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We reconsider the foundations of modal logic, following Martin-Löf’s methodology of

distinguishing judgments from propositions. We give constructive meaning explanations

for necessity and possibility which yields a simple and uniform system of natural

deduction for intuitionistic modal logic which does not exhibit anomalies found in other

proposals. We also give a new presentation of lax logic and find that the lax modality is

already expressible using possibility and necessity. Through a computational

interpretation of proofs in modal logic we further obtain a new formulation of Moggi’s

monadic metalanguage.
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1. Introduction

In this paper we reconsider the foundations of modal logic, following Martin-Löf’s (1996)

methodology of distinguishing judgments from propositions. We give constructive mean-

ing explanations for necessity (2) and possibility (3). This exercise yields a simple and

uniform system of natural deduction for intuitionistic modal logic which does not exhibit

anomalies found in other proposals. We also give a new presentation of lax logic (Fairt-

lough and Mendler, 1997) and find that it is already contained in modal logic, using the

decomposition of the lax modality ©A as 32A and lax implication A⇒ B as (2A)⊃B.

Through a computational interpretation of proofs in modal logic we further obtain a

new formulation of Moggi’s monadic metalanguage (Moggi, 1998; 1989; 1991), combin-

ing and systematizing previous work by S. Kobayashi (1997) and Benton, Bierman, and

de Paiva (1998).

At the level of judgments, the above development requires surprisingly few primitive

notions. In particular, we only need hypothetical judgments to explain implication, and

categorical judgments to explain the modalities. We have thus obtained a satisfactory

foundation for the constructive understanding of modal logic and its computational in-

terpretations.

2. Judgments and Propositions

In his Siena lectures from 1983 (finally published in 1996), Martin-Löf provides a founda-

tion for logic based on a clear separation of the notions of judgment and proposition. He

reasons that to judge is to know and that an evident judgment is an object of knowledge.

A proof is what makes a judgment evident. In logic, we make particular judgments such

as “A is a proposition” or “A is true”, presupposing in the latter case that A is already

known to be a proposition. To know that “A is a proposition” means to know what

counts as a verification of A, whereas to know that “A is true” means to know how to

verify A. In his words (Martin-Löf, 1996, Page 27):

The meaning of a proposition is determined by [. . . ] what counts as a verification of it.

This approach leads to a clear conceptual priority: we first need to understand the

notions of judgment and evidence for judgments, then the notions of proposition and

verifications of propositions to understand truth.

As an example, we consider the explanation of conjunction. We know that A ∧B is a

proposition if both A and B are propositions. As a rule of inference (called conjunction

formation):

A prop B prop
∧F

A ∧B prop
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The meaning is given by stating what counts a verification of A∧B. We say that we have

a verification of A ∧B if we have verifications for both A and B. As a rule of inference:

A true B true
∧I

A ∧B true

where we presuppose that A and B are already known to be propositions. This is known

as an introduction rule, a term due to Gentzen (1935) who first formulated a system

of natural deduction. Conversely, what do we know if we know that A ∧ B is true?

Since a verification of A ∧B consists of verifications for both A and B, we know that A

must be true and B must be true. Formulated as rules of inference (called conjunction

eliminations):

A ∧B true ∧EL
A true

A ∧B true ∧ER
B true

From the explanation above it should be clear that the two elimination rules are sound :

if we define the meaning of conjunction by its introduction rule then we are fully justified

in concluding that A is true if A ∧B is true, and similarly for the second rule.

Soundness guarantees that the elimination rules are not too strong. We have sufficient

evidence for the judgment in the conclusion if we have sufficient evidence for the judgment

in the premise. This is witnessed by a local reduction which constructs evidence for the

conclusion from evidence for the premise.

D
A true

E
B true

∧I
A ∧B true

∧EL
A true

=⇒R
D

A true

A symmetric reduction exists for ∧ER. We only consider each elimination immediately

preceded by an introduction for a connective. We therefore call the property that each

such pattern can be reduced local soundness.

The dual question, namely if the elimination rules are sufficiently strong, has, as far as

we know, not been discussed by Martin-Löf. Of course, we can never achieve “absolute”

completeness of rules for inferring evident judgments. But in some situations, elimination

rules may be obviously incomplete. For example, we might have overlooked the second

elimination rule for conjunction, ∧ER. This would not contradict soundness, but we

would not be able to exploit the knowledge that A∧B is true to its fullest. In particular,

we cannot recover the knowledge that B is true even if we know that A ∧B is true.

In general we say that the elimination rules for a connective are locally complete if we

can apply the elimination rules to a judgment to recover enough knowledge to permit

reconstruction of the original judgment. In the case of conjunction, this is only possible
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if we have both elimination rules.

D
A ∧B true

=⇒E

D
A ∧B true

∧EL
A true

D
A ∧B true

∧ER
B true

∧I
A ∧B true

We call this pattern a local expansion since we obtain more complex evidence for the

original judgment.

An alternative way to understand local completeness is to reconsider our meaning

explanation of conjunction. We have said that a verification of A∧B consists of a verifi-

cation of A and a verification of B. Local completeness entails that it is always possible

to bring the verification of A ∧B into this form by a local expansion.

To summarize, logic is based on the notion of judgment where an evident judgment

is an object of knowledge. A judgment can be immediately evident or, more typically,

mediately evident, in which case the evidence is provided by a proof. The meaning of a

proposition is given by what counts as a verification of it. This is written out in the form

of introduction rules for logical connectives which allow us to conclude when propositions

are true. They are complemented by elimination rules which allow us to obtain further

knowledge from the knowledge of compound propositions. The elimination rules for a

connective should be locally sound and complete in order to have a satisfactory meaning

explanation for the connective. Local soundness and completeness are witnessed by local

reductions and expansions of proofs, respectively.

Note that there are other ways to define meaning. For example, we frequently expand

our language by notational definition. In intuitionistic logic negation is often given as a

derived concept, where ¬A is considered a notation for A⊃⊥. This means that negation

has a rather weak status, as its meaning relies entirely on the meaning of implication and

falsehood rather than having an independent explanation. The two should not be mixed:

introduction and elimination rules for a connective should rely solely on judgmental

concepts and not on other connectives. Sometimes (as in the case of negation) a connective

can be explained directly or as a notational definition and we can establish that the two

meanings coincide.

3. Hypothetical Judgments and Implication

So far we have seen two forms of judgment: “A is a proposition” and “A is true”. These

are insufficient to explain implication, since we would like to say that A⊃B is true if B is

true whenever A is true. For this we need hypothetical judgments and hypothetical proofs,

which are new primitive notions. We simplify the account of hypothetical judgments by

Martin-Löf by presupposing that subjects A and B are known to be propositions without

making this explicit.

We write the general form of a hypothetical judgment as

J1, . . . , Jn ` J

which expresses “J assuming J1 through Jn” or “J under hypotheses J1 through Jn”.
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We also refer to J1, . . . , Jn as the antecedents and J as the succedent of the hypothetical

judgment.

We explain the meaning by explaining what constitutes evidence for such a hypothet-

ical judgment, namely a hypothetical proof. In a hypothetical proof of the judgment

above we can use the hypotheses Ji as if we knew them. We can consequently substitute

an arbitrary derivation of Ji for the uses of a hypothesis Ji to obtain a judgment which

no longer depends on Ji. Thus, at the core, the meaning of hypothetical judgments relies

upon substitution on the level of proofs, that is, supplanting the use of a hypothesis by

evidence for it.

The first particular form of hypothetical judgment we need here is

A1 true, . . . , An true ` A true

where we presuppose that A1 through An and A are all propositions. We write Γ for a

collection of hypotheses of the form above. The special case of the substitution principle

for such hypotheses has the form

Substitution Principle for Truth

If Γ ` A true and Γ, A true ` J then Γ ` J .

