
CS 376 Programming with Abstract Data Types

Ulrich Berger

Lecture Notes

Department of Computer Science

Swansea University

Autumn 2009

September 30, 2009 CS 376 Programming with Abstract Data Types 1

Contents

1 Introduction 4

I Foundations 7

2 Formal Methods in Software Design 8

2.1 The software design process . 8

2.2 An Example of Program Development . 10

2.3 Programming by transformation . 11

2.4 Programming by extraction from proofs . 12

3 Logic 13

3.1 Signatures and algebras . 13

3.2 Terms and their semantics . 16

3.3 Formulas and their semantics . 18

3.4 Logical consequence, logical validity, satisfiability 21

3.5 Substitutions . 23

3.6 Other Logics . 27

3.7 Summary and Exercises . 28

4 Proofs 30

4.1 Natural Deduction . 30

4.2 Equality rules . 35

4.3 Soundness and completeness . 37

4.4 Axioms and rules for data types . 38

4.5 Summary and Exercises . 39

II Abstract Data Types 43

5 Algebraic Theory of Abstract Data Types 44

5.1 Homomorphisms and abstract data types . 44

5.2 The Homomorphism Theorem . 49

September 30, 2009 CS 376 Programming with Abstract Data Types 2

5.3 Initial algebras . 53

5.4 Summary and Exercises . 57

6 Specification of Abstract Data Types 59

6.1 Loose specifications . 59

6.2 Initial specifications . 66

6.3 Exception handling . 75

6.4 Modularisation . 77

6.5 Abstraction through Information hiding . 78

6.6 Specification languages . 79

6.7 Summary and Exercises . 81

7 Implementation of Abstract Data Types 85

7.1 Implementing ADTs in Functional and Object Oriented Style 85

7.2 Efficiency . 89

7.3 Persistence . 91

7.4 Structural Bootstrapping . 94

7.5 Correctness . 95

7.6 Summary and Exercises . 96

III Advanced Methods of Program Development 99

8 Term Rewriting and Rapid Prototyping 100

8.1 Equational logic . 100

8.2 Term rewriting systems . 103

8.3 Termination . 106

8.4 Confluence . 111

8.5 Rapid prototyping . 115

8.6 Summary and Exercises . 119

9 Programs from proofs 122

9.1 Formulas as data types . 123

September 30, 2009 CS 376 Programming with Abstract Data Types 3

9.2 A notation system for proofs . 125

9.3 Program synthesis from intuitionistic proofs . 127

9.4 Program synthesis from classical proofs . 130

9.5 Applications . 131

9.6 Summary and Exercises . 132

September 30, 2009 CS 376 Programming with Abstract Data Types 4

1 Introduction

This course gives an introduction to Abstract Data Types and their role in current and future
methodologies for the development of reliable software.

Before we begin with explaining what Abstract Data Types are and what methodologies we
have in mind let us clarify whatreliable software is. By reliable software we mean computer
programs that are

• adequate – they solve the customers’ problems,

• correct – they are free of bugs and thus behave as expected,

• easy to maintain – they can be easily modified or extended without introducing new
errors.

Conventional programming techniques to a large extent fail to produce software meeting these
requirements. It is estimated that about 80% of the total time and money currently invested
into software development is spent on finding errors and amending incorrect or poorly designed
software. Hence there is an obvious need for better programming methodologies.

In this course we will study formal methods for the development of programs that are guaranteed
to be adequate and correct and are easy to maintain. These methods will use the concept of an
Abstract Data Type and will be fundamentally based on mathematical and logical disciplines
such as mathematical modelling, formal specification and formal reasoning.

Now, what are Abstract Data Types and why are they useful for producing better programs?
And what does this have to do with mathematics and logics?

In a nutshell, these questions can be answered as follows:

• An Abstract Data Type consists of a data structure (a collection of objects of similar
“shape”) together with operations whose implementation is however hidden.

• Abstract Data Types can be seen as small independent program units. As such they
support modularisation, that is, the breaking down of complex program systems into
small manageable parts, and abstraction, that is, the omission of unnecessary details
from programs and the guarantee that a change of one unit does not affect other units.

• Mathematics is used to build models of Abstract Data Types called algebras. The study of
algebras, relations between algebras and mathematical operations on algebras is essential
for a thorough understanding of many important programming concepts.

• Logic is used to formally specify (describe) Abstract Data Types and to prove properties
about them, that is, to prove the correctness of program units. Logic can also be used to
synthesise correct programs automatically from a formal specification or a formal proof
of a specification.

September 30, 2009 CS 376 Programming with Abstract Data Types 5

These notes are organised as follows:

Part I lays the mathematical and logical foundation necessary for a thorough understanding of
Abstract Data Types and their use in programming. In Chapter 2 we motivate the use of formal
methods in the design of software and give an overview of the things to come. We compare the
conventional software design process with a more structured approach involving modularisation
and abstraction and discuss the advantages of the latter method. By means of a simple case
study we demonstrate how logic can be used to synthesise correct programs automatically. In
Chapter 3 we then introduce the fundamental concepts of formal logic: Signatures, algebras,
formulas and the notion of logical truth. In Chapter 4 we study a formal notion of proof and
discuss Gödel’s famous Completeness Theorem and some of its consequences.

Part II is about Abstract Data Types as a well-established tool in modern high-level program-
ming. Chapter 5 presents Abstract Data Types from an algebraic perspective and studies the
structural properties of Abstract Data Types, using basic notions of category theory. Chapter 6
is concerned with the formal specification of Abstract Data Types. A particularly important
role will be played by initial specifications which are particularly simple, but also very concise
since they allow to pin down Algebraic Data Types up to isomorphism. Besides studying the
theory of specifications we also look at various systems supporting the specification of Abstract
Data Types and at some industrially applied specification languages. In Chapter 7 we discuss
how Abstract Data Types can be implemented in functional and object-oriented programming
languages and how they can be used for structuring large software systems. We also look
at some techniques for the efficient implementation of common data structures like trees and
queues.

Part III, finally, presents two advanced logical methods for program synthesis. Chapter 8 shows
how to automatically generate implementations of Abstract Data Types from an algorithmic
interpretation of equational specifications (term rewriting, rapid prototyping) and Chapter 9
discusses the proofs-as-programs paradigm as a methodology for synthesising correct programs
form formal proofs.

This course is mainly based on the following literature (see the List of References at the end of
these notes):

• Van Dalen’s textbook [Dal] and the monograph [TS], by Troelstra and Schwichtenberg
give introductions into formal logic with a focus on constructive (or intuitionistic) logic.
Both books will mainly be used in the Chapters 3, 4 and 9.

• The book [LEW], by Loecks, Ehrich and Wolf, covers the theoretical foundations of ADTs
and their specification. It will be an important source for the Chapters 5 and 6.

• Meinke and Tucker’s Chapter in the Handbook of Logic in Computer Science, [MeTu],
focuses on the model theory of ADTs from an algebraic point of view. It will mainly be
used in the Chapters 3 and 5.

• The textbook [BaNi], by Baader and Nipkow, treats term rewriting, that is, the algorith-
mic aspects of equational specifications. It is the basis for Chapter 8.

September 30, 2009 CS 376 Programming with Abstract Data Types 6

• Okasaki’s monograph [Oka] studies efficient functional implementations of ADTs. The
examples in Chapter 7 are mainly taken from this book.

• Elien’s book [Eli], discusses the role of ADTs in Functional and Object Oriented Pro-
gramming. It is the source of Chapter 7.1.

Further references are given in the text. These notes are self contained as reading material for
this course. However, the course can only give a hint at the deep and beautiful ideas underlying
contemporary theoretical computer science in general and the theory of abstract data types in
particular. The interested reader may find it useful to consult the original sources, in order
to get more background information and to study more thoroughly some of the results (for
example, Gödel’s Completeness Theorem) the proofs of which are beyond the scope of this
course.

The photographs are taken from the web page,

http://www-history.mcs.st-andrews.ac.uk/history/index.html,

School of Mathematics, University of St Andrews.

7

Part I

Foundations

8

2 Formal Methods in Software Design

2.1 The software design process

In conventional software design one writes a program that is supposed to solve a given problem.
The program is then tested and altered until no errors are unveiled by the tests. After that
the program is put into practical use. At this stage often new errors pup up or the program
appears to be inadequate. The process of maintaining is then started by repeating the different
design steps. This methodology is illustrated by the so-called software life-cycle model (figure 1,
[LEW]). It has at least two deficiencies. First, being based on tests, it can only confirm the

?

problem �

?

programming

program written in
a programming language

?

compilingmaintenance testing

program written in
machine code

?

executing

results

Figure 1: A software life-cycle model illustrating conventional software design

existence of errors, not their absence. Hence testing fails to prove the correctness of a program.
A second deficiency of testing is the fact that results are compared with expectations resulting
from one’s own understanding of the problem. Hence testing may fail to unveil inadequacies of
the program.

The goal of a better methodology for software design is to avoid errors and inadequacies as far
as possible, or at least to try to detect and correct them in an early stage of the design. The

9

main idea is to derive a program from a problem in several controlled steps as illustrated in
figure 2 [LEW].

?
�
�

?

problem

rapid prototyping

?

informal specification

formalization

�
�

?

formal specification

testingprogram verificationmaintenance program
development

?

program written in a
programming language

compiling

?

program written
in machine code

executing

results

Figure 2: A software life-cycle model illustrating abstraction

1. From a careful analysis of the customer’s problem one derives an informal specification
abstracting from all unnecessary details.

2. The informal specification is formalized i.e. written in a formal language. If the speci-
fication is of a particularly simple form (equational for term rewriting, or Horn-clausal
form for logic programming) it will be executable (rapid prototyping) and can be used
for detecting inadequacies of the specification at an early stage.

3. Programming with Abstract Data Types: From the formal specification (that is,
the specification of an Abstract Data Type) a certain method of program development
leads to a program that is provably correct. This means it can be proven that the program
meets the specification (program verification). In the course we will discuss different such
methods, two of them are illustrated in the example in section 2.2.

4. The derived program can be compiled and executed and the results can be used to test
the program.

10

2.2 An Example of Program Development

Problem
Compute the gcd of two positive natural numbers m, n.

Informal specification
gcd(m,n) is a number k that divides m and n, such that

if l is any other number also dividing m and n, then l divides k.

