
1

Lecture 3 Floating Point Representations 

ECE 0142 Computer Organization
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Floating-point arithmetic

 We often incur floating-point programming.
– Floating point greatly simplifies working with large (e.g., 270) and 

small (e.g., 2-17) numbers
 We’ll focus on the IEEE 754 standard for floating-point arithmetic.

– How FP numbers are represented
– Limitations of FP numbers
– FP addition and multiplication
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Floating-point representation

 IEEE numbers are stored using a kind of scientific notation.

± mantissa * 2exponent

 We can represent floating-point numbers with three binary 
fields: a sign bit s, an exponent field e, and a fraction field f.

 The IEEE 754 standard defines several different precisions.
— Single precision numbers include an 8-bit exponent field 

and a 23-bit fraction, for a total of 32 bits.
— Double precision numbers have an 11-bit exponent field 

and a 52-bit fraction, for a total of 64 bits.

s e f
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Sign

 The sign bit is 0 for positive numbers and 1 for negative 
numbers.

 But unlike integers, IEEE values are stored in signed magnitude
format.

s e f
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Mantissa

 There are many ways to write a number in scientific notation, but 
there is always a unique normalized representation, with exactly one 
non-zero digit to the left of the point. 

0.232 × 103 = 23.2 × 101 = 2.32 * 102 = …

01001 = 1.001× 23 = …

 What’s the normalized representation of 00101101.101  ?
00101101.101
= 1.01101101 × 25

 What’s the normalized representation of 0.0001101001110 ?
0.0001101001110

= 1.110100111 × 2-4

s e f
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Mantissa

 There are many ways to write a number in scientific notation, but 
there is always a unique normalized representation, with exactly one 
non-zero digit to the left of the point. 

0.232 × 103 = 23.2 × 101 = 2.32 * 102 = …

01001 = 1.001× 23 = …

 The field f contains a binary fraction.
 The actual mantissa of the floating-point value is (1 + f).

– In other words, there is an implicit 1 to the left of the binary 
point.

– For example, if f is 01101…, the mantissa would be 1.01101…
 A side effect is that we get a little more precision: there are 24 bits in 

the mantissa, but we only need to store 23 of them.
 But, what about value 0?

s e f
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Exponent

 There are special cases that require encodings
– Infinities (overflow)
– NAN (divide by zero)

 For example:
– Single-precision: 8 bits in e → 256 codes; 11111111 reserved for 

special cases → 255 codes; one code (00000000) for zero → 254 
codes; need both positive and negative exponents → half 
positives (127), and half negatives (127)

– Double-precision: 11 bits in e → 2048 codes; 111…1 reserved for 
special cases → 2047 codes; one code for zero → 2046 codes; 
need both positive and negative exponents → half positives 
(1023), and half negatives (1023)

s e f
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Exponent

 The e field represents the exponent as a biased number.
– It contains the actual exponent plus 127 for single precision, or 

the actual exponent plus 1023 in double precision.
– This converts all single-precision exponents from -126 to +127 

into unsigned numbers from 1 to 254, and all double-precision 
exponents from -1022 to +1023 into unsigned numbers from 1 to 
2046.

 Two examples with single-precision numbers are shown below.
– If the exponent is 4, the e field will be 4 + 127 = 131 (100000112).
– If e contains 01011101 (9310), the actual exponent is 93 - 127 = -

34.
 Storing a biased exponent means we can compare IEEE values as if 

they were signed integers.

s e f
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Mapping Between e and Actual Exponent

e Actual 
Exponent

0000 0000 Reserved
0000 0001 1-127 = -126 -12610

0000 0010 2-127 = -125 -12510

… …
0111 1111 010

… …
1111 1110 254-127=127 12710

1111 1111 Reserved
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Converting an IEEE 754 number to decimal

 The decimal value of an IEEE number is given by the formula:

(1 - 2s) * (1 + f) * 2e-bias

 Here, the s, f and e fields are assumed to be in decimal.
– (1 - 2s) is 1 or -1, depending on whether the sign bit is 0 

or 1.
– We add an implicit 1 to the fraction field f, as mentioned 

earlier.
– Again, the bias is either 127 or 1023, for single or double 

precision.

s e f
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Example IEEE-decimal conversion

 Let’s find the decimal value of the following IEEE number.

1 01111100 11000000000000000000000

 First convert each individual field to decimal.
– The sign bit s is 1.
– The e field contains 01111100 = 12410.
– The mantissa is 0.11000… = 0.7510.

 Then just plug these decimal values of s, e and f into our formula.

(1 - 2s) * (1 + f) * 2e-bias

 This gives us (1 - 2) * (1 + 0.75) * 2124-127 =  (-1.75 * 2-3)  =  -0.21875.
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Converting a decimal number to IEEE 754

 What is the single-precision representation of 347.625?