In particular, we will be interested in the cases where the judgment J is C true or a

hypothetical judgment Γ′ ` C true. In the latter case, iterated hypothetical judgments are

combined and the substitution principle postulates that if Γ ` A true and Γ, A true,Γ′ `
C true then Γ,Γ′ ` C true. We further have the general rule for the use of hypotheses.

hyp
Γ, A true,Γ′ ` A true

We emphasize that the substitution principle should not be viewed as an inference rule,

but a property defining hypothetical judgments which we use in the design of a formal

system. Therefore it should hold for any system of connectives and inference rules we

devise. The correctness of the hypothesis rule, for example, can be seen from the substi-

tution principle by adjoining unused hypotheses to the first derivation. In this paper we

will not discuss the details of structural properties of collections of hypotheses such as

weakening, exchange, or contraction.

Now we can explain the meaning of implication at the level of propositions. First, the

formation rule:
A prop B prop

⊃F
A⊃B prop

We follow the usual convention that implication associates to the right, so A⊃B⊃C
stands for A⊃(B⊃C). The meaning of A⊃B is given by what counts as a verification

of it. We say that A⊃B is true if B is true under hypothesis A.

Γ, A true ` B true
⊃I

Γ ` A⊃B true

If we know that A⊃B is true we know that B is true under assumption A. If we have

evidence for the truth of A we can discharge this assumption and obtain evidence for the
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truth of B.
Γ ` A⊃B true Γ ` A true

⊃E
Γ ` B true

This elimination rule is locally sound and complete. Local soundness can be seen from

the local reduction

D
Γ, A true ` B true

⊃I
Γ ` A⊃B true

E
Γ ` A true

⊃E
Γ ` B true

=⇒R
D′

Γ ` B true

where D′ is constructed from D by substituting E for uses of the hypothesis A true. This

takes advantage of the meaning of hypothetical proofs which rests on the substitution

principle.†

Local completeness can be seen from the local expansion

D
Γ ` A⊃B true

=⇒E

D′
Γ, A true ` A⊃B true

hyp
Γ, A true ` A true

⊃E
Γ, A true ` B true

⊃I
Γ ` A⊃B true

where D′ is constructed from D by adjoining the unused hypothesis A true to every

judgment.

3.1. Axiomatic Characterization

For the sake of completeness, we recall the axiomatic characterization of implication by

means of Modus Ponens

` A⊃B true ` A true
mp

` B true

and the axiom schemas S and K.

` (A⊃B⊃C)⊃(A⊃B)⊃A⊃C true

` A⊃B⊃A true

Deductions of these axioms in the form of proof terms can be found in Section 6.

4. Categorical Judgments and Validity

Now that we have introduced hypothetical judgments, we can single out categorical judg-

ments, a term which goes back to Kant. In our situation they are judgments which do not

† There is a small ambiguity here which arises since we may not be able to identify particular uses of
hypotheses if there are several identical hypotheses. This will be resolved through the introduction of

proof terms in Section 6.
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depend on hypotheses about the truth of propositions. We introduce the new judgment

that A is valid (written A valid), presupposing that A is a proposition. Evidence for the

validity of A is simply unconditional evidence for A. We use “·” to indicate an empty

collection of hypotheses.

Definition of Validity

1 If · ` A true then A valid.

2 If A valid then Γ ` A true.

We allow Γ as hypotheses of the form Ai true in part (2) in order to avoid explicit

structural rules such as weakening.

Validity is a judgment on propositions whose meaning has already been explained via

the notion of truth. Therefore this new judgment form is not particularly interesting

unless we take the next step to allow hypotheses of the form A valid. Since order is

irrelevant, we separate hypotheses about truth and validity and consider the hypothetical

judgment

B1 valid, . . . , Bm valid;A1 true, . . . , An true ` A true.

We use the semi-colon for visual clarity, and write ∆ for a collection of validity assump-

tions. In the rules, we restrict ourselves to proving judgments of the form A true (rather

than A valid), which is possible since the latter is directly defined in terms of the former.

The meaning of hypothetical judgments yields the general substitution principle:

If ∆ ` B valid and ∆, B valid ` J then ∆ ` J .

Rewriting the first part in terms of truth, and making additional assumptions on truth

explicit rather than absorbing them into J , we obtain the following version used in the

remainder of this paper.

Substitution Principle for Validity

If ∆; · ` B true and ∆, B valid; Γ ` J then ∆; Γ ` J .

We also have a generalized hypothesis rule, again expressed in a form which establishes

truth rather than validity, which can be justified from the definition of validity.

hyp∗

∆, B valid,∆′; Γ ` B true

It is sound, since evidence for the validity of B consists of a proof of B true from no

assumptions about truth, to which we can adjoin the hypotheses ∆′ and Γ.

The next step is to internalize the categorical judgment as a proposition. We write 2A

for the proposition expressing that A is valid.

A prop
2F

2A prop

We follow the convention that 2 binds more tightly than ⊃, so that 2A⊃B stands for

(2A)⊃B. The introduction rule just allows the step from the validity of A to the truth

of 2A, according to the definition of validity.

∆; · ` A true
2I

∆; Γ ` 2A true
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The elimination rule is considerably more difficult to construct. Clearly, the rule

∆; Γ ` 2A true

∆; · ` A true

is unsound, since the hypotheses Γ in the premise are unjustified. We can construct a

sound elimination rule such as

∆; Γ ` 2A true

∆; Γ ` A true

but this is too weak, that is, not locally complete. There is no local expansion since after

the only possible elimination

D
∆; Γ ` 2A true

?
=⇒E

D
∆; Γ ` 2A true

∆; Γ ` A true

we cannot prove ∆; Γ ` 2A true from the conclusion. An elimination rule which is locally

sound and complete follows the pattern of the usual rules for disjunction or existential

quantification: the knowledge that 2A is true licenses us to assume that A is valid.

∆; Γ ` 2A true ∆, A valid; Γ ` C true
2E

∆; Γ ` C true

Local soundness of this rule is easily verified by the following local reduction.

D
∆; · ` A true

2I
∆; · ` 2A true

E
∆, A valid; Γ ` C true

2E
∆; Γ ` C true

=⇒R
E ′

∆; Γ ` C true

where E ′ is constructed from E by substitution of D for uses of the hypothesis that A is

valid, following the derived substitution principle for validity.

Local completeness is also a simple property.

D
∆; Γ ` 2A true

=⇒E

D
∆; Γ ` 2A true

hyp∗

∆, A valid; · ` A true
2I

∆, A valid; Γ ` 2A true
2E

∆; Γ ` 2A true

This concludes the treatment of validity and propositions of the form 2A. In order to

discuss the computational interpretations of 2A, we reexamine the rules with a proof

term assignment in Section 6.
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4.1. Summary of Formal System

Since a number of applications of modal logic require only necessity, we summarize the

formal system developed up to this point. We allow atomic propositions P without ad-

ditional properties.

Propositions A ::= P | A1⊃A2 | 2A
True Hypotheses Γ ::= · | Γ, A true

Valid Hypotheses ∆ ::= · | ∆, A valid

The basic judgments A true and A valid are combined in a hypothetical judgment

∆; Γ ` A true

subject to the inference rules below.

hyp
∆; Γ, A true,Γ′ ` A true

∆; Γ, A true ` B true
⊃I

∆; Γ ` A⊃B true

∆; Γ ` A⊃B true ∆; Γ ` A true
⊃E

∆; Γ ` B true

hyp∗

∆, B valid,∆′; Γ ` B true

∆; · ` A true
2I

∆; Γ ` 2A true

∆; Γ ` 2A true ∆, A valid; Γ ` C true
2E

∆; Γ ` C true

This inference system satisfies the usual structural laws of exchange, weakening, and

contraction, both for true and valid hypotheses. This can be shown trivially by structural

induction. The guiding substitution principle can be expressed as a property of this formal

system and also proven by induction over the structure of derivations.

