
1

Lecture 3 Floating Point Representations

ECE 0142 Computer Organization

2

Floating-point arithmetic

 We often incur floating-point programming.
– Floating point greatly simplifies working with large (e.g., 270) and

small (e.g., 2-17) numbers
 We’ll focus on the IEEE 754 standard for floating-point arithmetic.

– How FP numbers are represented
– Limitations of FP numbers
– FP addition and multiplication

3

Floating-point representation

 IEEE numbers are stored using a kind of scientific notation.

± mantissa * 2exponent

 We can represent floating-point numbers with three binary
fields: a sign bit s, an exponent field e, and a fraction field f.

 The IEEE 754 standard defines several different precisions.
— Single precision numbers include an 8-bit exponent field

and a 23-bit fraction, for a total of 32 bits.
— Double precision numbers have an 11-bit exponent field

and a 52-bit fraction, for a total of 64 bits.

s e f

4

Sign

 The sign bit is 0 for positive numbers and 1 for negative
numbers.

 But unlike integers, IEEE values are stored in signed magnitude
format.

s e f

5

Mantissa

 There are many ways to write a number in scientific notation, but
there is always a unique normalized representation, with exactly one
non-zero digit to the left of the point.

0.232 × 103 = 23.2 × 101 = 2.32 * 102 = …

01001 = 1.001× 23 = …

 What’s the normalized representation of 00101101.101 ?
00101101.101
= 1.01101101 × 25

 What’s the normalized representation of 0.0001101001110 ?
0.0001101001110

= 1.110100111 × 2-4

s e f

6

Mantissa

 There are many ways to write a number in scientific notation, but
there is always a unique normalized representation, with exactly one
non-zero digit to the left of the point.

0.232 × 103 = 23.2 × 101 = 2.32 * 102 = …

01001 = 1.001× 23 = …

 The field f contains a binary fraction.
 The actual mantissa of the floating-point value is (1 + f).

– In other words, there is an implicit 1 to the left of the binary
point.

– For example, if f is 01101…, the mantissa would be 1.01101…
 A side effect is that we get a little more precision: there are 24 bits in

the mantissa, but we only need to store 23 of them.
 But, what about value 0?

s e f

7

Exponent

 There are special cases that require encodings
– Infinities (overflow)
– NAN (divide by zero)

 For example:
– Single-precision: 8 bits in e → 256 codes; 11111111 reserved for

special cases → 255 codes; one code (00000000) for zero → 254
codes; need both positive and negative exponents → half
positives (127), and half negatives (127)

– Double-precision: 11 bits in e → 2048 codes; 111…1 reserved for
special cases → 2047 codes; one code for zero → 2046 codes;
need both positive and negative exponents → half positives
(1023), and half negatives (1023)

s e f

8

Exponent

 The e field represents the exponent as a biased number.
– It contains the actual exponent plus 127 for single precision, or

the actual exponent plus 1023 in double precision.
– This converts all single-precision exponents from -126 to +127

into unsigned numbers from 1 to 254, and all double-precision
exponents from -1022 to +1023 into unsigned numbers from 1 to
2046.

 Two examples with single-precision numbers are shown below.
– If the exponent is 4, the e field will be 4 + 127 = 131 (100000112).
– If e contains 01011101 (9310), the actual exponent is 93 - 127 = -

34.
 Storing a biased exponent means we can compare IEEE values as if

they were signed integers.

s e f

9

Mapping Between e and Actual Exponent

e Actual
Exponent

0000 0000 Reserved
0000 0001 1-127 = -126 -12610

0000 0010 2-127 = -125 -12510

… …
0111 1111 010

… …
1111 1110 254-127=127 12710

1111 1111 Reserved

10

Converting an IEEE 754 number to decimal

 The decimal value of an IEEE number is given by the formula:

(1 - 2s) * (1 + f) * 2e-bias

 Here, the s, f and e fields are assumed to be in decimal.
– (1 - 2s) is 1 or -1, depending on whether the sign bit is 0

or 1.
– We add an implicit 1 to the fraction field f, as mentioned

earlier.
– Again, the bias is either 127 or 1023, for single or double

precision.

s e f

11

Example IEEE-decimal conversion

 Let’s find the decimal value of the following IEEE number.

1 01111100 11000000000000000000000

 First convert each individual field to decimal.
– The sign bit s is 1.
– The e field contains 01111100 = 12410.
– The mantissa is 0.11000… = 0.7510.

 Then just plug these decimal values of s, e and f into our formula.

(1 - 2s) * (1 + f) * 2e-bias

 This gives us (1 - 2) * (1 + 0.75) * 2124-127 = (-1.75 * 2-3) = -0.21875.

12

Converting a decimal number to IEEE 754

 What is the single-precision representation of 347.625?