1. First convert the number to binary: 347.625 = 101011011.1012.
2. Normalize the number by shifting the binary point until there is 

a single 1 to the left:

101011011.101 x 20 = 1.01011011101 x 28

3. The bits to the right of the binary point comprise the fractional 
field f.

4. The number of times you shifted gives the exponent. The field e 
should contain: exponent + 127.

5. Sign bit: 0 if positive, 1 if negative.
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Exercise

 What is the single-precision representation of 639.6875

639.6875 = 1001111111.10112

= 1.0011111111011×29

s = 0
e = 9 + 127 = 136 = 10001000
f = 0011111111011

The single-precision representation is:
0 10001000 00111111110110000000000
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Examples: Compare FP numbers ( <, > ? )

1. 0 0111 1111 110…0 0 1000 0000 110…0
+1.112 × 2 (127-127) =1.7510 +1.112 × 2 (128-127) = 11.12=3.510

0 0111 1111 110…0 0 1000 0000 110…0
+ 0111 1111 < + 1000 0000
directly comparing exponents as unsigned values gives result

2. 1 0111 1111 110…0 1 1000 0000 110…0
-f × 2(0111 1111 ) -f × 2(1000 0000)

For exponents: 0111 1111 < 1000 0000
So -f × 2(0111 1111 ) > -f × 2(1000 0000)
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Special Values (single-precision)

E F meaning Notes

00000000 0…0 0 +0.0 and -0.0

00000000 X…X
Valid

number
Unnormalized
=(-1)S x 2-126 x (0.F)

11111111 0…0 Infinity

11111111 X…X Not a Number
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E Real 
Exponent

F Value

0000 0000 Reserved 000…0 010

xxx…x Unnormalized
(-1)S x 2-126 x (0.F)

0000 0001 -12610

Normalized
(-1)S x 2e-127 x (1.F)

0000 0010 -12510

… …
0111 1111 010

… …
1111 1110 12710

1111 1111 Reserved 000…0 Infinity
xxx…x NaN
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Range of numbers

 Normalized (positive range; negative is symmetric)

 Unnormalized

00000000100000000000000000000000 +2-126(1+0) = 2-126

01111111011111111111111111111111 +2127(2-2-23)

smallest

largest

smallest

largest

00000000000000000000000000000001 +2-126(2-23) = 2-149

00000000011111111111111111111111 +2-126(1-2-23)

0 2-149 2-126(1-2-23)

2-126 2127(2-2-23)

Positive underflow
Positive overflow
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In comparison

 The smallest and largest possible 32-bit integers in two’s 
complement are only -231 and 231 - 1

 How can we represent so many more values in the IEEE 754 
format, even though we use the same number of bits as regular 
integers?

0

2-126

what’s the next representable FP number?

+2-126(1+2-23) differ from the smallest number by 2-149
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 There aren’t more IEEE numbers.
 With 32 bits, there are 232, or about 4 billion, different bit patterns.

– These can represent 4 billion integers or 4 billion reals.
– But there are an infinite number of reals, and the IEEE format 

can only represent some of the ones from about -2128 to +2128.
– Represent same number of values between 2n and 2n+1 as 2n+1

and 2n+2

 Thus, floating-point arithmetic has “issues”
– Small roundoff errors can accumulate with multiplications or 

exponentiations, resulting in big errors.
– Rounding errors can invalidate many basic arithmetic 

principles such as the associative law, (x + y) + z = x + (y + z).
 The IEEE 754 standard guarantees that all machines will produce 

the same results—but those results may not be mathematically 
accurate!

Finiteness

2 4 8 16
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 Even some integers cannot be represented in the IEEE 
format.

int x   = 33554431;
float y = 33554431;
printf( "%d\n", x );
printf( "%f\n", y );

33554431
33554432.000000

 Some simple decimal numbers cannot be represented exactly 
in binary to begin with. 

0.1010 = 0.0001100110011...2

Limits of the IEEE representation
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0.10

 During the Gulf War in 1991, a U.S. Patriot missile failed to intercept 
an Iraqi Scud missile, and 28 Americans were killed.

 A later study determined that the problem was caused by the 
inaccuracy of the binary representation of 0.10.

– The Patriot incremented a counter once every 0.10 seconds.
– It multiplied the counter value by 0.10 to compute the actual 

time.
 However, the (24-bit) binary representation of 0.10 actually 

corresponds to 0.099999904632568359375, which is off by 
0.000000095367431640625.

 This doesn’t seem like much, but after 100 hours the time ends up 
being off by 0.34 seconds—enough time for a Scud to travel 500 
meters!