Theorem 1 (Substitution).

The inference system for modal logic with implication and necessity satisfies:

1 If ∆; Γ, A true,Γ′ ` C true and ∆; Γ ` A true then ∆; Γ,Γ′ ` C true.

2 If ∆, B valid,∆′; Γ ` C true and ∆; · ` A true then ∆,∆′; Γ ` C true.

Proof. In each case by straightforward induction over the structure of the first given

derivation, using weakening where necessary.

4.2. Alternative Formulations

We conclude this section with some remarks on two of Prawitz’s formulations of natural

deduction for modal logic (Prawitz, 1965, Chapter VI). His first formulation, in our

notation, allows contexts of the form 2A1 true, . . . ,2An true which we write as 2Γ.

2Γ ` A true
2I1

2Γ,Γ′ ` 2A true

Γ ` 2A true
2E1

Γ ` A true
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This pair of rules is locally sound, but not complete. Moreover, it violates the interpre-

tation of Γ ` A true as a hypothetical judgment, since

hyp
P, P ⊃2Q ` P ⊃2Q

hyp
P, P ⊃2Q ` P

⊃E
P, P ⊃2Q ` 2Q

and
hyp

2Q ` 2Q
2I1

2Q ` 22Q
but after substitution of the first derivation for uses of 2Q in the second we obtain an

invalid derivation:
hyp

P, P ⊃2Q ` P ⊃2Q
hyp

P, P ⊃2Q ` P
⊃E

P, P ⊃2Q ` 2Q
2I1?

P, P ⊃2Q ` 22Q
A related lack of normal forms was noted by Prawitz himself and he introduced two

further systems. The third system is related to the one by Bierman and de Paiva (1996)

in which the introduction rule has the form

Γ ` 2A1 true . . . Γ ` 2An true 2A1 true, . . . ,2An true ` A true
2I2

Γ ` 2A true

Prawitz writes this rule as
Γ ` A true

2I3
Γ ` 2A true

with a side condition enforcing that the derivation of the premise can be decomposed as

in Bierman and de Paiva’s formulation.

The failure of the substitution property in the first formulation can be traced to the

restriction of the introduction rule to assumptions of the form 2Ai true when it should be

Ai valid. The revised version is still less than satisfactory since it requires a simultaneous

substitution, either in the syntax or in the side condition.

4.3. Axiomatic Characterization

Necessity can be characterized axiomatically by the inference rule of necessitation

` A true
nec

` 2A true

together with the following three axioms (see, for example, (Viganò, 1997; Kobayashi,

1997; Alechina et al., 1998)):

` 2(A⊃B)⊃(2A⊃2B) true

` 2A⊃A true

` 2A⊃22A true
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The derivations of these axioms in natural deduction is given in Section 6 in abbreviated

form as proof terms.

5. Possibility

We may view hypotheses A1 true, . . . , An true as describing knowledge of a given world.

The judgment that A is valid can then be interpreted as expressing that A is true in a

world about which we know nothing. In other words, A is necessarily true. Note that by

verifying the truth of A without presupposing any knowledge, we can speak of necessary

truth without circumscribing the totality of all conceivable worlds. The reasoning remains

purely logical.

A dual concept is that of possible truth. We say that A is possibly true if there is a world

in whichA is true. Unlike in classical logic, we have no reason to expect that possible truth

would be definable propositionally in terms of necessary truth. It also appears difficult

to analyze this concept judgmentally without reference to the existence of particular

worlds. And yet it is possible to do so by employing a combination of hypothetical and

categorical judgments. The critical insight for necessity came from considering how to

establish that A is valid. Here we take the opposite approach and consider how to use the

knowledge that A is possibly true. It means that there is a world in which A is true, but

about which we know nothing else. Therefore, if we assume that A is true (but nothing

else) and then conclude that C is possible, then C must be possible. If we write A poss

for the judgment that A is possible we obtain:

If A poss and A true ` C poss then C poss.

Note that we can only draw conclusions regarding the possibility of C, but not its truth.

In the end, the only way we can establish that A is possible is to show that A is true.

If A true then A poss.

This reasoning may use hypotheses, so in the definition we write out the corresponding

principles in a more explicit form.

Definition of Possibility

1 If Γ ` A true then Γ ` A poss.

2 If Γ ` A poss and A true ` C poss then Γ ` C poss.

We are interested in considering both necessity and possibility together. They interact

because they are both concerned with truth, relativized to worlds. If we decide that they

both should refer to the same worlds, then the definition of possible truth is extended by

allowing assumptions about validity.

Definition of Possibility with Necessity

1 If ∆; Γ ` A true then ∆; Γ ` A poss.

2 If ∆; Γ ` A poss and ∆;A true ` C poss then ∆; Γ ` C poss.

In part (2), the validity assumptions ∆ are available for deriving C poss from A true. This

is because they are true in all worlds and therefore, in particular, in the one in which A

is assumed to be true. Note that part (2) has the form of a substitution principle and
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will be used as such. This leads to the non-standard form of substitution introduced in

Section 6.

For the consideration of validity we needed to introduce a new form of hypothesis,

A valid, but no new judgment to be derived. Here, instead, we do not need to introduce

a new form of antecedent, only a new form of succedent, A poss. Next we internalize

possibility as a propositional operator 3.

A prop
3F

3A prop

We use the same syntactic conventions as for 2. The introduction and elimination rules

follow the ideas above at the level of judgments.

∆; Γ ` A poss
3I

∆; Γ ` 3A true

∆; Γ ` 3A true ∆;A true ` C poss
3E

∆; Γ ` C poss

Part (1) in the definition of possibility allows us to pass from A true to A poss. Instead of

introducing an explicit inference rule, we make this step silently whenever appropriate in

order to avoid excessive syntactic baggage. This is akin to the direct use of an assump-

tion A valid to conclude that A true in the extended hypothesis rule hyp∗. We similarly

decorate the 3I and 3E rules with an asterisk when such a passage occurred in one of

its premises.

Local soundness can be seen from the local reduction

D
∆; Γ ` A poss

3I
∆; Γ ` 3A true

E
∆;A true ` C poss

3E
∆; Γ ` C poss

=⇒R
E ′

∆; Γ ` C poss

where E ′ is justified by part (2) in the definition of possibility.

The elimination rule is also locally complete, as witnessed by the following expansion.

D
∆; Γ ` 3A true

=⇒E

D
∆; Γ ` 3A true

hyp
∆;A true ` A true

3E∗
∆; Γ ` A poss

3I
∆; Γ ` 3A true

The substitution principle for validity, using the new judgment C poss as the succedent

J , justifies a new variant of the necessity elimination rule.

∆; Γ ` 2A true ∆, A valid; Γ ` C poss
2Ep

∆; Γ ` C poss

Without this rule the judgment ·;2A true,3(A⊃B) true ` B poss, while derivable, would

not have a derivation satisfying a strict subformula property. We leave the verification

of local soundness when 2I is followed by 2Ep to the reader. As before, it follows from

the appropriate instance of the substitution principle for validity. This concludes our

meaning explanation of possibility.
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5.1. Summary of Formal System

We now summarize the formal system of modal logic with necessity and possibility.