Formal specification (of an ADT)
k = gcd(m,n)↔ k | m ∧ k | n ∧ ∀l(l | m ∧ l | n→ l | k)

k | m↔ ∃q k ∗ q = m

Transformation Program extraction

Formal specification’ Prove the formula
∃r [r < n ∧ ∃q m = q ∗ n+ r ∧ ∀m > 0∀n > 0 ∃k
r = 0→ gcd(m,n) = n ∧ k | m ∧ k | n ∧
r > 0→ gcd(m,n) = gcd(n, r)] ∀l(l | m ∧ l | n→ l | k)

Formal specification” From a formal proof
mod(m,n) < n ∧ ∃q[m = q ∗ n+mod(m,n)] ∧ extract a program gcd
mod(m,n) = 0→ gcd(m,n) = n ∧ provably satisfying the specification,
mod(m,n) > 0→ gcd(m,n) = gcd(n,mod(m,n)) that is, the formula

∀m > 0∀n > 0
Formal specification”’ gcd(m,n) | m ∧ gcd(m,n) | n ∧
m < n→ mod(m,n) = m ∧ ∀l(l | m ∧ l | n→ l | gcd(m,n))
m ≥ n→ mod(m,n) = mod(m− n, n) ∧ is provable
mod(m,n) = 0→ gcd(m,n) = n ∧
mod(m,n) > 0→ gcd(m,n) = gcd(n,mod(m,n))

Program

function mod (m,n:integer, m,n>0) : integer;
begin

if m < n then mod := m
else mod := mod(m-n,n)

end

function gcd (m,n:integer, n>0) : integer;
begin

r:= mod(m,n);
if r=0 then gcd := n

else gcd := gcd(n,r)
end

11

2.3 Programming by transformation

In Example 2.2 the program development on the left hand side proceeds by a stepwise refinement
of the original formal specification.

The first step introduces the essential algorithmic idea due to Euclid. Formally it has the
effect that the universal quantifier, ∀l, in the original specification is eliminated.

In the second step the existential quantifier, ∃r, is replaced by introducing the function
symbol mod for the modulus function computing the remainder in an integer division.

In the third step the remaining existence quantifier, ∃q, in the specification of the modulus
is replaced by an equational description embodying the algorithmic idea for computing
the modulus.

The third specification contains no quantifiers and has the form of a conjunction of condi-
tional equations. This specification can automatically be transformed into corresponding
recursive programs computing the modulus and the greatest common divisor.

In order to make this program development complete one has to establish its correctness, which
means that one has to prove the implications

Formal specification

↑

Formal specification’

↑

Formal specification”

↑

Formal specification”’

Finally, a proof is required that the derived program terminates on all legal inputs.

Formal specifications as they occur in this program development are often called algebraic speci-
fications because their natural interpretations, or models, are (many-sorted) algebras. The class
of models of an algebraic specification forms an Abstract Data Type (ADT). In the literature
(but not in this course) algebraic specifications and Abstract Data Types are often confused.

Program development using ADTs is a well-established technique for producing reliable soft-
ware. Its main methodological principles are

• abstraction, i.e. the description of unnecessary details is avoided,

• modularisation, i.e. the programming task is divided into small manageable pieces that
can be solved independently.

12

In this example modularisation took place by dividing the development into four relatively small
steps and separating the problem of computing the modulus as an independent programming
task. Furthermore, we abstracted from a concrete representation of natural numbers and the
arithmetical operations of addition, subtraction and multiplication.

2.4 Programming by extraction from proofs

The right hand side of example 2.2 indicates how to develop a program using the method of
program extraction from formal proofs. This method can be described in general (and somewhat
simplified) as follows:

1. We assume that the programming problem is given in the form

∀x ∃y A(x, y)

(in our example, ∀m,n∃k (k is the greatest common divisor of m and n), wherem,n range
over positive natural numbers).

2. One finds (manually, or computer-aided) a constructive formal proof of the formula
∀x ∃y A(x, y).

3. From the proof a program p (in or example the program for gcd) is extracted (fully
automatically) that provable meets the specification, that is,

∀xA(x, p(x))

is provable (in our example, ∀m,n (gcd(m,n) is the greatest common divisor of m and n)).

The concept of a constructive proof as an alternative foundation for logic and mathematics
has been advocated first by L Kronecker, L E J Brouwer and A Kolmogorov in the beginning
of the 20th century, and was formalized by Brouwer’s student A Heyting. The algorithmic
interpretation of constructive proofs was formulated first by Brouwer, Heyting and Kolmogorov
and is therefore often called BHK-interpretation (cf. [Dal] p. 156). In the Computer Science
community the names Curry-Howard-interpretation (after the American mathematicians H B
Curry and W Howard), or proofs-as-programs paradigm are more popular. According to the
proofs-as-programs paradigm we have the following correspondences

formula ≡ data type

constructive proof of formula A ≡ program of data type A

The constructive proof calculus studied in this course will be natural deduction. We will mainly
follow the books [Dal] and [TS] as well as the article [Sch].

There exist a number of systems supporting program extraction from proofs (e.g. Agda, Coq,
Fred, Minlog, NuPrl, PX). Time permitting, we will look at some of these systems in this course
and carry out small case studies of program extraction.

13

3 Logic

In this chapter we study the syntax and semantics of many-sorted first-order predicate logic,
which is the foundation for the specification, modelling and implementation of Abstract Data
Types.

3.1 Signatures and algebras

The purpose of a signature is to provide names for objects and operations and fix their format.
Hence a signature is very similar to the programming concept of an interface.

3.1.1 Definition

A many-sorted signature (signature for short), is a pair Σ = (S,Ω) such that the following
conditions are satisfied.

• S is a nonempty set. The elements s ∈ S are called sorts.

• Ω is a set whose elements are called operations, and which are of the form

f : s1 × . . .× sn → s,

where n ≥ 0 and s1, . . . , sn, s ∈ S.

s1 × . . .× sn → s is called arity of f , with argument sorts s1, . . . , sn and target sort
s.

Operations of the form c : → s (i.e. n = 0) are called constants of sort s. For constants
we often use the shorter notation c : s (i.e. we omit the arrow).

We require that for every sort there is at least one constant of that sort.

Signatures are interpreted by mathematical structures called algebras. An algebra can be
viewed as the mathematical counterpart to the programming concept of a concrete data type.

3.1.2 Definition

A many-sorted algebra A (algebra for short) for a signature Σ = (S,Ω) is given by the
following.

• For each sort s in S a nonempty set As, called the carrier set of the sort s.

• For each constant c : s in Ω an element cA ∈ As.

• For each operation f : s1 × . . .× sn → s in Ω a function

fA : As1 × . . .× Asn → As

14

3.1.3 Remarks

1. In the definition of an algebra (3.1.1) the expression f : s1×. . .×sn → s is meant symbolically,
i.e. ‘×’ and ‘→’ are to be read as uninterpreted symbols. In the definition of an algebra (3.1.2),
however, we used the familiar mathematical notation for set-theoretic functions to communicate
by fA : As1 × . . . × Asn → As a semantical object, namely a function fA whose domain is the
cartesian product of the sets Asi and whose range is As.

2. It is common to call the elements cA constants, and the functions fA operations. Hence the
words ‘constant’ and ‘operation’ have a double meaning. However, it should always be clear
from the context what is meant.

3. By a Σ-algebra we mean an algebra for the signature Σ.

4. In logicians jargon a signature is called a many-sorted first-order language and an algebra is
called a many-sorted first-order structure.

3.1.4 Example

Consider the signature Σ := (S,Ω), where

S = {nat, boole}
Ω = {0: nat, T: boole, F: boole, add: nat× nat→ nat, le : nat× nat→ boole}

We follow [Tuc] and display signatures in a box:

Signature Σ

Sorts nat, boole

Constants 0: nat, T: boole,F: boole

Operations add: nat× nat→ nat
≤ : nat× nat→ boole

The Σ-algebra A of natural numbers with 0, and addition and the relation ≤ is given by

the carrier sets N = {0, 1, 2, . . .} and B = {T,F}, i.e.

Anat = N, Aboole = B,

the constants 0, T, F, i.e.

0A = 0, TA = T, FA = F,

the operations of addition on N and the comparison relation ≤ viewed as a boolean
function, i.e. for all n,m ∈ N,

addA(n,m) = n+m,

15

≤A (n,m) =

{
T if n ≤ m
F otherwise

Again we use the more readable box notation [Tuc]:

Algebra A

Carriers N, B

Constants 0, T, F

Operations +: N×N→ N
≤ : N×N→ B

For the signature Σ we may also consider another algebra, B, with carrier N+ := N \ {0}
(= {1, 2, 3, 4, . . .}), the constants 1, T, F, multiplication restricted to M , and the divisibility
relation · | ·. Hence we have

Bnat = N+, Bboole = B,

0B = 1, TB = T, FB = F,

addB(n,m) = n ∗m for all n,m ∈ N+.

≤A (n,m) =

{
T if n | m
F otherwise

Written in a box

Algebra B

Carriers N+, B

Constants 1, T, F

Operations ∗ : N+ ×N+ → N+

| : N+ ×N+ → B

3.1.5 Remarks

1. The display of signatures and algebras via boxes has to be handled with some care. If,
for example, in the box displaying the signature Σ in example 3.1.4 we would have exchanged
the order of the sorts nat and boole, we would have defined the same signature. But then the
box displaying the algebra A would not be well-defined, since then the sort boole would be
associated with the set N and nat with B, and consequently the arities of the operations of Σ
would not fit with the operations of the algebra A.

Therefore: When displaying signatures and algebras in boxes order matters.

2. Operations with target sort boole are often called predicates. In many logic text books
predicates are not represented by boolean functions, but treated as separate entities.

16

3.2 Terms and their semantics

The constants and operations of a signature Σ can be used to build formal expressions, called
terms, which denote elements of a given Σ-algebra.

3.2.1 Definition

Let Σ = (S,Ω) be a signature, and let X = (Xs)s∈S be a family of pairwise disjoint sets. The
elements of Xs are called variables of sort s. We define terms and their sorts by the following
rules.

(i) Every variable x ∈ Xs is a term of sort s.

(ii) Every constant c in Σ of sort s is a term of sort s.

(iii) If f : s1 × . . .× sn → s is an operation in Σ, and t1, . . . , tn are (previously defined) terms
of sorts s1, . . . , sn, respectively, then the formal expression

f(t1, . . . , tn)

is a term of sort s.

The set of all terms of sort s is denoted by T(Σ, X)s.

A term is closed if it doesn’t contain variables, i.e. is built without the use of rule (i).

The set of all closed terms of sort s is denoted by T(Σ)s. Clearly T(Σ)s = T(Σ, ∅)s.

3.2.2 Example

For the signature Σ of example 3.1.4 and the set of variables X := {x, y} the following are
examples of terms in T(Σ, X):

x

0

add(0, y)

add(add(0, x), y)

add(add(0, 0), add(x, x))

add(0, add(0, add(0, 0)))

The second and the last of these terms are closed.

In order to declare the semantics of terms in a Σ-algebra A we have to define for each term t of
sort s its value in As, i.e. the element in As that is denoted by t. The value of t will in general
depend on the values assigned to the variables occurring in t.

17

3.2.3 Definition (Semantics of terms)

Let A be an algebra for the signature Σ = (S,Ω), and let X = (Xs)s∈S a set of variables.

A variable assignment α : X → A is a function assigning to every variable x ∈ Xs an element
α(x) ∈ As.