 Professor Skeel wrote a short article about this.
Roundoff Error and the Patriot Missile. SIAM News, 25(4):11, July 1992.

http://www.siam.org/siamnews/general/patriot.htm
http://www.raytheon.com/products/patriot/index.html
http://www.raytheon.com/products/patriot/index.html
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Floating-point addition example

 To get a feel for floating-point operations, we’ll do an addition 
example. 
– To keep it simple, we’ll use base 10 scientific notation.
– Assume the mantissa has four digits, and the exponent 

has one digit.
 An example for the addition:

99.99  +  0.161  =  100.151

 As normalized numbers, the operands would be written as:

9.999 * 101 1.610 * 10-1
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Steps 1-2: the actual addition

1. Equalize the exponents.
The operand with the smaller exponent should be rewritten by 
increasing its exponent and shifting the point leftwards.

1.610 * 10-1 = 0.01610 * 101

With four significant digits, this gets rounded to: 0.016

This can result in a loss of least significant digits—the rightmost 1 in 
this case. But rewriting the number with the larger exponent could 
result in loss of the most significant digits, which is much worse.

2. Add the mantissas.

9.999 * 101

+ 0.016 * 101

10.015  *   101
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Steps 3-5: representing the result

3. Normalize the result if necessary.

10.015 * 101 = 1.0015 * 102

This step may cause the point to shift either left or right, and the 
exponent to either increase or decrease.

4. Round the number if needed.

1.0015 * 102 gets rounded to 1.002 * 102

5. Repeat Step 3 if the result is no longer normalized.
We don’t need this in our example, but it’s possible for rounding to 
add digits—for example, rounding 9.9995 yields 10.000.

Our result is 1.002*102 , or 100.2 . The correct answer is 100.151, so we have 
the right answer to four significant digits, but there’s a small error already.
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Example

 Calculate 0 1000 0001 110…0  plus 0 1000 0010 00110..0
both are single-precision IEEE 754 representation

1. 1st number: 1.112 × 2 (129-127); 2nd number: 1.00112 × 2(130-127)

2. Compare the e field: 1000 0001 < 1000 0010
3. Align exponents to 1000 0010; so the 1st number becomes:
0.1112 × 23

4. Add mantissa 
1.0011

+0.1110
10.0001

5. So the sum is: 10.0001 × 23 = 1.00001 × 24

So the IEEE 754 format is: 0 1000 0011 000010…0
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Multiplication

 To multiply two floating-point values, first multiply their magnitudes 
and add their exponents.

 You can then round and normalize the result, yielding 1.610 * 101.
 The sign of the product is the exclusive-or of the signs of the 

operands.
– If two numbers have the same sign, their product is positive.
– If two numbers have different signs, the product is negative.

0 ⊕ 0 = 0 0 ⊕ 1 = 1 1 ⊕ 0 = 1 1 ⊕ 1 = 0

 This is one of the main advantages of using signed magnitude.

9.999 * 101

* 1.610 * 10-1

16.098 * 100
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The history of floating-point computation

 In the past, each machine had its own implementation of 
floating-point arithmetic hardware and/or software.
– It was impossible to write portable programs that would 

produce the same results on different systems.
 It wasn’t until 1985 that the IEEE 754 standard was adopted.

– Having a standard at least ensures that all compliant 
machines will produce the same outputs for the same 
program.
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Floating-point hardware

 When floating point was introduced in microprocessors, there 
wasn’t enough transistors on chip to implement it.
– You had to buy a floating point co-processor (e.g., the 

Intel 8087)
 As a result, many ISA’s use separate registers for floating 

point.
 Modern transistor budgets enable floating point to be on chip.

– Intel’s 486 was the first x86 with built-in floating point 
(1989)

 Even the newest ISA’s have separate register files for floating 
point.
– Makes sense from a floor-planning perspective.



29

FPU like co-processor on chip
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Summary

 The IEEE 754 standard defines number representations and 
operations for floating-point arithmetic.

 Having a finite number of bits means we can’t represent all 
possible real numbers, and errors will occur from 
approximations.


	Lecture 3 Floating Point Representations 
	Floating-point arithmetic
	Floating-point representation
	Sign
	Mantissa
	Mantissa
	Exponent
	Exponent
	Mapping Between e and Actual Exponent
	Converting an IEEE 754 number to decimal
	Example IEEE-decimal conversion
	Converting a decimal number to IEEE 754
	Exercise
	Examples: Compare FP numbers ( <, > ? )
	Special Values (single-precision)
	Slide Number 16
	Range of numbers
	In comparison
	Finiteness
	Limits of the IEEE representation
	0.10
	Floating-point addition example
	Steps 1-2: the actual addition
	Steps 3-5: representing the result
	Example
	Multiplication
	The history of floating-point computation
	Floating-point hardware
	FPU like co-processor on chip
	Summary
	Slide Number 31
	In comparison
	Exercise:
	Exercise:
	Exercise:
	Quiz 2
	Quiz 2 - answer