Propositions A ::= P | A1⊃A2 | 2A | 3A
True Hypotheses Γ ::= · | Γ, A true

Valid Hypotheses ∆ ::= · | ∆, A valid

The basic judgments A true, A valid, and A poss are combined in two forms of hypo-

thetical judgment

∆; Γ ` A true

∆; Γ ` A poss

subject to the inclusion of A true in A poss and the inference rules below.

hyp
∆; Γ, A true,Γ′ ` A true

∆; Γ, A true ` B true
⊃I

∆; Γ ` A⊃B true

∆; Γ ` A⊃B true ∆; Γ ` A true
⊃E

∆; Γ ` B true

hyp∗

∆, B valid,∆′; Γ ` B true

∆; · ` A true
2I

∆; Γ ` 2A true

∆; Γ ` 2A true ∆, A valid; Γ ` C true
2E

∆; Γ ` C true

∆; Γ ` 2A true ∆, A valid; Γ ` C poss
2Ep

∆; Γ ` C poss

∆; Γ ` A poss
3I

∆; Γ ` 3A true

∆; Γ ` 3A true ∆;A true ` C poss
3E

∆; Γ ` C poss

Again, this inference system satisfies the usual structural laws of exchange, weakening,

and contraction, both for true and valid hypotheses. The appropriate instances of the

defining substitution principle can be expressed as a property of this formal system and

proven by induction over the structure of derivations.

Theorem 2 (Substitution).

The inference system for modal logic with implication, necessity, and possibility satisfies:

1 If ∆; Γ, A true,Γ′ ` C true and ∆; Γ ` A true then ∆; Γ,Γ′ ` C true.

2 If ∆; Γ, A true,Γ′ ` C poss and ∆; Γ ` A true then ∆; Γ,Γ′ ` C poss.

3 If ∆, B valid,∆′; Γ ` C true and ∆; · ` A true then ∆,∆′; Γ ` C true.

4 If ∆, B valid,∆′; Γ ` C poss and ∆; · ` A true then ∆,∆′; Γ ` C poss.

5 If ∆;A true ` C poss and ∆; Γ ` A poss then ∆; Γ ` C poss.

Proof. In parts (1–4) by straightforward induction over the structure of the first given
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derivation, using weakening and the inclusion of A true in A poss where needed. Part (5)

follows by induction over the second given derivation.

5.2. Alternative Formulations

We could avoid introducing two separate elimination rules for necessity (2E and 2Ep)

with the single rule

∆; Γ ` 2A true ∆, A valid; Γ ` J
2EJ .

∆; Γ ` J
Unfortunately such a rule would be impredicative, quantifying over all judgments J . We

prefer to avoid this by using only those instances of the general schema relevant to our

development.

In our system propositional reasoning is explicit, while reasoning at the level of judg-

ments is implicit. We can obtain another system by representing the definitions of the

judgments as inference rules.

∆; · ` A true

∆ ` A valid

∆ ` A valid

∆; Γ ` A true

∆; Γ ` A true

∆; Γ ` A poss

∆; Γ ` A poss ∆;A true ` C poss

∆; Γ ` C poss

For consistency, we would modify the rules concerned with validity as follows.

hyp
∆, B valid,∆′ ` B valid

∆ ` A valid
2I

∆; Γ ` 2A true

∆; Γ ` 2A true ∆, A valid; Γ ` C true
2E

∆; Γ ` C true

∆; Γ ` 2A true ∆, A valid; Γ ` C poss
2Ep

∆; Γ ` C poss

The difference appears to be primarily cosmetic. In practice it is more efficient to work

with the compact rules of our original system.

Even though they are not needed to develop modal logic, we can also allow hypotheses

of the form A poss. Assumptions of this form are quite weak and do not seem to interact

with the other judgments and propositions in interesting ways.

5.3. Axiomatic Characterization

Possibility can be characterized axiomatically by the following axioms.

` A⊃3A true

` 33A⊃3A true

` 2(A⊃B)⊃(3A⊃3B) true
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Natural deductions for these axioms are given in abbreviated form as proof terms in the

next section.

6. Analytic and Synthetic Judgments

Martin-Löf (1994) reviews the notions of analytic and synthetic judgments as analyzed

by Kant. He states:

[. . .] an analytic judgement is one which is evident in virtue of the meanings of the terms that

occur in it.

The judgment A prop is analytic in this sense since we can easily construct evidence for

the knowledge that A is a proposition from A itself without additional insight. However,

the judgment A true is not analytic, but synthetic: we need to look outside the judgment

itself for evidence, typically by searching for a proof of A. Proofs are essential in our

use of logic in computer science, since they contain constructions and algorithms with

computational contents. Therefore Martin-Löf (1980) bases his type theory on several

analytic judgments. Again, we simplify‡ and consider “M is a proof term for A” (written

M : A). It is important that M contain enough information to reconstruct the evidence

for A true in the sense we have discussed so far. Consequently, the notions of local

soundness and completeness, witnessed by local reductions and expansion, can now be

rendered on the proof terms M .

We will not repeat the full construction of the rules above, but merely summarize them

in their analytic form. First, conjunction.

M : A N : B
∧I

〈M,N〉 : A ∧B

M : A ∧B ∧EL
fstM : A

M : A ∧B ∧ER
sndM : B

Local reduction and expansion should now be considered judgments on proof terms. We

summarize them in a form typical of their use in computer science.

fst 〈M,N〉 =⇒R M

snd 〈M,N〉 =⇒R N

M : A ∧B =⇒E 〈fstM, sndM〉

The local expansion only makes sense when M is the proof of a conjunction, which is

indicated in the rule.

We will freely switch back and forth between the view of M as a proof and A as a

proposition, or M as a term and A as its type. For the reductions we presuppose that

each left-hand side is well-typed, which means the each corresponding right-hand side will

also be well-typed and have the same type. This follows from the meaning explanation

of conjunction given in its synthetic form.

‡ Martin-Löf wrote M : proof(A) reserving the colon for the relationship between and object and its

type.
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For hypothetical judgments we label the assumptions with variables and write x:A for

“x is a proof term for A”. We continue to use Γ to stand for a collection of hypotheses,

now labeled, and call it a context. We suppose that all variables x declared in a con-

text are different. We tacitly employ renaming to guarantee this invariant. Note that a

judgment Γ ` A true is parametric in all variables declared in Γ and thus combines the

parametric and hypothetical judgment forms (Martin-Löf, 1996). The use of hypotheses

and the substitution property are now as follows, where we write [N/x]M for the result

of substituting N for x in M , renaming bound variables as necessary in order to avoid

variable capture.

hyp
Γ, x:A,Γ′ ` x : A

If Γ ` N : A and Γ, x:A,Γ′ `M : C

then Γ,Γ′ ` [N/x]M : C.

The rules for implication are annotated in the well-known manner, using functions and

applications to realize implication introduction and elimination, respectively.

Γ, x:A `M : B
⊃I

Γ ` λx:A. M : A⊃B
Γ `M : A⊃B Γ ` N : A

⊃E
Γ `M N : B

The local reductions and expansions are just the familiar β-reduction and η-expansion.

(λx:A. M)N =⇒R [N/x]M

M : A⊃B =⇒E λx:A. M x where x not free in M

As in type theory (Martin-Löf, 1980), the reduction rules have computational content,

while the expansion rules implement an extensionality principle.

To complete the proof term assignment, we need to label hypotheses of the formA valid.

We write u::A to express that the variable u labels the hypothesis that A is valid. We

continue to use ∆ for a context of such assumptions, again presupposing that all variables

labeling hypotheses in a judgment are distinct. Note that the judgment form u::A is never

used as a succedent of a hypothetical judgment. We obtain the following hypothesis rule

and substitution property.

hyp∗

∆, u::A,∆′; Γ ` u : A
If ∆; · ` N : A and ∆, u::A,∆′; Γ `M : C

then ∆,∆′; Γ ` [[N/u]]M : C

Here we use the notation [[N/u]]M for the result of substituting N for uses of u in M ,

again renaming bound variables as necessary to avoid variable capture. It is defined like

ordinary substitution—we use a different notation since it is derived from a different

substitution principle and replaces another kind of variable.