Given a variable assignment α : X → A we define for each term t ∈ T(Σ, X)s its value

tA,α ∈ As

by the following rules.

(i) xA,α := α(x).

(ii) cA,α := cA.

(iii) f(t1, . . . , tn)A,α := fA(tA,α1 , . . . , tA,αn).

For closed terms t, i.e. t ∈ T(Σ) (= T(Σ, ∅)) the variable assignment α and rule (i) are obsolete
and we write tA instead of tA,α.

3.2.4 Remark

The definition of tA,α is by recursion on the term structure (also called structural re-
cursion). In general a function on terms can be defined by recursion on the term structure by
defining it for atomic terms, i.e. constants and variables (rules (i) and (ii)), and recursively for
a composite term f(t1, . . . , tn) using the values of the function at the components t1, . . . , tn.

3.2.5 Exercise

Define the set var(t) of all variables occurring in a term t by structural recursion on t.

3.2.6 Example

Let us calculate the values of the terms in example 3.1.4 in the Σ-algebra A under the variable
assignment α : {x, y} → N, α(x) := 3 and α(y) := 5.

xA,α = α(x) = 3

0A,α = 0A = 0

add(0, y)A,α =

add(add(0, x), y)A,α =

add(add(0, 0), add(x, x))A,α =

18

add(0, add(0, add(0, 0)))A,α =

Terms can be used to construct to every signature and variable set a ‘canonical’ algebra.

3.2.7 Definition

Let Σ = (S,Ω) a signature and X a set of variables for Σ. We define a Σ-algebra T(Σ, X),
called term algebra, as follows.

Algebra T(Σ, X)

Carriers T(Σ, X)s (s ∈ S)

Constants cT(Σ,X) := c

Operations fT(Σ,X)(t1, . . . , tn) := f(t1, . . . , tn)

In the special case X = ∅ we write T(Σ) for T(Σ, X) and call this the closed term algebra.

3.3 Formulas and their semantics

In a similar way as terms are syntactic constructs denoting objects, formulas are syntactic
construct to denote propositions.

3.3.1 Definition

The set of formulas over a signature Σ = (S,Ω) and a set of variables X = (Xs)s∈S is defined
inductively by the following rules.

(i) ⊥ is a formula, called absurdity.

(ii) t1 = t2 is a formula, called equation, for each pair of terms t1, t2 ∈ T(Σ, X) of the same
sort.

(iii) If P and Q are formulas then P → Q, P ∧Q, and P ∨Q are formulas, called implication
(‘if then’), conjunction (‘and’) and disjunction (‘or’), respectively.

(iv) If P is a formula then ∀xP and ∃xP are formulas for every variable x ∈ X, called uni-
versal quantification (‘for all’) and existential quantification (‘exists’), respectively.

Formulas over a signature Σ are also called Σ-formulas

A free occurrence of a variable x in a formula P is an occurrence of x in P which is not in
the scope of a quantifier ∀x or ∃x. We let FV(P) denote the set of free variables of P , i.e. the
set of variables with a free occurrence in P . A formula P is closed if FV(P) = ∅.

19

We set
L(Σ, X) := {P | P is a Σ-formula ,FV(P) ⊆ X}

and use the abbreviation
L(Σ) := L(Σ, ∅),

i.e. L(Σ) is the set of closed Σ-formulas.

3.3.2 Remarks and Notations

1. Formulas as defined above are usually called first-order formulas, since we allow quan-
tification over object variables only. If we would also quantify over set variables we would
obtain second-order formulas.

2. A formula is quantifier free, qf for short, if it doesn’t contain quantifiers.

3. A formula is universal if it is of the form ∀x1 . . . ∀xn P where P is quantifier free.

3.3.3 Abbreviations

Formula Abbreviation

P → ⊥ ¬P (negation)

∀x1∀x2 . . . ∀xn P ∀x1, x2, . . . , xnP

∃x1∃x2 . . . ∃xn P ∃x1, x2, . . . , xn P

∀x1, . . . , xnP , where {x1, . . . , xn} = FV(P) ∀P (closure of P)

(P → Q) ∧ (Q→ P) P ↔ Q (equivalence)

t = T t (provided t is of sort boole)

3.3.4 Examples

P1 :≡ T = F

P2 :≡ x = 0→ add(y, x) = y

P3 :≡ ∃y (x = y → ∀z x = z)

P4 :≡ ∀x (0 ≤ x = T)

P1 and P2 are quantifier free.

P1 is an equation. P4 is universal.

20

P1 and P4 are closed.

FV(P2) = {x, y}, FV(P3) = {x}.

P4 can be abbreviated ∀x (0 ≤ x).

3.3.5 Exercise

Let Σ be the signature of example 3.1.4 and A the Σ-algebra of the natural numbers with zero,
addition and the ‘less-or-equal’ relation. Write down Σ-formulas expressing in A the following
statements.

(a) x is an even number.

(b) x is greater than y.

(c) x is the average of y and z.

21

In order to precisely declare the semantics of a formula we define what it means for a formula
to be true in an algebra.

3.3.6 Definition (Semantics of formulas)

Let Σ = (S,Ω) be a signature, X = (Xs)s∈S a set of variables, A a Σ-algebra α : X → A, and
P ∈ L(Σ, X).

We define the relation
A,α |= P

which is to be read ‘P is true in A under α’, or ‘A,α is a model of P ’, by structural
recursion on the formula P .

(i) A,α 6|= ⊥, i.e. A,α |= ⊥ does not hold.

(ii) A,α |= t1 = t2 iff tA,α1 = tA,α2 .

(iii) A,α |= P ∧Q iff A,α |= P and A,α |= Q.

A,α |= P ∨Q iff A,α |= P or A,α |= Q.

A,α |= P → Q iff A,α |= P implies A,α |= Q (i.e. A,α 6|= P or A,α |= Q).

(iv) A,α |= ∀xP iff A,αax |= P for all a ∈ As (provided x is of sort s).

A,α |= ∃xP iff A,αax |= P for at least one a ∈ As (provided x is of sort s).

In (iii) we used the updated variable assignment αax defined by αax(x) = a and αax(y) = α(y) for
every variable different from x.

For closed Σ-formulas P the variable assignment is obviously redundant and we write

A |= P

for A,α |= P . For a set Γ of closed Σ-formulas we say that the Σ-algebra A is a model of Γ,
written

A |= Γ,

if A |= P for all P ∈ Γ.

3.4 Logical consequence, logical validity, satisfiability

We may now make precise what it means that a formula P is a logical consequence of a set of
formulas.

22

3.4.1 Definition (Logical consequence)

Let Γ be a set of closed formulas and P a closed formula. We say that P is a logical conse-
quence of Γ, or Γ logically implies A, written

Γ |= P,

if P is true in all models of Γ, that is,

A |= Γ implies A |= P, for all Σ-algebras A

3.4.2 Definition (Logical validity)

A closed Σ-formula P is said to be (logically) valid, written

|= P,

if P is rue in all Σ-algebras, that is A |= P for all Σ-algebras A. Valid formulas is also called a
tautologies.

Obviously, P is valid if and only if it is a logical consequence of the empty set of formulas.

3.4.3 Definition (Satisfiability)

A set of closed Σ-formulas Γ is called satisfiable if it has a model, that is, there exists a
Σ-algebra A in which all formulas of Γ are true (A |= Γ).

3.4.4 Exercise

Show that validity and satisfiability are are related by the following equivalences:

P valid ⇔ {¬P} unsatisfiable (that is, not satisfiable)

P satisfiable ⇔ {¬P} not valid

3.4.5 Theorem (A Church)

It is undecidable whether or not a closed formula is valid.

This theorem can be proven by reducing the halting problem to the validity problem (i.e. coding
Turing machines into logic).

Although, by Church’s Theorem, the validity problem is undecidable, there is an effective
procedure generating all valid formulas (technically: the set of valid formulas is recursively
enumerable). We will study such a generation process in the next chapter.

23

3.4.6 Examples

Consider a signature with the sorts nat and boole and the operation <: nat × nat → boole.
Then the formula

∃x ∀y (x < y)→ ∀y ∃x (x < y)

is a tautology. The formula

∀x, y (x < y → ∃z (x < z ∧ z < y))

is satisfiable, but not a tautology (why?). Set

Γ := {∀x¬(x < x), ∀x.y.z (x < y ∧ y < z → x < z)}

Then the formula

P :≡ ∀x, y (x < y → ¬y < x)

is a logical consequence of Γ, that is, Γ |= P .

3.5 Substitutions

Now we study the operation of replacing the free variables occurring in a term or formula by
terms.

3.5.1 Definition

Let Σ = (S,Ω) be a signature and X = (Xs)s∈S, Y = (Ys)s∈S, two sets of variables.

A substitution is a mapping θ : X → T(Σ, Y) that respects sorts, i.e. the variable x and the
term θ(x) have the same sorts for all x ∈ X.

Given a substitution θ we define for every t ∈ T(Σ, X) a term tθ ∈ T(Σ, Y) by

tθ := the result of replacing every occurrence of a variable x in t by θ(x)

Equivalently tθ can be defined by recursion on the term structure:

(i) xθ := θ(x).

(ii) cθ := c.

(iii) f(t1, . . . , tn)θ := f(t1θ, . . . , tnθ).

This also yields a recursive algorithm for computing tθ.

24

Notation

(a) By {t1/x1 . . . , tn/xn} we denote the substitution θ such that θ(xi) = ti for i = 1, . . . , n
and θ(x) = x if x 6∈ {x1, . . . , xn}. Of course this implicitly assumes that xi and ti have
the same sort, and the variables xi are all distinct.

(b) If θ : X → T(Σ, Y) and σ : Y → T(Σ, Z) are substitutions, then we define the substitution
θσ : X → T(Σ, Z) by

(θσ)(x) := θ(x)σ

It can be easily proved that
t(θσ) = (tθ)σ

for all terms t ∈ T(Σ, X) (see proof below).

(c) If θ : X → T(Σ, Y) is a substitution and α : Y → A is a variable assignment, then the
variable assignments θA,α : X → A is defined by

θA,α(x) := (θ(x))A,α

Note that for a substitution {t/x} we simply have

{t/x}A,α = αt
A,α

x

Induction

The equation t(θσ) = (tθ)σ in (b) above can be proved by induction on terms. By this we
mean the following proof principle. Let P (t) be a statement about terms t (in (b) above we
have for example P (t) :⇔ t(θσ) = (tθ)σ). In order to prove that P (t) holds for all terms t one
has to prove the following.

• Induction base.

P (t) holds for all atomic terms, i.e. variables and constants.

• Induction step.

If P (t1), . . . , P (tn) hold (induction hypothesis),

then also P (f(t1, . . . , tn)) holds.

Let us use this principle to prove that t(θσ) = (tθ)σ for all terms t.