1. First convert the number to binary: 347.625 = 101011011.1012.
2. Normalize the number by shifting the binary point until there is

a single 1 to the left:

101011011.101 x 20 = 1.01011011101 x 28

3. The bits to the right of the binary point comprise the fractional
field f.

4. The number of times you shifted gives the exponent. The field e
should contain: exponent + 127.

5. Sign bit: 0 if positive, 1 if negative.

13

Exercise

 What is the single-precision representation of 639.6875

639.6875 = 1001111111.10112

= 1.0011111111011×29

s = 0
e = 9 + 127 = 136 = 10001000
f = 0011111111011

The single-precision representation is:
0 10001000 00111111110110000000000

14

Examples: Compare FP numbers (<, > ?)

1. 0 0111 1111 110…0 0 1000 0000 110…0
+1.112 × 2 (127-127) =1.7510 +1.112 × 2 (128-127) = 11.12=3.510

0 0111 1111 110…0 0 1000 0000 110…0
+ 0111 1111 < + 1000 0000
directly comparing exponents as unsigned values gives result

2. 1 0111 1111 110…0 1 1000 0000 110…0
-f × 2(0111 1111) -f × 2(1000 0000)

For exponents: 0111 1111 < 1000 0000
So -f × 2(0111 1111) > -f × 2(1000 0000)

15

Special Values (single-precision)

E F meaning Notes

00000000 0…0 0 +0.0 and -0.0

00000000 X…X
Valid

number
Unnormalized
=(-1)S x 2-126 x (0.F)

11111111 0…0 Infinity

11111111 X…X Not a Number

16

E Real
Exponent

F Value

0000 0000 Reserved 000…0 010

xxx…x Unnormalized
(-1)S x 2-126 x (0.F)

0000 0001 -12610

Normalized
(-1)S x 2e-127 x (1.F)

0000 0010 -12510

… …
0111 1111 010

… …
1111 1110 12710

1111 1111 Reserved 000…0 Infinity
xxx…x NaN

17

Range of numbers

 Normalized (positive range; negative is symmetric)

 Unnormalized

00000000100000000000000000000000 +2-126(1+0) = 2-126

01111111011111111111111111111111 +2127(2-2-23)

smallest

largest

smallest

largest

00000000000000000000000000000001 +2-126(2-23) = 2-149

00000000011111111111111111111111 +2-126(1-2-23)

0 2-149 2-126(1-2-23)

2-126 2127(2-2-23)

Positive underflow
Positive overflow

18

In comparison

 The smallest and largest possible 32-bit integers in two’s
complement are only -231 and 231 - 1

 How can we represent so many more values in the IEEE 754
format, even though we use the same number of bits as regular
integers?

0

2-126

what’s the next representable FP number?

+2-126(1+2-23) differ from the smallest number by 2-149

19

 There aren’t more IEEE numbers.
 With 32 bits, there are 232, or about 4 billion, different bit patterns.

– These can represent 4 billion integers or 4 billion reals.
– But there are an infinite number of reals, and the IEEE format

can only represent some of the ones from about -2128 to +2128.
– Represent same number of values between 2n and 2n+1 as 2n+1

and 2n+2

 Thus, floating-point arithmetic has “issues”
– Small roundoff errors can accumulate with multiplications or

exponentiations, resulting in big errors.
– Rounding errors can invalidate many basic arithmetic

principles such as the associative law, (x + y) + z = x + (y + z).
 The IEEE 754 standard guarantees that all machines will produce

the same results—but those results may not be mathematically
accurate!

Finiteness

2 4 8 16

20

 Even some integers cannot be represented in the IEEE
format.

int x = 33554431;
float y = 33554431;
printf("%d\n", x);
printf("%f\n", y);

33554431
33554432.000000

 Some simple decimal numbers cannot be represented exactly
in binary to begin with.

0.1010 = 0.0001100110011...2

Limits of the IEEE representation

21

0.10

 During the Gulf War in 1991, a U.S. Patriot missile failed to intercept
an Iraqi Scud missile, and 28 Americans were killed.

 A later study determined that the problem was caused by the
inaccuracy of the binary representation of 0.10.

– The Patriot incremented a counter once every 0.10 seconds.
– It multiplied the counter value by 0.10 to compute the actual

time.
 However, the (24-bit) binary representation of 0.10 actually

corresponds to 0.099999904632568359375, which is off by
0.000000095367431640625.

 This doesn’t seem like much, but after 100 hours the time ends up
being off by 0.34 seconds—enough time for a Scud to travel 500
meters!