Next, we show the annotated forms of introduction and elimination rules and associated

conversions.

∆; · `M : A
2I

∆; Γ ` boxM : 2A

∆; Γ `M : 2A ∆, u::A; Γ ` N : C
2E

∆; Γ ` let boxu = M in N : C

let boxu = boxM in N =⇒R [[M/u]]N

M : 2A =⇒E let boxu = M in boxu
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To represent possibility, we need to add a new syntactic class E of proof expressions

and judgment E ÷ A to express that E is a proof of A poss. We use E and F to stand

for proof expressions. Since we know A poss whenever A true, every term M is also an

expression E. The defining inclusion and substitution properties appear as follows:

If ∆; Γ `M : A

then ∆; Γ `M ÷ A
If ∆; Γ ` E ÷ A and ∆; x:A ` F ÷ C
then ∆; Γ ` 〈〈E/x〉〉F ÷ C

The first property tells us that every proof term M is also a proof expression. The

substitution operation 〈〈E/x〉〉F needed for the second property is unusual in that it must

analyze the structure of E rather than F . We give a definition below, after introducing

appropriate proof terms and local conversions for 3A. However, it should not come as a

surprise that such an operation is needed, since it is merely a reflection of clause (2) in

the definition of possibility.

∆; Γ ` E ÷ A
3I

∆; Γ ` diaE : 3A

∆; Γ `M : 3A ∆; x:A ` E ÷ C
3E

∆; Γ ` let diax = M in E ÷ C

let diax = diaE in F =⇒R 〈〈E/x〉〉F
M : 3A =⇒E dia (let diax = M in x)

The substitution operation 〈〈E/x〉〉F must be defined in a non-standard way as hinted

above.

〈〈M/x〉〉F = [M/x]F

〈〈let dia y = M in E/x〉〉F = let dia y = M in 〈〈E/x〉〉F
Note that these two cases are mutually exclusive: the first applies when the proof expres-

sion is actually a proof term M , otherwise the second case must apply.

We further annotate the derived elimination rule 2Ep

∆; Γ `M : 2A ∆, u::A; Γ ` E ÷ C
2Ep

∆; Γ ` let boxu = M in E ÷ C

which yields one additional local reduction

let boxu = boxM in E =⇒R [[M/u]]E

and a new case in the definition of substitution

〈〈let boxu = M in E/x〉〉F = let boxu = M in 〈〈E/x〉〉F.

6.1. Summary of Formal System

We summarize the proof terms and rules for the analytic presentation of modal logic

developed above. The reader should not forget that the methodology of type theory is

open-ended by its very nature, and additional logical connectives can be added in an

orthogonal manner.
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Propositions A ::= P | A1⊃A2 | 2A | 3A
Proof Terms M ::= x | λx:A. M |M1M2

| u | boxM | let boxu = M1 in M2

| diaE

Proof Expressions E ::= M

| let diax = M in E

| let boxu = M in E

True Contexts Γ ::= · | Γ, x:A

Valid Contexts ∆ ::= · | ∆, u::A

We have two judgments

∆; Γ `M : A M is a proof term for A true

∆; Γ ` E ÷ A E is a proof expression for A poss

where ∆; Γ `M ÷ A whenever ∆; Γ `M : A.

hyp
∆; Γ, x:A,Γ′ ` x : A

∆; Γ, x:A `M : B
⊃I

∆; Γ ` λx:A. M : A⊃B
∆; Γ `M : A⊃B ∆; Γ ` N : A

⊃E
∆; Γ `M N : B

hyp∗

∆, u::A,∆′; Γ ` u : A

∆; · `M : A
2I

∆; Γ ` boxM : 2A

∆; Γ `M : 2A ∆, u::A; Γ ` N : C
2E

∆; Γ ` let boxu = M in N : C

∆; Γ `M : 2A ∆, u::A; Γ ` E ÷ C
2Ep

∆; Γ ` let boxu = M in E ÷ C

∆; Γ ` E ÷ A
3I

∆; Γ ` diaE : 3A

∆; Γ `M : 3A ∆; x:A ` E ÷ C
3E

∆; Γ ` let diax = M in E ÷ C
We have three different forms of substitution:

1 [M/x]N and [M/x]F which replace a variable x by a proof term M ,
2 [[M/u]]N and [[M/u]]F which replaces a variable u by a proof term M ,
3 〈〈E/x〉〉F which replaces a variable x by a proof expression E.

The first two are defined in a standard fashion, including tacit renaming of bound vari-

ables in order to avoid capture of variables free inM . The last is defined by three mutually

exclusive clauses, one for each possible proof expression E.

〈〈M/x〉〉F = [M/x]F

〈〈let dia y = M in E/x〉〉F = let dia y = M in 〈〈E/x〉〉F
〈〈let boxu = M in E/x〉〉F = let boxu = M in 〈〈E/x〉〉F
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The guiding substitution principles can be expressed as a property.

Theorem 3 (Substitution on Proof Terms and Expressions).

The analytic inference system for modal logic with implication, necessity, and possibility

satisfies:

1 If ∆; Γ, x:A,Γ′ ` N : C and ∆; Γ `M : A then ∆; Γ,Γ′ ` [M/x]N : C.

2 If ∆; Γ, x:A,Γ′ ` F ÷ C and ∆; Γ `M : A then ∆; Γ,Γ′ ` [M/x]F ÷ C.

3 If ∆, u::B,∆′; Γ ` N : C and ∆; · `M : B then ∆,∆′; Γ ` [[M/u]]N : C.

4 If ∆, u::B,∆′; Γ ` F ÷ C and ∆; · `M : B then ∆,∆′; Γ ` [[M/u]]F ÷ C.

5 If ∆; x:A ` F ÷ C and ∆; Γ ` E ÷ A then ∆; Γ ` 〈〈E/x〉〉F ÷ C.

Proof. By straightforward induction over the structure of the first given derivation

except in part (5), where the induction is on the second given derivation as in the proof

of Theorem 2.

Ordinary substitutions satisfy a distribution property of the form

[M1/x1][M2/x2]M3 = [[M1/x1]M2/x2][M1/x1]M3

under the assumption that x2 is not free in M1. This follows by a simple induction on

the structure of M3. Similar properties hold for substitutions of [[M1/u1]] and [M1/x1] in

various terms or expressions, because these are essentially capture-avoiding replacement

operations. The new form of substitution 〈〈E/x〉〉 satisfies a corresponding law which we

need in the proof of Theorem 7.

Theorem 4 (Composition of Substitution).

If ∆; Γ ` E1 ÷ A1, ∆; x1:A1 ` E2 ÷ A2, and ∆; x2:A2 ` E3 ÷ A3, then

〈E1/x1〉〈E2/x2〉E3 = 〈〈E1/x1〉E2/x2〉E3

Proof. By induction on the structure of E1 (not E3!), taking advantage of the straight-

forward substitution properties mentioned above. Note that the typing preconditions do

not impose any artificial restrictions; they just guarantee that both substitution opera-

tions are sensible according to Theorem 3(5).

The subject reduction and expansion theorem now follows easily from the substitution

properties. The core of the proof is already contained in the local reductions we showed

in the meaning explanation of the inference rules. We define M =⇒R M ′, E =⇒R E′,

M =⇒E M
′, and E =⇒E E

′ by the following rules.

