Q× Σ×Q→ [0, 1] transition probability function

• ι : Q→ [0, 1] initial probability
∑

q∈Q ι(q) = 1

• τ : Q→ [0, 1] final probability

∀q ∈ Q, τ(q) +
∑

a∈Σ

∑
q′∈Q

φ(q, a, q′) = 1

A state q is initial if ι(q) > 0 and final if τ(q) > 0
Note: φ also denotes extensions of the transition probability function
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Generation Probability

Probability of generating prefix u

PA(u) =
∑

q,q′∈Q

ι(q)φ(q, u, q′)

Probability of generating word u

PA(u) =
∑

q,q′∈Q

ι(q)φ(q, u, q′)τ(q′)
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PA(b) = ι(1)φ(1, b, 1)τ(1) + ι(1)φ(1, b, 2)τ(2)
+ ι(2)φ(2, b, 1)τ(1) + ι(2)φ(2, b, 2)τ(2)
= 0.07

Theorem 1. A semi-PA defines a semi-distribution over Σ∗:
PA(Σ∗) =

∑
u∈Σ∗ PA(u) ≤ 1
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Probabilistic automaton

A state q is accessible if there is a strictly positive probability of reaching q from
an initial state

φ(QI,Σ∗, q) > 0

A semi-PA A is a probabilistic automaton (PA) if for any accessible state q there
is a strictly positive probability of reaching a final state

PAq(Σ
∗) =

∑
q′

φ(q,Σ∗, q′)τ(q′) > 0.

Theorem 2. Let A be a semi-PA, A is a probabilistic automaton if and only if
PA is a distribution over Σ∗
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A non-probabilistic semi-PA
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Support automaton, PNFA, PDFA

The support automaton of a PA A = 〈Σ, Q, φ, ι, τ〉 is a non-deterministic finite
automaton (NFA) A = 〈Σ, Q, δ, I, F 〉 where

• I the set of initial states

• F the set of final states

• δ ⊆ Q× Σ×Q the transition function: (q, a, q′) ∈ δ ⇔ φ(q, a, q′) > 0
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Property 1. The language L generated by the support automaton of a PA A is
the support of the distribution PA

A PNFA (respectively PDFA) is a PA the support of which is a non-deterministic
finite automaton (NFA) (respectively a DFA)
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Probabilistic regular languages

A probabilistic language is a distribution ψ over Σ∗

A probabilistic language is regular if it can be generated by a PNFA or, equiva-
lently, by a probabilistic regular grammar

There exist probabilistic languages, with regular support languages, that are not
regular:

L = {a∗} and the distribution ψ(an) = 1
e.n!,∀n ≥ 0
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PDFA are strictly less general than PNFA

Theorem 3. PDFA ( PNFA

Proof (sketch):
Define ρ(u)

∀u ∈ Σ∗, ρ(u) =

{
PA(u)

P A(u)
, if PA(u) > 0

0 , otherwise.

If A is a PDFA, the set {ρ(u), u ∈ Σ∗} is necessarily finite

Consider the following PNFA: 0.6
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ρ(an) = 0.6 + 0.2
1+2n is a strictly decreasing series for strictly increasing values of n

⇒ {ρ(u), u ∈ Σ∗} cannot be finite �
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PNFA with no final probabilities
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• ∀u ∈ Σ∗, PA(u) = 0

• such a machine defines probabilities on space of infinite words Σ∞

• PA(u) =
∑

q,q′∈Q

ι(q)φ(q, u, q′) can be interpreted as the probability of generat-

ing a finite prefix u of an infinite word

• a PNFA with no final probabilities defines a distribution over any complete
finite prefix-free set
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Complete finite prefix-free sets
A complete finite prefix-free set can be represented as a �cut� in a infinite
prefix tree of all possible strings on the alphabet: e.g. {aa, ab, b}
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A PNFA with no final probabilities generates a family of distributions, one distribu-
tion for each complete finite prefix-free set

A particular case of interest: Σn, for any n ∈ IN
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Hidden Markov Models