(i) Induction base (variables). x(θσ) = (θσ)(x) = (xθ)σ

(ii) Induction base (constants). c(θσ) = c = (cθ)σ

(iii) Induction step. The induction hypothesis is ti(θσ) = (tiθ)σ for i = 1, . . . , n.

f(t1, . . . , tn)(θσ) = f(t1(θσ), . . . , tn(θσ))

= f((t1θ)σ, . . . , (tnθ)σ) by induction hypothesis

= f(t1θ, . . . , tnθ)σ

= (f(t1, . . . , tn)θ)σ

25

3.5.2 Exercise

Let θ : Y → T(Σ, X) be a substitution. Note that θ can also be viewed as a variable assignment
in the term algebra T(Σ, X) (see definition 3.2.7). Prove by induction on terms that for any
term t ∈ T(Σ, Y)

tT(Σ,X),θ = tθ

3.5.3 Example

Let Σ and A be as in example 3.1.4 and X := {x, y}. Define the substitution θ : X → T(Σ, X)
by θ := {add(y, y)/x}, i.e. θ(x) = add(0, y), θ(y) = y. Now we have for example

add(x, x)θ = add(add(y, y), add(y, y))

Define a assignment α : X → A by α(x) := 3, α(y) := 7. Now θA,α : X → A is a variable
assignment with

θA,α(x) = add(y, y)A,α = 7 + 7 = 14

θA,α(y) = yA,α = 7

Now for example

add(x, x)A,(θ
A,α) = 14 + 14 = 28.

Note that also

(add(x, x)θ)A,α = add(add(y, y), add(y, y))A,α = (7 + 7) + (7 + 7) = 28.

The following lemma proves that the observation above is not a coincidence.

3.5.4 Substitution lemma for terms

Let A be an algebra and X a set of variables, both for a signature Σ = (S,Ω).

For any term t ∈ T(Σ, X), substitution θ : X → T(Σ, Y) and variable assignment α : Y → A

(tθ)A,α = tA,(θ
A,α)

For a substitution {r/x} this means

t{r/x}A,α = tA,α
rA,α
x

Proof. The equation is proved by induction on terms.

(i) Induction base (variables). (xθ)A,α = θ(x)A,α = xA,(θ
A,α)

26

(ii) Induction base (constants). (cθ)A,α = cA,α = cA = cA,(θ
A,α)

(iii) Induction step. The induction hypothesis is (tiθ)
A,α = t

A,(θA,α)
i for i = 1, . . . , n.

(f(t1, . . . , tn)θ)A,α = f(t1θ, . . . , tnθ)
A,α

= fA((t1θ)
A,α, . . . , (tnθ)

A,α)

= fA(t
A,(θA,α)
1 , . . . , tA,(θ

A,α)
n) by induction hypothesis

= f(t1, . . . , tn)A,(θ
A,α)

3.5.5 Definition (Applying substitutions to formulas)

Let θ : X → T(Σ, Y) be a substitution and P a formula with FV(P) ⊆ X. The intuitive
definition of applying the θ to A is

Pθ := the result of replacing every free occurrence of a variable x in P by θ(x),

possibly renaming the bound variables of P in order to avoid variable clashes

So, for example

(∃y(x+ y + 1 = 0)){y ∗ y/x}

is not

∃y(y ∗ y + y + 1 = 0).

but

∃z(y ∗ y + z + 1 = 0)

Pθ can be defined more precisely by recursion on P

Exercise: Carry this out.

3.5.6 Substitution lemma for formulas

Let A be an algebra and X a set of variables, both for a signature Σ = (S,Ω).

For any Formula P with FV(P) ⊆ X, substitution θ : X → T(Σ, Y) and variable assignment
α : Y → A

A,α |= Pθ ⇔ A, θA,α |= P

For a substitution {r/x} this means

A,α |= P{r/x} ⇔ A,αr
A,α

x |= P

Proof. Induction on P .

27

(i) The case that P is ⊥ is trivial.

(ii) Case P is an equation t1 = t2. Note that (t1 = t2)θ is the formula t1θ = t2θ. By the
substitution lemma for terms we have

(tiθ)
A,α = t

A,(θA,α)
i

for i = 1, 2. Therefore

A,α |= (t1 = t2)θ ⇔ A,α |= t1θ = t2θ

⇔ (t1θ)
A,α = (t2θ)

A,α

⇔ t
A,(θA,α)
1 = t

A,(θA,α)
2

⇔ A, θA,α |= t1 = t2

(iii) The induction steps are easy and left to the reader.

3.5.7 Lemma (Replacing equals by equals)

Let r, r′ be terms and x a variable, all of the same sort, let A be an algebra and α a variable
assignment. If

rA,α = r′A,α

then for every term t and every formula P

t{r/x}A,α = t{r′/x}A,α

A,α |= P{r/x} ⇔ A,α |= P{r′/x}

Proof. Assume rA,α = r′A,α. By the substitution lemma for formulas, 3.5.4, we have

t{r/x}A,α = tA,α
rA,α
x = tA,α

r′A,α
x = t{r′/x}A,α

Similarly, by the substitution lemma for formulas, 3.5.4, we have

A,α |= P{r/x} ⇔ A,αr
A,α

x |= P ⇔ A,αr
′A,α

x |= P ⇔ A,α |= P{r′/x}

3.6 Other Logics

First-order predicate logic is a general purpose logic. It is used to

• formulate and answer questions concerning the foundations of mathematics,

• specify and verify programs written in all kinds of programming languages.

28

There exist many other, more specialized, logics which are tailored for specific kinds of problems
in computer science. For example:

• Hoare logic – imperative programs

• higher-order logic – functional programs

• clausal logic – logic programming, AI

• modal/temporal/process logic – distributed processes

• bounded/linear logic – complexity analysis

• equational logic – hardware, rapid prototyping

We will study equational logic in Chapter 8.

3.7 Summary and Exercises

The following notions where central in this chapter.

• Signatures and algebras.

• Terms and their value in an algebra, tA,α.

• Formulas and their meaning in an algebra, A,α |= P .

• Induction on terms.

• Logical consequence

Exercises.

1. In this and the next exercise we consider terms of an arbitrary signature. Define the size
of a term t, that is, the number of occurrences of variables, constants and operations in t, by
recursion on t.

2. We define the depth of a term t as the length of the longest branch in the syntax tree of t,
that is,

depth(t) = 0, if t is a constant or a variable.

depth(f(t1, . . . , tn)) = 1 + maximum{depth(t1), . . . , depth(t1)}

29

Show that size(t) ≤ (1 + arity(t))depth(t), where arity(t) is 0 if t is a constant or a variable, and
otherwise the largest arity of an operation occurring in t.

Hint: First, give a recursive definition of arity(t).

3. Compute the value of the term t := f(x, f(x, x)) in the algebra C with carrier N and
fC(n,m) := n+ 2 ∗m under the valuation α with α(x) := 3.

4. Let Σ be the signature with one sort, one constant, 0, and two binary operations, + and ∗.
Let R be the Σ-algebra with the real numbers as carrier, the constant 0, and the usual addition
and multiplication of real numbers. Write down formulas that express in R the following
statements:

(a) x ≤ y.

(b) x = 1.

30

4 Proofs

In this chapter we study a system of simple proof rules for deriving tautologies, that is, logically
valid formulas. The famous Completeness Theorem, by the Austrian logician Kurt Gödel, states
that this system of rules suffices to derive in fact all tautologies.

K Gödel (1906-1978)

4.1 Natural Deduction

The proof calculus of Natural Deduction was first introduced by Gentzen and further developed
by Prawitz.

Compared with other proof calculi, e.g. Sequent Calculi, or Hilbert Calculi, Natural Deduction
has the advantage of being

• close to the natural way of human reasoning, and thus easy to learn;

• closely related to functional programming, and thus is particularly well suited for program
synthesis from proofs, which we will study in the next chapter.

We will first study the rules for the logical connectives and quantifiers. The rules for equality
will be dealt with in section 4.2.

4.1.1 Definition (Derivation)

A derivation is a finite tree (drawn correctly, that is, leaves on top and root at the bottom),
where each node is labelled by a formula and a rule according to figure 3 on page 32. In order
to understand these rules, one needs to know the following:

31

1. An application of the rule →+, deriving P → Q from Q, binds every (unlabelled) occur-
rence of P at a leaf above that rule. We mark such a binding by attaching to the leaf P
and the rule →+ a fresh label u.

2. The free assumptions of a derivation d, written FA(d), are those formulas P occurring
unlabelled at a leaf of d (that is, those P that are not bound by a rule →+).

3. In the ∀+ rule, the label (*) means the so-called variable condition, that is, the requirement
that x must not occur free in any free assumption above that rule.

4. In the ∃− rule, the label (**) means the restriction that x must not be free in Q.

In the following, P (x) stands for a formula possibly containing x free, and P (t) stands for the
formula P (x){t/x}. For each logical connective there are two kinds of rules:

Introduction rules , describing how to obtain a formula built from that connective;

Elimination rules , describing how to use a formula built from that connective.

The formula at the root of a derivation d is called the end formula of d. If d is a derivation
with FA(d) ⊆ Γ and end formula P , we say d is derivation of P from Γ and write

Γ ` d : P.

4.1.2 Examples (propositional connectives)

1. We begin with a derivation involving the conjunction introduction rule, ∧+ and the con-
junction elimination rules, ∧−l and ∧−r . We derive from the assumption P ∧ Q the formula
Q ∧ P :

P ∧Q
∧−r

Q

P ∧Q ∧−l
P
∧+

Q ∧ P

2. If we add to the derivation in example 1 an application of the implication introduction rule,
→+, we obtain a derivation of P ∧Q→ Q ∧ P that does not contain free assumptions:

u : P ∧Q
∧−r

Q

u : P ∧Q ∧−l
P
∧+

Q ∧ P
→+u

P ∧Q→ Q ∧ P

3. In the following derivation of the formula P → (Q → P) we use the rule →+ twice. The
upper instance of this rule is used with the formula Q, without Q actually occurring as an open
assumption.

32

Introduction rules Elimination rules

∧ P Q
∧+

P ∧Q
P ∧Q ∧−l
P

P ∧Q
∧−r

Q

→

u : P
...
Q

→+u
P → Q

P → Q P
→−

Q

∨ P ∨+

l
P ∨Q

Q
∨+

r
P ∨Q

P ∨Q P → R Q→ R
∨−

R

⊥ ⊥ efq
P

¬¬P raa
P

∀ P (x)
∀+∀xP (x)

(*)
∀xP (x)

∀−
P (t)

∃ P (t)
∃+∃xP (x)

∃xP (x) ∀x (P (x)→ Q)
∃−

Q
(**)

Figure 3: The rules of natural deduction (without equality rules)

u : P →+v
Q→ P

→+u
P → (Q→ P)

4. Next let us derive P → (Q → R) from P ∧ Q → R. Here we use for the first time
the implication elimination rule, →−, also called modus ponens. The easiest way to find the
derivations is to construct it “bottom up”.