(λx:A. N)M =⇒R [M/x]N

let boxu = boxM in N =⇒R [[M/u]]N

let diax = diaE in F =⇒R 〈〈E/x〉〉F
let boxu = boxM in F =⇒R [[M/u]]F

M : A⊃B =⇒E λx:A. M x where x not free in M

M : 2A =⇒E let boxu = M in boxu

M : 3A =⇒E dia (let diax = M in x)
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Theorem 5 (Subject Reduction and Expansion).

The modal λ-calculus with implication, necessity, and possibility satisfies:

1 If ∆; Γ `M : A and M =⇒R N then ∆; Γ ` N : A.

2 If ∆; Γ ` E ÷ A and E =⇒R F then ∆; Γ ` F ÷ A.

3 If ∆; Γ `M : A and M : A =⇒E N then ∆; Γ ` N : A.

Proof. Parts (1) and (2) follow by simply inductions on the definition of =⇒R: for

congruence rules, we apply to the induction hypothesis; for actual reductions we use the

substitution properties 3.

Part (3) follows similarly by induction, but no appeal to substitution is necessary.

Instead we construct the needed derivation directly from the given one as in the local

expansion on derivations.

It is easy to see that the subject reduction property is preserved if we allow reductions

to be applied at arbitrary subterms. For subject expansion this also holds if the subterm

has the appropriate type.

6.2. Some Examples

We now revisit the axiomatic characterization of modal logic and give a proof term for

each axiom.

` λx:A⊃B⊃C. λy:A⊃B. λz:A. (x z) (y z)

: (A⊃B⊃C)⊃(A⊃B)⊃A⊃C
` λx:A. λy:B. x

: A⊃B⊃A

` λx:2(A⊃B). λy:2A. let boxu = x in let boxw = y in box (uw)

: 2(A⊃B)⊃(2A⊃2B)

` λx:2A. let boxu = x in u

: 2A⊃A
` λx:2A. let boxu = x in box boxu

: 2A⊃22A

` λx:A. diax

: A⊃3A
` λx:33A. dia (let dia y = x in let dia z = y in z)

: 33A⊃3A
` λx:2(A⊃B). λy:3A. let boxu = x in dia (let dia z = y in u z)

: 2(A⊃B)⊃(3A⊃3B)

The inference rules of the axiomatic system are also easily realized.

`M : A⊃B ` N : A
mp

`M N : B

`M : A
nec

` boxM : 2A
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7. Lax Logic

Lax logic (Fairtlough and Mendler, 1997) is an intuitionistic logic with a single modal

operator ©. It was motivated by hardware verification (Fairtlough and Mendler, 1994)

and has found applications in the foundations of constraint logic programming (Fairt-

lough et al., 1997). It has also been related to the monadic metalanguage (Benton et al.,

1998), which we will examine in the next section, and to higher-order definitions of logical

connectives (Aczel, 1999).

We develop here the fragment of lax logic containing implication A ⇒ B and the lax

modality ©A. We use a different notation for implication than in modal logic, so we

may later give the connective a different interpretation as lax implication. We will give

two different explanations of lax logic. The first characterizes lax truth via judgments in

the manner of the preceding sections. Our starting points are just the concepts of truth

and hypothetical judgments. In particular, the presentation is independent of modal logic

and categorical judgments. The second explanation uses necessity and possibility to show

that lax truth is a derived notion, already available in modal logic. The fact that our

formulation is equivalent to the standard formulation is proven in Section 8, where we

also exhibit translations between proof terms.

We begin with a judgmental definition of lax truth. We have a new judgment, A lax

for a proposition A. We may think of A lax as stating that A is true subject to some

constraints, without making explicit relative to which system of constraints.

Definition of Lax Truth

1 If Γ ` A true then Γ ` A lax.

2 If Γ ` A lax and Γ, A true ` C lax then Γ ` C lax.

The first clause expresses that if A is true, then A is true under some constraint

(namely: the constraint which is always satisfied). The second expresses that if A is true

under some constraints, we may reason as if A were true. Any consequence we derive,

however, will only be known as true under constraints. Internalizing this judgment as a

propositional operator is simple.

Γ ` A lax
©I

Γ ` ©A true

Γ ` ©A true Γ, A true ` C lax
©E

Γ ` C lax

As for possibility, we allow silent passage from A true to A lax, and write ©I∗ and ©E∗

when this inclusion is used the premises of these rules.

Local soundness is easily seen from the local reduction

D
Γ ` A lax

©I
Γ ` ©A true

E
Γ, A true ` C lax

©E
Γ ` C lax

=⇒R
E ′

Γ ` C lax

where E ′ is justified by part (2) in the definition of lax truth.
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The elimination is also locally complete, as witnessed by the following expansion.

D
Γ ` ©A true

=⇒E

D
Γ ` ©A true

hyp
Γ, A true ` A true

©E∗
Γ ` A lax

©I
Γ ` ©A true

To provide more intuition, we return to the interpretation of A lax as A is true under

some constraint. The following laws characterize lax logic axiomatically and have a simple

interpretation in terms of constraints.

1 ` A⇒ ©A true: If A is true, the A is true under the trivial constraint.

2 ` ©©A ⇒ ©A true: If A is true under two constraints than A is true under their

conjunction.

3 ` (A⇒ B)⇒ (©A⇒ ©B) true: If A implies B, and A is true under some constraint,

then B is true under the same constraint.

The lax modality is very similar to possibility, but it differs in the proposition (A ⇒
B) ⇒ (©A ⇒ ©B) which is not true for arbitrary A and B if we replace © by 3.

Instead, we only have ` 2(A⊃B)⊃(3A⊃3B). Similarly, in the elimination rule ©E

the hypotheses Γ are available in the second premise, while in 3E only the hypotheses

∆ on the validity of propositions are available in the second premise.

This last observation provides a crucial insight for designing a direct interpretation

of lax logic in intuitionistic modal logic. We use the embedding ()+ of propositions and

hypotheses:

(A⇒ B)+ = 2A+⊃B+

(©A)+ = 32A+

P+ = P for atomic P

(·)+ = ·
(Γ, A true)+ = Γ+, A+ valid

In order to state the correctness of this interpretation of lax logic in modal logic, we write

`L for judgments in lax logic and `M for judgments in modal logic.

Theorem 6 (Lax Logic in Modal Logic).

Γ `L A true iff Γ+; · `M A+ true.

Proof. From left to right, we show

1 if Γ `L A true then Γ+; · `M A+ true, and

2 if Γ `L A lax then Γ+; · `M 2A+ poss

by simultaneous induction on the structure of the given derivations. The inferences rules

of lax logic become derived rules in modal logic, under the given translation on proposi-

tions.
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For the opposite direction we define a reverse translation ()−:

(A⊃B)− = A− ⇒ B−

(2A)− = A−

(3A)− = ©A−

P− = P for atomic P

(·)− = ·
(∆, A valid)− = ∆−, A− true

(Γ, A true)− = Γ−, A− true

which satisfies (A+)− = A. The two properties,

1 if ∆; Γ `M A true then ∆−,Γ− `L A− true, and

2 if ∆; Γ `M A poss then ∆−,Γ− `L A− lax,

then follow by simultaneous induction on the given derivations. In this direction we need

weakening and the substitution principle. From the assumption Γ+; · `M A+ true we

then conclude (Γ+)− `L (A+)− true and therefore Γ `L A true.

The results above mean that we can define

A⇒ B = 2A⊃B
©A = 32A

and then use modal logic for reasoning in lax logic. Since the rules of lax logic are derived

(and not just admissible), we can retain the structure of proofs in the translation. We

make this explicit in Section 8, where we revisit the above embedding, including proof

terms.