A discrete Hidden Markov Model (HMM) (with state emission) M = 〈Σ, Q,A,B, ι〉

• Σ is a finite alphabet

• Q is a set of states

• A : Q×Q→ [0, 1] transition probability ∀q ∈ Q,
∑

q′∈Q

A(q, q′) = 1

• B : Q× Σ → [0, 1] state emission probability ∀q ∈ Q,
∑

a∈Σ

B(q, a) = 1

• ι : Q→ [0, 1] initial probability
∑

q∈Q

ι(q) = 1
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Hidden Markov Models with Emissions on Transitions

A discrete Hidden Markov Model with transition emission (HMMT)
M = 〈Σ, Q,A,B, ι〉

• Σ is a finite alphabet

• Q is a set of states

• A : Q×Q→ [0, 1] transition probability ∀q ∈ Q,
∑

q′∈Q

A(q, q′) = 1

• B : Q× Σ×Q→ [0, 1] transition emission probability

∀q, q′ ∈ Q,
∑

a∈Σ

B(q, a, q′) =
{

1 if A(q, q′) > 0
0 otherwise.

• ι : Q→ [0, 1] initial probability
∑

q∈Q

ι(q) = 1
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Links between PA and HMMs

Theorem 4. HMMs are equivalent to probabilistic automata with no final proba-
bilities

Constructive proof: PNFA ⇒ HMMT ⇒ HMM ⇒ PNFA

Corollary 1.
A HMM can be transformed into an equivalent PNFA with the same number of
states

A PNFA can be transformed into an equivalent HMM but generally not with the
same number of states
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Transformation of a PNFA into an equivalent HMMT
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A(q, q′) =
∑

a∈Σ

φ(q, a, q′)

B(q, a, q′) =


φ(q,a,q′)∑

a∈Σ
φ(q,a,q′) if

∑
a∈Σ

φ(q, a, q′) > 0

0 otherwise.
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Transformation of a HMMT into an equivalent HMM (1)
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Q′ = {(q, q′) ∈ Q×Q|A(q, q′) > 0}. The states of Q′ represents pairs of states in
Q that are connected by a strictly positive transition probability (⇒ |Q′| = O(|Q2|))

A((q, q′), (q′′, q′′′)) =
{
A(q′′, q′′′) if q′ = q′′

0 otherwise.

B((q, q′), a) = B(q, a, q′)

ι′((q, q′)) = ι(q)A(q, q′)
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Transformation of a HMMT into an equivalent HMM (2)
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Q′ = Q× Σ ⇒ |Q′| = O(|Q| × |Σ|)

ι′((q, a)) =
∑

q′∈Q ι(q
′)A(q′, q)B(q′, a, q)

B′((q, a), x) = 1 if x = a, and 0 otherwise

A′((q, a), (q′, b)) = A(q, q′)B(q, b, q′)
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Transformation of a HMM into an equivalent PNFA
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φ(q, a, q′) = B(q, a)A(q, q′)

∀q, τ(q) = 0
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Degrees of freedom

Consider machines (without final probabilities) with n states and an alphabet of m
letters

Model Parameters Degrees of freedom Total
PNFA ι(q) n− 1

φ(q, a, q′) n2m− n
n2m− 1 O(n2 ×m)

HMMT ι(q) n− 1
A(q, q′) n2 − n
B(q, a, q′) n2m− n2

n2m− 1 O(n2 ×m)
HMM ι(q) n− 1

A(q, q′) n2 − n
B(q, a) nm− n

n2 + nm− n− 1 O(n×max(n,m))

A HMM can be transformed into an equivalent PNFA with the same number of
states , but the converse is not true in general.
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PNFA are equivalent to HMMs with final probabilities

A HMM including final probabilities represented with a final silent state
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Theorem 5. HMMs with final probabilities are equivalent to semi-PA

Corollary 2. HMMs with final probabilities, and such that the probabilities of
reaching a final state from any accessible state is strictly positive, generate distri-
butions over Σ∗
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• Probabilistic automata

– Sufficient and necessary conditions to define a distribution
– PDFA are strictly less general than PNFA
– PNFA without final probabilities