P ∧Q→ R
u : P v : Q

∧+

P ∧Q
→−

R →+v
Q→ R

→+u
P → (Q→ R)

5. In order to familiarise ourselves with the disjunction introduction rules, ∨+
l , ∨+

r , and the
disjunction elimination rule, ∨−, we derive Q ∨ P from P ∨Q.

33

P ∨Q

u : P ∨+
r

Q ∨ P
→+u

P → Q ∨ P

v : Q ∨+

l
Q ∨ P

→+v
Q→ Q ∨ P

∨−
Q ∨ P

6. As a slightly more complicated example we derive (one half of) one of de-Morgan’s laws,
P ∧ (Q ∨R)→ (P ∧Q) ∨ (P ∧R), without assumptions.

u : P ∧ (Q ∨R)
∧−r

Q ∨R

u : P ∧ (Q ∨R) ∧−l
P v : Q

∧+

P ∧Q ∨+

l
(P ∧Q) ∨ (P ∧R)

→+v
Q→ (P ∧Q) ∨ (P ∧R)

u : P ∧ (Q ∨R) ∧−l
P w : R ∧+

P ∧R ∨+
r

(P ∧Q) ∨ (P ∧R)
→+w

R→ (P ∧Q) ∨ (P ∧R)
∨−(P ∧Q) ∨ (P ∧R)

→+u
P ∧ (Q ∨R)→ (P ∧Q) ∨ (P ∧R)

7. Finally, we turn our attention to the rules concerning absurdity, ⊥, namely ex-falso-quodlibet,
efq, and reductio-ad-absurdum, raa. Recall that ¬P is shorthand for P → ⊥, and therefore
¬¬P stands for (P → ⊥)→ ⊥. We derive Peirce’s law (P → Q)→ P ` P :

u : ¬P
(P → Q)→ P

u : ¬P v : P →−⊥ efq
Q

→+v
P → Q

→−
P →−⊥ →+u¬¬P raa

P

8. The rule ex-falso-quodlibet is weaker than reductio-ad-absurdum in the sense that the former
can be obtained from the latter: From the assumption ⊥ we can derive any formula P without
using ex-falso-quodlibet (but using reductio-ad-absurdum instead):

⊥ →+u
(P → ⊥)→ ⊥

raa
P

4.1.3 Examples (quantifier rules)

1. In the following derivation of ∀y P (y + 1) from ∀xP (x) we use the for-all introduction rule,
∀+, and the for-all elimination rule, ∀−:

34

∀xP (x)
∀−

P (x+ 1)
∀+∀xP (x+ 1)

In the application of ∀+ the variable condition is satisfied, because x is not free in ∀xP (x).

2. Find out what’s wrong with the following ‘derivations’.

∀y(x < 1 + y)
∀−x < 1 + 0
∀+∀x(x < 1 + 0)

∀x(∀y(x < y + 1)→ x = 0)
∀−∀y(y < y + 1)→ y = 0 ∀y(y < y + 1)

→−y = 0
∀+∀y(y = 0)

3. The exists introduction rule, ∃+, and the exists elimination rule, ∃− are used in the following
derivation.

u : ∀x (x− 1) + 1 = x
∀−

(x− 1) + 1 = x
∃+∃y(y + 1 = x)
∀+∀x∃y(y + 1 = x)

→+u∀x ((x− 1) + 1 = x)→ ∀x ∃y(y + 1 = x)

4. Let us derive from the assumptions ∃xP (x) and ∀x(P (x)→ Q(f(x))) the formula ∃y Q(y):

∃xP (x)

∀x(P (x)→ Q(f(x)))
∀−

P (x)→ Q(f(x)) u : P (x)
→−

Q(f(x))
∃+∃y Q(y)

→+u
P (x)→ ∃y Q(y)

∀+∀x (P (x)→ ∃y Q(y))
∃−∃y Q(y)

We see that in the application of ∀+ the variable condition is satisfied, because x is not free in
∃y Q(y).

35

4.2 Equality rules

So far we only considered the Natural Deduction rules for logic without equality. Here are the
rules for equality:

Reflexivity refl
t = t

Symmetry
s = t sym
t = s

Transitivity r = s s = t trans
r = t

Compatibility
s1 = t1 . . . sn = tn comp
f(s1, . . . , sn) = f(t1, . . . , tn)

for every operation f of n arguments.

4.2.1 Example

Let us derive from the assumptions ∀x, y (x + y = y + x) and ∀x (x + 0 = x) the formula
∀x, y ((0 + x) ∗ y = x ∗ y):

∀x ∀y (x+ y = y + x)
∀−∀y (0 + y = y + 0)
∀−0 + x = x+ 0

∀x (x+ 0 = x)
∀−x+ 0 = x

trans
0 + x = x refly = y comp

(0 + x) ∗ y = x ∗ y
∀+∀y ((0 + x) ∗ y = x ∗ y)
∀+∀x∀y ((0 + x) ∗ y = x ∗ y)

4.2.2 Definition

Γ `c P : ⇔ Γ ` d : P for some derivation d.

(P is derivable from Γ in classical logic)

36

Γ `i P : ⇔ Γ ` d : P for some derivation d not using the rule reductio-ad-absurdum.

(P is derivable from Γ in intuitionistic logic)

Γ `m P : ⇔ Γ ` d : P for some derivation d using neither the rule reductio-ad-
absurdum nor the rule ex-falso-quodlibet.

(P is derivable from Γ in minimal logic)

4.2.3 Lemma

Let t(x) be a term possibly containing the variable x, and let r, s be terms of the same sort as
x. Then

r = s `m t(r) = t(s)

Proof. Induction on t(x).

If t(x) is a constant or a variable different from x, then t(r) and t(r) are the same term t. Hence
the assertion is r = s `m t = t which is an instance of the reflexivity rule.

If t(x) is the variable x then t(r) is r and t(s) is s, and the assertion becomes r = s `m r = s
which is an instance of the assumption rule.

Finally, consider t(x) of the form f(t1(x), . . . , tn(x)). By induction hypothesis we may assume
that we already have a derivation of r = s `m ti(r) = ti(s) for i = 1, . . . , n. One application of
the compatibility rule yields the required sequent.

4.2.4 Lemma

Let P (x) be a formula possibly containing the variable x, and let r, s be terms of the same sort
as x. Then:

r = s `m P (r)↔ P (s)

Proof. Induction on the formula P (x).

If P (x) is an equation, say, t1(x) = t2(x), then we have to derive

r = s `m t1(r) = t2(r)↔ t1(s) = t2(s)

By Lemma 4.2.3 we have already derivations of

r = s `m t1(r) = t1(s) and r = s `m t2(r) = t2(s)

It is now easy to obtain the required derivation using the symmetry rule and the transitivity
rule. We leave this as an exercise to the reader.

If P (x) is a compound formula we can use the induction hypothesis in a straightforward way.

37

4.3 Soundness and completeness

The soundness and completeness theorems below state that the logical inference rules introduced
above precisely capture the notion of logical consequence.

4.3.1 Soundness Theorem

If Γ `c P then Γ |= P .

Proof. The theorem follows immediately from the following statement which can be easily
shown by induction on derivations:

For every finite set of (not necessarily closed) formulas Γ and every formula P ,

if Γ `c P then A,α |= P for all algebras A and variable assignments α such that A,α |= Γ

Whilst the soundness theorem is not very surprising, because it just states that the inference
rules are correct, the following completeness theorem proved by Gödel, states that the logical
inference rules above in fact capture all possible ways of correct reasoning.

4.3.2 Completeness Theorem (Gödel)

If Γ |= P then Γ `c P .

In words: If P is a logical consequence of Γ (i.e. P is true in all models of Γ), then this can be
formally derived by the inference rules of natural deduction.

The proof of this theorem is beyond the scope of this course. Detailed expositions of the proof
can be found in any textbook on Mathematical Logic, for example [Sho].

The following consequence of the Completeness Theorem refers to the notion of consistency.

4.3.3 Definition (Consistency)

A (possibly infinite) set of formulas Γ is called consistent if Γ 6`c ⊥, that is there is no
(classical) derivation of ⊥ from assumptions in Γ.

In other words: A set of formulas Γ is consistent if and only if no contradiction can be derived
from Γ.

4.3.4 Satisfiability Theorem

Every consistent set of formulas has a model.

Proof. Exercise.

38

Another important consequence of Gödel’s Completeness Theorem is the fact that all logically
valid formulas can be effectively enumerated.

4.3.5 Satisfiability Theorem

The set of all logically valid formulas is recursively enumerable.

Proof. Exercise.

4.4 Axioms and rules for data types

For many common data types we can formulate axioms describing their characteristic features.
We will only treat the booleans and the (unary) natural numbers. Simar axioms could be stated
for binary number, lists, finite trees etc., more generally for freely generated data types.

4.4.1 Axioms for the booleans

The variable x below is supposed to be of sort boole.

Boole 1 boole1
T 6= F

Boole 2 boole2∀x (x = T ∨ x = F)

Recall that r 6= s is an abbreviation for ¬r = s which in turn stands for r = s → ⊥. Recall
also that we agreed to abbreviate an equation t = T by t.

4.4.2 Lemma

We can derive ∀x (¬x↔ x = F) without assumptions.

We leave the proof as an exercise to the reader.

Hint: We have to derive ∀x ((x = T→ ⊥)↔ x = F). For the implication from left to right use
the second boolean axiom, for the converse implication use the first boolean axiom.

4.4.3 Peano Axioms

The following axioms and rules where introduced (in a slightly different form) by Peano to
describe the structure of natural numbers with zero and the successor function (we write t+ 1
for the successor of t).

39

G Peano (1858 - 1932)

In the following the terms s, t and the variable x are supposed to be of sort nat.

Peano 1 peano1
0 6= t+ 1

Peano 2 peano2
s+ 1 = t+ 1→ s = t

Induction
P (0) ∀x (P (x)→ P (x+ 1))

ind∀xP (x)

4.4.4 Remarks

1. In applications there will be further axioms describing additional operations on the booleans
and natural numbers. Examples are, the equations defining addition by primitive recursion
from zero and the successor function.

2. Similar axioms can be introduced for data types such as lists or trees.

4.5 Summary and Exercises

• Derivations: minimal, intuitionistic and classical.

• The Soundness and Completeness Theorem for First-Order Logic.

• Axioms and rules for equality and data types.

40

Exercises.