It remains to see if we can characterize lax implication and the lax modality directly in

modal logic via introduction and elimination rules which are locally sound and complete

and equivalent to the definitions above.

For lax implication, this is easy to achieve and verify.

∆, A valid; Γ ` B true
⇒I

∆; Γ ` A⇒ B true

∆; Γ ` A⇒ B true ∆; · ` A true
⇒E

∆; Γ ` B true

In the elimination rule we use ∆; · ` A true to express that ∆ ` A valid, as in the

introduction rule for necessity. Local soundness and completeness can be verified using

the substitution principle for validity from Section 4. These rules are well-known from

linear logic programming (Hodas and Miller, 1994), because in linear logic with a modal

operator ! (which corresponds to 2 in our setting), goal-directed search is incomplete.

Replacing it by the analogue of lax implication avoids this problem and allows the use

of intuitionistic linear logic as the basis of a logic programming language.

The lax modality is more difficult to characterize by introduction and elimination

rules in the presence of necessity and possibility and seems to require a new judgment

A lax which we can also read as A is possibly necessary. This follows the blueprint of the

definition of the lax modality, except that the interaction with the judgments of possibility

and necessity requires laws relating them. In practice, it would seem preferable to either

reason directly in lax logic as defined at the beginning of the section, or to reason in
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modal logic with the defined modality of ©A = 32A and corresponding derived rules of

inference.

8. Monadic Metalanguage

Moggi (1988; 1989; 1991) proposed the the monadic metalanguage λml as a general

foundation for the semantics of programming languages with functions and effects. He

separates, in the type system, values from computations, where the latter may have

effects. The monadic metalanguage abstracts from any particular notion of effect (such as

update of mutable references, or raising of exceptions). In this way, it is similar to modal

logic which reasons about necessity and possibility, but abstracts from any particular

collection of worlds.

Benton, Biermann, and de Paiva (1998) showed that the monadic metalanguage is

connected to lax logic via proof term assignment. We show the relevant fragment of the

calculus here. We use the notation of lax logic, writing ©A for the computations of type

A, rather than TA or MA.

hyp
Γ, x:A,Γ′ ` x : A

Γ, x:A ` e : B
⇒I

Γ ` λx:A. e : A⇒ B

Γ ` f : A⇒ B Γ ` e : A
⇒E

Γ ` f e : B

Γ ` e : A
©I

Γ ` val e : ©A

Γ ` e : ©A Γ, x:A ` f : ©C
©E

Γ ` let valx = e in f : ©C

We have the following two local reductions.

(λx:A. f) e =⇒R [e/x]f

let valx = val e in f =⇒R [e/x]f

However, these do not suffice as the basis for an operational semantics, because of the

unusual elimination rule for the lax modality. We need the following additional rule,

which does not fall into the class of local reductions but has the form of a commuting

reduction.

let valx2 = (let valx1 = e1 in e2) in e =⇒C let valx1 = e1 in (let valx2 = e2 in e)

The local expansions are not computationally relevant, but correspond to extensionality.

They are less problematic.

e : A⇒ B =⇒E λx:A. ex

e : ©A =⇒E let valx = e in valx

We can fix the anomaly in the reduction relation through the judgmental reconstruction

of lax logic in Section 7. We have two basic judgment forms M : A (M is a proof term for

A true) and E :∼ A (E is a proof expression for A lax). The definition of the lax modality

yields the following principles.

If Γ `M : A

then Γ `M :∼ A
If Γ ` E :∼ A and Γ, x:A ` F :∼ C
then Γ ` 〈E/x〉F :∼ C
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The first one means that we view proof terms and proof expressions as separate syn-

tactic classes, where every proof term is a proof expression, but not vice versa. The

introduction and elimination rules:

Γ ` E :∼ A
©I

Γ ` valE : ©A

Γ `M : ©A Γ, x:A ` E :∼ C
©E

Γ ` let valx = M in E :∼ C

Then the local reductions and expansions have the following form.

(λx:A. M)N =⇒R [N/x]M

let valx = valE in F =⇒R 〈E/x〉F
M : A⇒ B =⇒E λx:A. M x

M : ©A =⇒E val (let valx = M in x)

Lax substitution 〈E/x〉F is defined inductively on the structure of E.

〈M/x〉F = [M/x]F

〈let val y = M in E/x〉F = let val y = M in 〈E/x〉F

We now show the proof terms for the characteristic axioms of lax logic.

` λx:A. valA

: A⇒ ©A

` λx:©©A. val (let val y = x in let val z = y in z)

: ©©A⇒ ©A

` λx:A⇒ B. λy:©A. val (let val z = y in x z)

: (A⇒ B)⇒ (©A⇒ ©B)

The following two mutually recursive translations from terms in the monadic meta-

language to lax terms have several desirable properties, as we demonstrate below. e] is

defined for arbitrary well-typed terms e, while e> is defined only for terms e whose type

has the form ©A.

x] = x

(λx:A. e)] = λx:A. e]

(e1 e2)] = e]1 e
]
2

(val e)] = val e]

(let valx = e1 in e2)] = val (let valx = e1 in e2)>

(let valx = e1 in e2)> = 〈e>1 /x〉e>2
(val e)> = e]

x> = let valx0 = x] in x0

(e1 e2)> = let valx0 = (e1 e2)] in x0

We write
L⇐⇒∗RE for the congruence relation generated by local reductions and expan-

sions in the lax λ-calculus, and
C⇐⇒∗C and

C⇐⇒∗REC for the congruence relations generated

by commuting conversion, and local reduction, expansion, and commuting conversion,
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respectively, in the monadic metalanguage. We also write `C and `L for hypothetical

judgments in the monadic metalanguage and lax logic, respectively.

Theorem 7 (Monadic Metalanguage and Lax Logic).

1 Γ `C e : A iff Γ `L e] : A.

2 Γ `C e : ©A iff Γ `L e> :∼ A.

3 If e
C⇐⇒∗C f then e] = f].

4 e
C⇐⇒∗REC f iff e]

L⇐⇒∗RE f].

Proof. The typing properties (1) and (2) follow by an easy simultaneous induction on

the definition of the translations, using inversion on the given typing derivations.

Part (3) confirms that the commuting reduction of the monadic metalanguage is not

necessary in our formulation of lax logic—terms which differ by commuting reductions are

actually equal (modulo the possible renaming of bound variables, as usual). This is easy

to show by direct calculation, using elementary properties of substitution (Theorem 4).

Part (4) shows that the equational theory of the monadic metalanguage is respected

by the translation. From left to right this follows by simple calculation for each possible

conversion, using elementary properties of substitution. From right to left we define two

reverse translations M [ and E⊥ as follows:

x[ = x

(λx:A. M)[ = λx:A. M [

(M1 M2)[ = M [
1 M

[
2

(valE)[ = E⊥

(let valx = M in E)⊥ = let valx = M [ in E⊥

M⊥ = valM [

We then show

1 if Γ `L M : A then Γ `C M [ : A, and

2 if Γ `L E ÷ A then Γ `C E⊥ : ©A.

The reverse translation preserves equality, which follows by simple calculations:

1 If M
L⇐⇒∗RE N then M [ C⇐⇒∗REC N [.

2 If E
L⇐⇒∗RE F then E⊥

C⇐⇒∗REC F⊥.

3 (e])[
C⇐⇒∗REC e.

4 (e>)⊥
C⇐⇒∗REC e.

Therefore, e]
L⇐⇒∗RE f] implies e

C⇐⇒∗REC (e])[
C⇐⇒∗REC (f])[

C⇐⇒∗REC f .