• HMMs

– HMM with state emission
– HMM with transition emission (HMMT)

• Links between PA and HMMs

• Learnability results

• Open questions
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Learning models

Learning a PNFA or a HMM aims at inducing a machine generating a distribution
P̂ from a sample S drawn according to some unknown target distribution P

A learning model includes a learning protocol specifying:
• the prior knowledge given to the learner

• the required quality of the learned hypothesis P̂ (⇒ performance criterion )

• some possible constraints on the sample S

• some possible bounds on the computational complexity of learning

Once a learning model is defined, one can ask
• whether a specific class of distributions can be learned?

• how much data is needed to reach a certain quality?

• what is the complexity of learning?
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PAC learning model for distribution learning

Probably Approximately Correct learning

• Assume the data is an independent and identically distributed (iid) sample
from P

• Consider a distance measure D(P, P̂ ) between distributions P and P̂
An hypothesis is ε-good if D(P, P̂ ) ≤ ε

• Given a precision parameter ε > 0 and a confidence parameter 0 < δ < 1, the
learning algorithm must output, with probability 1− δ, an ε-good hypothesis P̂

• the time complexity must be a polynomial function of 1
ε ,

1
δ and |P |

Notes:

- |P | typically denotes the number of parameters to define the distributions (see
degree of freedoms)

- A typical �distance� is the Kullback-Leibler divergence between P and P̂

- Possible prior knowledges: P can be generated by a HMM, some constraints
on the structure
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(Simplified) learnability results

PAC learnability:

• Distributions defined by PDFA over an alphabet of 2 letters are not efficiently
PAC learnable

• Specific subclasses of PDFA are learnable

– µ-distinguishable acyclic PDFA are learnable when µ is known
– Probabilistic finite suffix automata of order L, equivalent to variable order

Markov chains, are learnable when L is known

When the topology is assumed to be known, the learning problem is reduced
to the problem of training a fixed set of parameters. Polynomial trainability
requires to be able to approximate a model maximizing the sample likelihood in
polynomial time:

• PDFA are polynomially trainable

• 2-states PNFA are not polynomially trainable

• EM algorithm outputs a locally optimal ML solution
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(Simplified) learnability results (contd.)

• PNFA are identifiable in the limit with probability 1
but this learning model requires an asymptotic identification of the structure
without bounding the total complexity of learning

• Several practical induction algorithms do not fit in a learning model but a
Bayesian learning framework.
The goal is to build a model M̂ maximizing the product of the prior probability
P (M) and the sample likelihood P (S|M)
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Summary

• PNFA with no final probabilities are equivalent to HMMs
They define distributions over complete finite prefix-free sets

• HMMs with final probabilities are equivalent to PNFA
They define (semi-)distributions over Σ∗

• HMMs can be converted into PNFA and conversely, but not necessarily with
the same number of states

• General HMMs (equivalent to PNFA) are hard to learn

• PDFA form a restricted class , hard to learn but easy to train

• Most practical algorithms induce PDFA, often in a Bayesian framework
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Open questions

• New interesting subclasses efficiently learnable or polynomially trainable?
Subclasses of PNFA, left-to-right HMMs, etc?

• Most negative PAC learnability results consider automata with no final prob-
abilities. Can we come up with positive results for learning distributions over
Σ∗?

• Relaxation of the PAC framework? Distance measure different from divergence
but non trivial learning?

• Characterization of the local optimum produced by the EM algorithm in some
cases?

• New robust and fast learning algorithms?

• Links with the learning of probabilistic acceptors defining conditional distribu-
tions P (Y = y|u) with u ∈ Σ∗?
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Additional information

• proofs

• more details on learnability results

• a presentation of several PA/HMM induction algorithms

• many references

P. Dupont, F. Denis and Y. Esposito, Links between Probabilistic Automata and
Hidden Markov Models: probability distributions, learning models and induction
algorithms, to appear in Pattern Recognition: Special Issue on Grammatical In-
ference Techniques & Applications, 2004.

See http://www.info.ucl.ac.be/∼pdupont/
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