Derive the following formulas

Propositional logic

1. Minimal logic

(a) (P → ¬Q)→ (Q→ ¬P)

(b) (P → (Q→ R))→ ((P → Q)→ (P → R))

(c) P → ¬¬P

(d) ¬(P ∧ ¬P)

(e) (P ∧ (Q ∨R))↔ ((P ∧Q) ∨ (P ∧R))

(f) (P ∨Q)→ ¬(¬P ∧ ¬Q)

(g) ¬(P ↔ ¬P)

2. Intuitionistic logic

(a) (P ∧ ¬P)→ R

(b) (¬P ∨Q)→ (P → Q)

(c) (¬¬P → P)↔ ((¬P → P)→ P)

(d) (P ∨Q)→ (¬P → Q)

3. Classical logic

(a) ¬¬P → P

(b) (¬P → P)→ P

(c) P ∨ ¬P

(d) ¬(¬P ∧ ¬Q)→ (P ∨Q)

(e) ¬(¬P ∨ ¬Q)→ (P ∧Q)

(f) ¬(P → Q)→ P ∧ ¬Q

Quantifier logic

1. Minimal logic

41

(a) ∀x (P (x)→ Q(x))→ (∀xP (x)→ ∀xQ(x))

(b) ∀x (P (x)→ ∃y P (y))

(c) ∀xP (x)→ ∃xP (x)

(d) ∃x (P (x) ∨Q(x))↔ ∃xP (x) ∨ ∃xQ(x)

(e) ∃x (P (x) ∧Q(x))→ ∃xP (x) ∧ ∃xQ(x)

(f) ∃x¬P (x)→ ¬∀xP (x)

(g) ¬¬∀xP (x)→ ∀x¬¬P (x)

2. Intuitionistic logic

(a) ∃x (P (x) ∧ ¬P (x))→ ∀x (P (x) ∧ ¬P (x))

(b) ∀x (¬f(x) < 0)→ f(0) < 0→ f(0) = 0

3. Classical logic

(a) ∀x¬¬P (x)→ ¬¬∀xP (x)

(b) ¬∀xP (x)→ ∃x¬P (x)

(c) ∃x (P (x)→ ∀y P (y))

4. Assume “P (x)” means “it is raining in Swansea at day x”. Write out 2. (c) as an English
sentence (the 100% reliable weather forecast for Swansea).

5. Prove the Satisfiability Theorem from the Completeness Theorem and vice versa.

42

43

Part II

Abstract Data Types

44

5 Algebraic Theory of Abstract Data Types

An Abstract Data Type (ADT) is a collection of objects and functions, that is, an algebra,
where one ignores how the objects are constructed and how the functions are implemented.
More precisely, if A and B are isomorphic algebras, that is, there exists a bijection between A
and B that respects the operations, then A and B are regarded as identical. In this chapter we
study the algebraic theory of ADTs.

5.1 Homomorphisms and abstract data types

In order to understand what it means for two algebras to be isomorphic, we first study the
more general notion of a homomorphism, that is, a “structure preserving mapping” between
algebras.

5.1.1 Definition

Let Σ = (S,Ω) be a signature and A, B two Σ-algebras. A homomorphism ϕ : A→ B from
A to B is a family ϕ = (ϕs)s∈S of functions

ϕs : As → Bs

such that

• ϕs(cA) = cB for each constant c : s in Ω,

• ϕs(fA(a1, . . . , an)) = fB(ϕs1(a1), . . . , ϕsn(an)) for each operation f : s1 × . . . × sn → s
and all (a1, . . . , an) ∈ As1 × . . .× Asn .

The second condition can be abbreviated, using the symbol ‘◦’ for composition, by

ϕs ◦ fA = fB ◦ (ϕs1 , . . . , ϕsn)

and depicted by the following commutative diagram:

fA
- AsAsn×. . .×As1

???

. . . ϕsϕsnϕs1

fB
- BsBsn×. . .×Bs1

A homomorphism ϕ : A→ B is called

45

monomorphism if all ϕs : As → Bs are injective
epimorphism if all ϕs : As → Bs are surjective
isomorphism if all ϕs : As → Bs are bijective

A homomorphism (isomorphism) from an algebra to itself is called endomorphism (auto-
morphism).

5.1.2 Example

Consider the following signature

Signature Σ

Sorts nat

Constants 0: nat

Operations add: nat× nat→ nat

The Σ-algebra A of natural numbers with 0 and addition is given by

Algebra A

Carriers N

Constants 0

Operations +: N×N→ N

For the same signature Σ we also consider another algebra with carrier M := {1, 2, 4, 8, . . .},
the constant 1 and multiplication restricted to M . We call this algebra B. Hence we have

Algebra B

Carriers M

Constants 1

Operations ∗ : M ×M →M

Define
ϕ : N→M , ϕ(n) := 2n

We show that ϕ is an isomorphism from the algebra A to the algebra B (note that ϕ consists of
just one function, since Σ contains only one sort). In order to check that ϕ is a homomorphism
we calculate

• ϕ(0A) = ϕ(0) = 1 = 0B.

• ϕ(addA(m,n)) = ϕ(m+ n) = 2m+n = 2m ∗ 2n = ϕ(m) ∗ ϕ(n) = addB(ϕ(m), ϕ(n)).

Since obviously ϕ is bijective, it is an isomorphism.

46

5.1.3 Example

Signature STACK

Sorts elts, stack

Constants 0: elts
emptystack: stack

Operations push: elts× stack→ stack
pop: stack→ stack
top: stack→ elts

The following is an algebra for the signature STACK.

Algebra SeqN

Carriers N, N∗ (the set of finite sequences of natural numbers)

Constants 0, 〈〉 (the empty sequence)

Operations cons : N×N∗ → N∗ (insert a number in front of a sequence)
tail : N∗ → N∗ (remove first element if nonempty, o.w. return 〈〉)
head: N∗ → N (take first element if nonempty, otherwise return 0)

Consider also the following algebra for the signature STACK:

Algebra Stack0

Carriers {0}, N

Constants 0, 0

Operations pushStack0 : {0} ×N→ N, pushStack0(0, n) := n+ 1
popStack0 : N→ N, popStack0(n+ 1) := n, popStack0(0) := 0
topStack0 : N→ {0}, topStack0(n) := 0

Let us define a homomorphism ϕ : SeqN→ Stack0

Note that ϕ must be a pair of functions ϕ = (ϕelts, ϕstack) where

ϕelts : SeqNelts → Stack0elts , ϕstack : SeqNstack → Stack0stack.

Since SeqNelts = N, Stack0elts = {0}, SeqNstack = N∗, and Stack0stack = N, this means

ϕelts : N→ {0} , ϕstack : N∗ → N.

Hence for ϕelts we have no choice; we have to set ϕelts(n) := 0 for all n ∈ N. For ϕstack we
stipulate

ϕstack(α) := length(α) (the length of the sequence α).

47

In order to show that ϕ is a homomorphism, we have to check 4 equations, one for each
constant and operation in STACK. We only check the equation for push and leave the rest as
an exercise.

ϕstack(pushSeqN(n, α)) = ϕstack(cons(n, α))

= length(cons(n, α))

= length(α) + 1

= pushStack0(0, length(α))

= pushStack0(ϕelts(n), ϕstack(α))

Obviously ϕelts and ϕstack are both surjective, hence ϕ is an epimorphism. But clearly ϕ is not
a monomorphism.

Remark. This example exhibits a typical feature of epimorphisms: they simplify. In our
example ϕ ‘forgets’ the natural numbers and replaces them by 0.

5.1.4 Definition

Let Σ = (S,Ω) be a signature and A,B,C Σ-algebras. For homomorphisms ϕ : A → B,
ψ : B → C its composition ψ ◦ ϕ : A→ C is defined as the family ψ ◦ ϕ := (ψs ◦ ϕs)s∈S.

5.1.5 Theorem

Homomorphisms are closed under composition, that is, if ϕ is a homomorphism from A to B
and ψ is a homomorphism from B to C, then ψ ◦ ϕ is a homomorphism from A to C.

Proof. Coursework.

5.1.6 Theorem

Isomorphisms are closed under inverses, that is, if ϕ is an isomorphism from A to B, then
ϕ−1 := (ϕ−1

s)s∈S is an isomorphism from B to A.

Proof. As ϕ−1
s : Bs → As is a bijective function for each s ∈ S, it suffices to show that ϕ−1 is

a homomorphism. For each constant c : s we have

ϕ−1
s (cB) = ϕ−1

s (ϕs(c
A))

= cA

Now let f : s1 × . . .× sn → s be an operation in Ω. The homomorphism condition is

ϕ−1
s (fB(b1, . . . , bn)) = fA(ϕ−1

s1
(a1), . . . , ϕ−1

sn (an)).

48

We have

ϕ−1
s (fB(b1, . . . , bn)) = ϕ−1

s (fB(ϕs1(ϕ−1
s1

(b1)), . . . , ϕsn(ϕ−1
sn (b1))))

= ϕ−1
s (ϕs(f

A(ϕ−1
s1

(b1), . . . , ϕ−1
sn (b1))))

= fA(ϕ−1
s1

(b1), . . . , ϕ−1
sn (b1)))

2

5.1.7 Definition

For two Σ-algebras A and B we set

A ' B ⇔ there exists an isomorphism from A to B

5.1.8 Theorem

For every signature Σ the relation of isomorphism between Σ-algebras, A ' B is an equivalence
relation.

Proof. Let A,B,C be Σ-algebras, where Σ = (S,Ω).

(i) Reflexivity. A ' A holds, since clearly the family of identity functions on the carriers of
A is an isomorphism from A to A.

(ii) Symmetry. Assume A ' B, i.e. there is an isomorphism ϕ : A → B. By theorem 5.1.6
ϕ−1 : B → A is an isomorphism, hence B ' A.

(ii) Transitivity. Assume A ' B and B ' C, i.e. there are isomorphisms ϕ : A → B and
ψ : B → C. By theorem 5.1.5 ψ ◦ ϕ : A→ C is an homomorphism. Since obviously ψ ◦ ϕ
is bijective, it is an isomorphisms. Hence A ' C.

5.1.9 Definition

For a signature Σ we let Alg(Σ) denote the class of all Σ-algebras.

In this definition we had to use the word ‘class’ instead of ‘set’, because in general Alg(Σ) is
too large to be a set. For example, the class of all algebras for the trivial signature ({s}, ∅) (one
sort no constants, no operations) corresponds to the class of all sets, since an algebra for this
signature consist of a carrier set for the sort s only, i.e. is a set. But from Russell’s Paradox
it follows that the class of all sets is not a set (intuitively its too large). Hence we see that
Alg({s}, ∅) is a proper class, i.e. not a set.

49

5.1.10 Definition

An Abstract Data Type (ADT) for a signature Σ is a nonempty class C ⊆ Alg(Σ) of
Σ-algebras which is closed under isomorphisms, i.e.

if A ∈ C and A ' B then B ∈ C.

An ADT C is called monomorphic if all its elements are isomorphic, i.e. if

A ∈ C and B ∈ C then A ' B.

Otherwise C is called polymorphic.

5.1.11 Example

Let Σ be a signature.

(a) Alg(Σ) is a polymorphic ADT (a very uninteresting ADT though).