We also conjecture a strong relationship between reduction sequences in the two calculi

under the given translation, even though a direct simulation theorem fails. A further

study of computational behavior is beyond the scope of this paper. The similarity of

our techniques and those by Sabry and Wadler (1997) suggest an approach we intend to

pursue in future work.

As an alternative to a direct term assignment for lax logic, we can use the embedding

of lax logic in modal logic to give an account of the monadic metalanguage in modal
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logic. A proposal along similar lines has been made by S. Kobayashi (1997), with an em-

phasis on a categorical semantics. His natural deduction formulation, and therefore his

programming language concepts, are not satisfactory. In particular, his system requires

simultaneous substitutions in two rules to model validity (as in the system by Bierman

and de Paiva (1996)), and also has a somewhat unmotivated interaction between pos-

sibility and falsehood. Our formulation below eliminates the first deficiency and can be

extended to avoid the second.

We show the embedding from Section 7 on proof terms. First, we recall the embedding

of propositions.

(A⇒ B)+ = 2A+⊃B+

(©A)+ = 32A+

P+ = P for atomic P

Intuitively, the type 2A denotes stable values, that is, values that survive effects. The

type 3A denotes computations returning values of type A. In the monadic metalanguage,

all values are stable, so a function A ⇒ B accepts a stable value of type A and returns

a value of type B, while ©A is a computation which returns a stable value of type A. It

is not clear if the possibility to consider values which are not stable is of much practical

interest, but it is conceivable, for example, that an effect such as deallocation of memory

could destroy some values, while others survive.

We assume that for every variable x:A in the lax λ-calculus there is a corresponding

variable ux::A+ in the modal λ-calculus. We define the translations M+ and E∗.

(λx:A. M)+ = λx:2A+. let boxux = x in M+

x+ = ux
(M N)+ = M+ (boxN+)

(valE)+ = diaE∗

(let valx = M in E)∗ = let dia x = M+ in (let boxux = x in E∗)

M∗ = boxM+

We write M
L

=⇒R N for local reduction in the lax λ-calculus, and M
M

=⇒R N for

local reduction in the modal λ-calculus. Moreover, we write M
M

=⇒∗R N for an arbitrary

number of reductions. As before we use ⇐⇒∗RE for the congruence relation generated by

local reduction and expansion.

Theorem 8 (Lax λ-Calculus in Modal λ-Calculus).

1 Γ `L M : A iff Γ+; · `M M+ : A+.

2 Γ `L E :∼ A iff Γ+; · `M E∗ ÷ 2A+.

3 If M
L

=⇒R N then M+ M
=⇒∗R N+.

4 If E
L

=⇒R F then E∗
M

=⇒∗R F ∗.
5 M

L⇐⇒∗RE N iff M+ M⇐⇒∗RE N+.

6 E
L⇐⇒∗RE F iff E∗

M⇐⇒∗RE F ∗.

Proof. The first two properties are verified as in the proof of Theorem 6.
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The proof of the next two properties is by cases. We see that each reduction translates

into precisely two consecutive reductions. Furthermore, if the original reductions are

outermost, so are the two consecutive reductions on the image. This means that the

structure of computations in the lax λ-calculus is preserved under the interpretation.

Finally, the preservation of equality from left to right is proven by cases, using elemen-

tary substitution properties. From right to left we define two inverse translations, M−

and E$:

(A⊃B)− = A− ⇒ B−

(2A)− = A−

(3A)− = ©A−

P− = P

(λx:A. M)− = λx:A−. M−

(M1 M2)− = M−1 M−2
x− = x

(boxM)− = M−

(let boxu = M in N)− = [M−/xu]N−

u− = xu

(diaE)− = valE$

(let diax = M in E)$ = let valx = M− in E$

(let boxu = M in E)$ = [M−/xu]E$

M$ = M−

This translation satisfies

1 If ∆; Γ `M M : A then ∆−,Γ− `L M− : A−.

2 If ∆; Γ `M E ÷ A then ∆−,Γ− `L E$ :∼ A−.

3 (M+)− = M .

4 (E∗)$ = E.

5 If M
M⇐⇒∗RE N then M−

L⇐⇒∗RE N−.

6 If E
M⇐⇒∗RE F then E$ L⇐⇒∗RE F $.

From this we directly conclude the reverse directions of the biconditionals in properties

(5) and (6) of the theorem.

9. Conclusion

We have presented a judgmental reconstruction of the modal logic of necessity and possi-

bility, leading to a clean and simple formulation of natural deduction and associated proof

terms. Because the definitions of logical connectives are orthogonal in this approach, other

propositional connectives can easily be added with their usual introduction and elimina-

tion rules. We plan to investigate extensions to first-order logic and type theory, which

require parametric judgments and more attention to the question when propositions are

well-formed. We have also left the study of various normalization properties, as well as

a formulation of a sequent calculus and cut elimination to a future paper.
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The idea of separating truth and validity in a logical framework goes back to Avron

et al. (1992) and is explored further by Miculan (1997). These systems, however, are

rooted in Prawitz’s (1965) classical treatment and do not take full advantage of the

available judgmental notions. The resulting calculi are significantly more complex than

our proposal and not immediately amenable to a computational interpretation.

Another approach to the explanation of modal logic is via Kripke structures. This

uses the basic judgments “proposition A is true in world w”, and “world w′ is reachable

from world w”. While more verbose and requiring explicit reasoning about worlds, this

approach is also more flexible in that various traditional modal logics can be expressed

simply by varying the reachability judgment. Viganò (1997) and Miculan (1997) have

conducted systematic studies of modal logic via Kripke structures from the point of view

of logical frameworks.

In certain cases this can be simplified to obtain a formulation of natural deduction

employing a stack of contexts, representing a path through the Kripke structure. Varia-

tions of this idea can be found in several papers (Martini and Masini, 1994; Pfenning and

Wong, 1995; Davies and Pfenning, 2000), including a very fine-grained study of reduc-

tion (Goubault-Larrecq, 1996; 1997). These are natural for some applications of necessity,

but it does not appear that similarly compact and elegant versions exist for possibility.

One particularly fruitful interpretation of 2A is as the intensional type for expressions

denoting elements of type A. Embedding types of this form in a programming language

means that we can compute with expressions as well as values. The term box M quotes

the expression M , and the construct let boxu = M in N binds u to the expression

computed by M and then computes the value of N . The restrictions placed on the

introduction rule for 2A mean that a term box M can only refer to other expression

variables u but not value variables x. This is consistent with the intensional interpretation

of 2A, since we may not know an expression which denotes a given value and therefore

cannot permit an arbitrary value as an expression.

The local reduction rules can be extended to an operational semantics by imposing a

call-by-name or call-by-value strategy. In either case, we do not permit reductions under

a box constructor, since this would violate its intensional nature.

If we choose a call-by-value strategy, we obtain a natural explanation of computation

in multiple stages and, at a lower level, run-time code generation (Davies and Pfen-

ning, 1996; Wickline et al., 1998; Davies and Pfenning, 2000). Alternatively, we can add

constructs for pattern matching against an expression. If we also retain extensionality

as given by the local expansions, we can obtain a calculus suitable as a meta-logical

framework, that is, a logical framework in which we can reason about the specified log-

ics (Despeyroux et al., 1997). The modal operator here serves to avoid the usual paradoxes

which would arise if we incorrectly identify an expression with its denotation.

In this paper we have also shown how lax logic can be embedded naturally in modal

logic with necessity and possibility. Following work by S. Kobayashi (1997) and Benton,

Bierman, and de Paiva (1998), this yields a new formulation of Moggi’s monadic meta-

language (1988; 1989; 1991). A possible future direction of research is to try to exploit

the additional expressive power afforded by the modal logic as a semantic framework

when compared to the monadic metalanguage.
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