 Professor Skeel wrote a short article about this.
Roundoff Error and the Patriot Missile. SIAM News, 25(4):11, July 1992.

http://www.siam.org/siamnews/general/patriot.htm
http://www.raytheon.com/products/patriot/index.html
http://www.raytheon.com/products/patriot/index.html

22

Floating-point addition example

 To get a feel for floating-point operations, we’ll do an addition
example.
– To keep it simple, we’ll use base 10 scientific notation.
– Assume the mantissa has four digits, and the exponent

has one digit.
 An example for the addition:

99.99 + 0.161 = 100.151

 As normalized numbers, the operands would be written as:

9.999 * 101 1.610 * 10-1

23

Steps 1-2: the actual addition

1. Equalize the exponents.
The operand with the smaller exponent should be rewritten by
increasing its exponent and shifting the point leftwards.

1.610 * 10-1 = 0.01610 * 101

With four significant digits, this gets rounded to: 0.016

This can result in a loss of least significant digits—the rightmost 1 in
this case. But rewriting the number with the larger exponent could
result in loss of the most significant digits, which is much worse.

2. Add the mantissas.

9.999 * 101

+ 0.016 * 101

10.015 * 101

24

Steps 3-5: representing the result

3. Normalize the result if necessary.

10.015 * 101 = 1.0015 * 102

This step may cause the point to shift either left or right, and the
exponent to either increase or decrease.

4. Round the number if needed.

1.0015 * 102 gets rounded to 1.002 * 102

5. Repeat Step 3 if the result is no longer normalized.
We don’t need this in our example, but it’s possible for rounding to
add digits—for example, rounding 9.9995 yields 10.000.

Our result is 1.002*102 , or 100.2 . The correct answer is 100.151, so we have
the right answer to four significant digits, but there’s a small error already.

25

Example

 Calculate 0 1000 0001 110…0 plus 0 1000 0010 00110..0
both are single-precision IEEE 754 representation

1. 1st number: 1.112 × 2 (129-127); 2nd number: 1.00112 × 2(130-127)

2. Compare the e field: 1000 0001 < 1000 0010
3. Align exponents to 1000 0010; so the 1st number becomes:
0.1112 × 23

4. Add mantissa
1.0011

+0.1110
10.0001

5. So the sum is: 10.0001 × 23 = 1.00001 × 24

So the IEEE 754 format is: 0 1000 0011 000010…0

26

Multiplication

 To multiply two floating-point values, first multiply their magnitudes
and add their exponents.

 You can then round and normalize the result, yielding 1.610 * 101.
 The sign of the product is the exclusive-or of the signs of the

operands.
– If two numbers have the same sign, their product is positive.
– If two numbers have different signs, the product is negative.

0 ⊕ 0 = 0 0 ⊕ 1 = 1 1 ⊕ 0 = 1 1 ⊕ 1 = 0

 This is one of the main advantages of using signed magnitude.

9.999 * 101

* 1.610 * 10-1

16.098 * 100

27

The history of floating-point computation

 In the past, each machine had its own implementation of
floating-point arithmetic hardware and/or software.
– It was impossible to write portable programs that would

produce the same results on different systems.
 It wasn’t until 1985 that the IEEE 754 standard was adopted.

– Having a standard at least ensures that all compliant
machines will produce the same outputs for the same
program.

28

Floating-point hardware

 When floating point was introduced in microprocessors, there
wasn’t enough transistors on chip to implement it.
– You had to buy a floating point co-processor (e.g., the

Intel 8087)
 As a result, many ISA’s use separate registers for floating

point.
 Modern transistor budgets enable floating point to be on chip.

– Intel’s 486 was the first x86 with built-in floating point
(1989)

 Even the newest ISA’s have separate register files for floating
point.
– Makes sense from a floor-planning perspective.

29

FPU like co-processor on chip

30

Summary

 The IEEE 754 standard defines number representations and
operations for floating-point arithmetic.

 Having a finite number of bits means we can’t represent all
possible real numbers, and errors will occur from
approximations.

	Lecture 3 Floating Point Representations
	Floating-point arithmetic
	Floating-point representation
	Sign
	Mantissa
	Mantissa
	Exponent
	Exponent
	Mapping Between e and Actual Exponent
	Converting an IEEE 754 number to decimal
	Example IEEE-decimal conversion
	Converting a decimal number to IEEE 754
	Exercise
	Examples: Compare FP numbers (<, > ?)
	Special Values (single-precision)
	Slide Number 16
	Range of numbers
	In comparison
	Finiteness
	Limits of the IEEE representation
	0.10
	Floating-point addition example
	Steps 1-2: the actual addition
	Steps 3-5: representing the result
	Example
	Multiplication
	The history of floating-point computation
	Floating-point hardware
	FPU like co-processor on chip
	Summary
	Slide Number 31
	In comparison
	Exercise:
	Exercise:
	Exercise:
	Quiz 2
	Quiz 2 - answer