(b) For each Σ-algebra A the class {B ∈ Alg(Σ) | B ' A} is a monomorphic ADT. In fact
every monomorphic ADT is of this form.

Remark. Another way of looking at ADTs is to view them as abstract properties of algebras1.
The property defined by an ADT is abstract because it is invariant under isomorphic copies (cf.
e.g. the property of having finite carriers in example 8 (c) above). An example of a non-abstract
property is the property of having the set of N of natural numbers as carrier set. By referring
to the concrete set N the property of being invariant under isomorphism is lost. Hence the
class

{A ∈ Alg(Σ) | all carriers of A are = N}
is not an ADT. Referring –like above– to a fixed set in the specification of a data type means on
the programming side to fix a concrete implementation of a data type already in the specification
of a system. Such premature design decisions should be avoided since they make a software
development inflexible and difficult to maintain.

In Chapter 6 we will show that any property described by a formula in the language of a given
signature Σ is invariant under homomorphism and hence defines an ADT for Σ.

5.2 The Homomorphism Theorem

We now discuss three fundamental methods of constructing from a given algebra another one
which is in some sense smaller or simpler. The first method is to throw carrier sets and
operations away (reducts), the second is to throw elements away, i.e. make the carrier sets
smaller (subalgebras), the third is to ‘forget’ differences between elements, i.e. to identify certain
elements (quotients).

1in general the concept of a class and of a property are equivalent: each class defines the property of being
in the class, and conversely each property defines the class of object having that property.

50

5.2.1 Definition

A signature Σ = (S,Ω) is a subsignature of a signature Σ′ = (S ′,Ω′) if S ⊆ S ′ and Ω ⊆ Ω′,
i.e. every sort in Σ is also a sort in Σ′, and every operation or constant in Σ is also an operation
or constant in Σ′.

We write Σ ⊆ Σ′ to indicate that Σ is a subsignature of Σ′.

If Σ is a subsignature of Σ′ we also say that Σ′ is an expansion of Σ.

5.2.2 Definition

Let Σ be a subsignature of Σ′. To every Σ′-algebra A we can construct a Σ-algebra B by
‘throwing away’ all parts of A not named in Σ, i.e.

• Bs := As for all sorts s in Σ,

• cB := cA for all constants c in Σ,

• fB := fA for all operations f in Σ,

We call B the Σ-reduct of A and denote it by A|Σ.

If B is the Σ-reduct of A we also say that A is an expansion of B.

The notion of a reduct can be easily extended to ADTs. Given an ADT C for a signature Σ′

and a subsignature Σ of Σ′ we can define the Σ-reduct of C by

C|Σ := {A|Σ | A ∈ C}

It is easy to see that this class is an ADT again.

5.2.3 Definition

Let Σ = (S,Ω) be a signature and let A and B be Σ-algebras. A is called a subalgebra of B if

• As ⊆ Bs for all s ∈ S.

• cA = cB for all constants c ∈ Ω.

• fA(a1, . . . , an) = fB(a1, . . . , an) for all operations f ∈ Ω and all (a1, . . . , an) ∈ As1× . . .×Asn .

5.2.4 Remarks

1. Obviously, the relation ‘A is a subalgebra of B’ defines a partial order on the class Alg(Σ)
of all Σ-algebras

51

2. Clearly, a subalgebra A of an algebra B is completely determined by B and the sets As.
However, if we chose arbitrary subsets As of Bs for all sorts s these will define a subalgebra
of B only if the sets As contain all the constants cB and are ‘closed’ under the operations fB.
For example, the set of even numbers defines a subalgebra of the A of example 5.1.2, since 0 is
even and the even numbers are closed under addition. However the odd numbers do not define
a subalgebra of A.

5.2.5 Example

Let Σ = (S,Ω) a signature, let A and B be Σ-algebras and let ϕ : A→ B be a homomorphism.
For each sort s ∈ S we define the set

ϕ(As) := {ϕs(a) | a ∈ As} ⊆ Bs

From the properties of a homomorphism it follows that the sets ϕ(As) contain all constants cB

and are ‘closed’ under the operations fB. Hence the family of sets ϕ(A) := (ϕ(As))s∈S defines
a subalgebra of B called homomorphic image of A under ϕ.

5.2.6 Definition

Let Σ = (S,Ω) be a signature and A a Σ-algebra. A congruence on A is a family ∼ = (∼s)s∈S
of equivalence relations ∼s on As, s ∈ S, that is respected by all operations of A, i.e. for any
operation f : s1 × . . .× sn → s and any ai, bi ∈ Asi

ai ∼si bi (1 ≤ i ≤ n) ⇒ fA(a1, . . . , an) ∼s fA(b1, . . . , bn)

For a ∈ As we set
[a]∼s := {b ∈ As | a ∼s b}

The quotient algebra (or quotient) of A by ∼ is the Σ-algebra A/∼ defined as follows.

• (A/∼)s := {[a]∼s | a ∈ As}, for every sort s ∈ Σ.

• cA/∼ := [cA]∼s , for every constant c : s.

• fA/∼([a1]∼s1 , . . . , [an]∼sn) := [fA(a1, . . . , an)]∼s , for each operation f : s1× . . .× sn → s
and all ai ∈ Asi .

Note that the condition on ∼ of being a congruence is needed to verify that fA/∼ is well-
defined, i.e. the right hand side of the defining equation does not depend on the choice of the
representatives ai of the equivalence classes [ai]∼si .

52

5.2.7 Example

Consider the signature

Signature Σ

Sorts nat

Constants 0: nat

Operations add: nat× nat→ nat

and the Σ-algebra A of natural numbers with 0 and addition. We define a binary relation ∼
on A′s carrier N by

a ∼ b⇔ a+ b is even .

Clearly ∼ is an equivalence relation (prove this as an exercise). To prove that it is a congruence
for A, we have to show that ∼ is preserved by the operation addA, which is addition. Hence
we have to show

a1 ∼ b1, a2 ∼ b2 =⇒ a1 + a2 ∼ b1 + b2

for all a1, a2, b1, b2 ∈ N. We leave the verification of this implication as an exercise.

It is clear that ∼ has two equivalence classes, the set EVEN of even numbers and the set
ODD of odd numbers. Hence the carrier of the quotient algebra A/∼ is the two element set
{EVEN,ODD}. For v, w ∈ {EVEN,ODD} we have addA/∼(v, w) = EVEN or ODD, depending
on whether v = w or v 6= w (the sum of two numbers is even iff both are even or both are odd).
Hence the table for addA/∼ is

addA/∼ EVEN ODD

EVEN EVEN ODD

ODD ODD EVEN

5.2.8 Homomorphism Theorem

Let A, B algebras for a signature Σ = (S,Ω), and let ϕ : A→ B be a homomorphism. For each
sort s ∈ S define a binary relation ∼ϕ,s on As by

a ∼ϕ,s b :⇔ ϕs(a) = ϕs(b).

Then the family ∼ϕ:= (∼ϕ,s)s∈S is a congruence on A and the quotient algebra A/∼ϕ is iso-
morphic to the homomorphic image of A under ϕ, i.e.

A/∼ϕ ' ϕ(A),

53

the canonical isomorphism [ϕ] : A/∼ϕ → ϕ(A) being defined by

[ϕ]s([a]∼ϕ,s) := ϕs(a)

for s ∈ S and a ∈ As.

Proof. The easy proof that ∼ϕ is a congruence on A is left as an exercise (5.4). In order
to prove that [ϕ] is a homomorphism, we take an operation f ∈ Ω, which, for simplicity, we
assume to be unary, e.g. f : s1 → s. Let a ∈ As1 . We have to show that [ϕ]s(f

A/∼ϕ([a]∼ϕ,s1)) =
fB([ϕ]s1([a]∼ϕ,s1)), which is verified by the following calculation:

[ϕ]s(f
A/∼ϕ([a]∼ϕ,s1)) = [ϕ]s([f

A(a)]∼ϕ,s)

= ϕs(f
A(a))

= fB(ϕs1(a))

= fB([ϕ]s1([a]∼ϕ,s1))

Since obviously [ϕ]s is bijective for each sort s, we have shown that [ϕ] is an isomorphism.

Remark. The above theorem tells us that each homomorphism ϕ : A → B naturally induces
a congruence ∼ϕ on A. In fact every congruence ∼ on A can be obtained in that way, since the
mappings [·]∼s : As → As/∼s obviously constitute a homomorphism [·]∼ : A→ A/∼ and clearly
the congruence induced by [·]∼ coincides with ∼, i.e. ∼[·]∼ = ∼.

5.3 Initial algebras

5.3.1 Definition

Let A be a Σ-algebra and C a class of Σ-algebras.

A is initial for C if for every B ∈ C there exists exactly one homomorphism ϕ : A→ B.

We say A is initial in C if A is initial for C and in addition A ∈ C. We say that A is initial if
A is initial in Alg(Σ).

Remarks. 1. By replacing in the definition above ‘ϕ : A→ B’ by ‘ϕ : B → A’ we obtain the
notion of a final algebra.

2. Initiality is a concept coming from Category Theory [McL], a mathematical discipline which
is pervasive in Computer Science. Also the notions of signature, algebra and homomorphism
e.t.c. have category theoretic generalisations. By the category theoretic principle of dualisation
one obtains form the theory of algebras a theory of coalgebras and the proof principle of coin-
ductioon. Coagebras and coinduction are important for modelling infinite data (for example
infinite streams) as well as interactive programs, processes and games. A good introduction
into the category theoretic approach to algebras and coalgebras is given in [JR].

54

5.3.2 Definition

For any Σ-algebra A and any variable assignment α : X → A the family of functions evalA,α =
(evalA,αs)s∈S defined by

evalA,αs : T(Σ, X)→ A , evalA,αs (t) := tA,α

is a homomorphism evalA,α : T(Σ, X)→ A which is called evaluation homomorphism.

In the special case X = ∅ the evaluation homomorphism is independent of a variable assignment
and is written evalA : T(Σ) → A. We sometimes also write eval instead of evalA if the algebra
A is clear from the context.

5.3.3 Definition

A Σ-algebra A is called generated (freely generated) if every a ∈ As is the value of a (unique)
closed term, i.e. for every a ∈ As there exists a (unique) term t ∈ T(Σ) such that tA = a. Note
that this is equivalent to saying that eval : T(Σ)→ A is an epimorphism (isomorphism).

It is convenient to generalise this definition as follows. Let Σ = (S,Ω) and let Ω′ ⊆ Ω be a set of
constants and operations called constructors, or generators. All other operations are called
observers. We set Σ′ := (S,Ω′). A Σ-algebra A is called generated (freely generated) by
Ω′ if every a ∈ As is the (unique) value of a closed Σ′-term, i.e. for every a ∈ As there exists a
(unique) term t ∈ T(Σ′) such that tA = a.

5.3.4 Examples

1. The closed term algebra T(Σ) is freely generated, since for every closed term Σ-term t we
have tT(Σ) = t.

2. For a given Σ-algebra A the subalgebra eval(T(Σ)), i.e. the homomorphic image (cf. example
9) of the closed term algebra T(Σ) under the evaluation homomorphism evalA : T(Σ) → A, is
generated.

3. Let Σ and A be the signature and algebra of the examples 5.1.2 and 5.2.7 with 0 and
addition. The Σ-algebra A is not term generated, since 0 is the only natural number which is
the value of a closed Σ-term.

4. Consider the following signature.

Signature BOOLE

Sorts boole

Constants T: boole
F: boole

Operations not : boole→ boole
and: boole× boole→ boole
or : boole× boole→ boole

55

and the following BOOLE-algebra

Algebra Boole

Carriers B := {#t,#f}
Constants #t, #f

Operations ¬ : B→ B (negation)
∧ : B×B→ B (conjunction)
∨ : B×B→ B (disjunction)

The algebra Boole of boolean values is generated, since, for example, TBoole = #t and FBoole =
#f. However, Boole is not freely generated since, for example, #t = TBoole = not(T)Boole.

Obviously Boole is freely generated by {T,F}.

Boole is also generated by {T, not}, since not(T)Boole = #f, but not freely, since, for example,
#t = TBoole = not(not(F))Boole.

5.3.5 Theorem

For every signature Σ the closed term algebra T(Σ) is initial.

Proof. For every Σ-algebra A we have the evaluation homomorphism evalA : T(Σ) → A. In
order to show that evalA is unique, let ϕ : T(Σ) → A be a further homomorphism. We prove
by term induction that ϕ(t) = evalA(t) for all t ∈ T(Σ) (here and further on we omit sorts as
subscripts as long as this does not lead to ambiguities).

Base.

ϕ(c) = ϕ(cT(Σ))

= cA since ϕ is a homomorphism

= evalA(c).

Step.

ϕ(f(t1, . . . , tn)) = ϕ(fT(Σ)(t1, . . . , tn))

= fA(ϕ(t1), . . . , ϕ(tn)) since ϕ is a homomorphism

= fA(evalA(t1), . . . , evalA(tn)) by induction hypothesis

= evalA(f(t1, . . . , tn)) by definition of evalA

5.3.6 Theorem

For a Σ-algebra A the following statements are equivalent.

56

(i) A is initial.

(ii) A is freely generated.

(iii) A ' T(Σ).

Proof. Recall that asserting (ii) is equivalent to saying that evalA : T(Σ)→ A is an isomor-
phism.

(i)⇒(ii) Let A be initial. We have to show that A is freely generated, i.e. evalA : T(Σ) →
A is an isomorphism. Since A is initial there is a unique homomorphism ϕ : A → T(Σ).
Then ϕ ◦ evalA : T(Σ) → T(Σ) is a homomorphism. Furthermore idT(Σ) : T(Σ) → T(Σ) is a
homomorphism. Since, by theorem 5.3.5, T(Σ) is initial we may conclude that ϕ◦evalA = idT(Σ).
We also have the homomorphism evalA ◦ ϕ : A → A, and, using the initiality of A, it follows
with a similar argument that evalA ◦ ϕ = idA. Therefore evalA must be an isomorphism (with
inverse ϕ).

(ii)⇒(iii) If A is freely generated then evalA : T(Σ)→ A is an isomorphism. Hence A ' T(Σ).

(iii)⇒(i) Assume A ' T(Σ), i.e. there is an isomorphism ϕ : A→ T(Σ). In order to show that
A is initial we take an arbitrary Σ-algebra B and show that there is exactly one homomorphism
from A to B. Since evalB ◦ ϕ : A → B is a homomorphism we have to prove that any other
homomorphism from A to B coincides with evalB ◦ ϕ. So, let ψ : A → B a homomorphism.
Since ψ ◦ ϕ−1 : T(Σ) → B is a homomorphism we may use the initiality of T(Σ) to conclude
that ψ ◦ ϕ−1 = evalB. Hence ψ = evalB ◦ ϕ.

Given a class C of Σ-algebras one is often interested in finding a Σ algebra which is initial in
C. Now, since the Σ-algebra T(Σ) is initial it is also initial for C, but in general not initial in
C, since T(Σ) might fail to be an element of C.

For example let C be the class of all algebras for the signature BOOLE in which the usual laws
for a boolean algebra are true (a precise definition of these laws will be presented in the next
chapter). Then the closed term algebra T(BOOLE) does certainly not belong to C because
e.g. the law not(T) = F does not hold in T(BOOLE) (the terms not(T) and F are not equal).

In the following we describe how to construct from a class C of Σ-algebras a Σ-algebra which
is always initial for C and, as we will see later, is in many cases an element of C and therefore
initial in C.

5.3.7 Theorem

Let Σ = (S,Ω) be a signature and C a class of Σ-algebras. For every sort s ∈ S we define a
binary relation ∼C,s on T(Σ)s by

t1 ∼C,s t2 :⇐⇒ for all A ∈ C tA1 = tA2

Then ∼C:= (∼C,s)s∈S is a congruence on T(Σ) and the quotient algebra

TC(Σ) := T(Σ)/∼C

57

is initial for C. For every A ∈ C the unique homomorphism from ϕ : TC(Σ)→ A is given by

ϕs([t]∼C,s) = tA

for each sort s and each t ∈ T(Σ) of sort s.

Proof. By definition ∼C is the intersection of the congruences ∼evalA (A ∈ C) (cf. the Homo-
morphism Theorem 5.2.8). Since congruences are closed under intersections (the easy proof is
left as an exercise) it follows that ∼C is a congruence on T(Σ). It is easy to see that ϕ above
is a well-defined homomorphism. The proof that ϕ is unique is similar to the proof of theorem
5.3.5 and is left as an exercise. Hence TC(Σ) is initial for C.

5.4 Summary and Exercises

• Homomorphisms, epi-, mono-, isomorphisms.

• Homomorphic and polymorphic Abstract data types.

• Congruence, quotient algebra.

• Initial algebras, uniqueness up to isomorphism of initial algebras.

• Term generated and freely generated algebras.

Exercises.

1. Consider again the Σ-algebra of natural numbers with 0 and addition from exercise 5.2.7.
Show that a function ϕ : N → N is an endomorphism on A if and only if there is a number
k ∈ N such that ϕ(n) = k ∗ n for all n ∈ N. How are the automorphisms on A characterised?

2. Extend the signature of Example 1 by a unary successor operation and let B be the extension
of A by the usual successor function on N. Show that the only homomorphism on B is the
identity.

3. Let Σ be the signature of Example 1. Consider the Σ-algebra C of finite lists of natural
numbers where 0 is interpreted by the empty list and the binary operation is interpreted by
concatenation of lists. Is the operation of reversing a list a homomorphism on C?

4. Define an epimorphism from C to A and a monomorphism from A to C.

5. Which of the algebras A, B and C are generated respectively freely generated?

6. Prove that homomorphisms are closed under composition.

58

7. Let A, B algebras for a signature Σ = (S,Ω), and let ϕ : A → B be a homomorphism. For
each sort s ∈ S define a binary relation ∼ϕ,s on As by

a ∼ϕ,s b :⇔ ϕs(a) = ϕs(b).

Show that the family ∼ϕ:= (∼ϕ,s)s∈S is a congruence on A (see Theorem 5.2.8).

59

6 Specification of Abstract Data Types

We now study formal specifications of abstract data types, also called algebraic specifications.
First, we will consider arbitrary first-order specification, but will later concentrate on equational
specifications which, as we will see in Chapter 8, can be used to automatically generate provably
correct “prototypes” of programs.

6.1 Loose specifications

6.1.1 Definition

A loose specification is a pair (Σ,Φ) where Σ is a signature and Φ is a set of closed Σ-formulas.
The formulas in Φ are called the axioms of the specification.

A Σ-algebra A is a model of the loose specification (Σ,Φ) if all axioms in Φ are true in A, i.e.
A |= Φ

We let ModΣ(Φ) denote the class of all models of the loose specification (Σ,Φ), i.e.

ModΣ(Φ) :≡ {A ∈ Alg(Σ) | A |= Φ}

We will see that ModΣ(Φ) is an abstract data type. The proof of this fundamental fact needs
some preparations.

6.1.2 Lemma

Let ϕ : A→ B be a homomorphism between Σ-algebras and α : X → A a variable assignment.
Then for every term t ∈ T(Σ, X) we have

ϕ(tA,α) = tB,ϕ◦α

Proof. Structural induction on t.

Base: variables.

ϕ(xA,α) = ϕ(α(x))

= (ϕ ◦ α)(x)

= xB,ϕ◦α

Base: constants.

ϕ(cA,α) = ϕ(cA)

= ϕ(cB)

= cB,ϕ◦α

60

Step.

ϕ(f(t1, . . . , tn)A,α) = ϕ(fA(tA,α1 , . . . , tA,αn))

= fB(ϕ(tA,α1), . . . , ϕ(tA,αn))

= fB(tB,ϕ◦α1 , . . . , tB,ϕ◦αn) (by i.h.)

= f(t1, . . . , tn)B,ϕ◦α

6.1.3 Theorem

Let ϕ : A → B be an isomorphism between Σ-algebras. Then for every formula P ∈ L(Σ, X)
and every assignment α : X → A we have

A,α |= P iff B,ϕ ◦ α |= P

In particular when P is closed we have

A |= P iff B |= P

Proof. Structural induction on the formula P .

(i) Base.

A,α |= t1 = t2 iff tA,α1 = tA,α2

iff ϕ(tA,α1) = ϕ(tA,α2) (ϕ is injective)

iff tB,ϕ◦α1 = tB,ϕ◦α2 (Lemma 6.1.2)

iff B,ϕ ◦ α |= t1 = t2

(ii) Step: propositional connectives.

A,α |= P ∧Q iff A,α |= P and A,α |= Q

iff B,ϕ ◦ α |= P and B,ϕ ◦ α |= Q (i.h.)

iff B,ϕ ◦ α |= P ∧Q

P ∨Q, P → Q similar

A,α |= ¬P iff A,α 6|= P

iff B,ϕ ◦ α 6|= P (i.h.)

iff B,ϕ ◦ α |= ¬P

61

(iii) Step: quantifiers.

A,α |= ∀xP iff A,αax |= P for all a ∈ As
iff B,ϕ ◦ (αax) |= P for all a ∈ As (i.h.)

iff B, (ϕ ◦ α)ϕ(a)
x |= P for all a ∈ As (ϕ ◦ (αax) = (ϕ ◦ α)

ϕ(a)
x)

iff B, (ϕ ◦ α)bx |= P for all b ∈ Bs (ϕ is surjective)

iff B,ϕ ◦ α |= ∀xP

A, α |= ∃xP iff A,αax |= P for at least one a ∈ As
iff B,ϕ ◦ (αax) |= P for at least one a ∈ As (i.h.)

iff B, (ϕ ◦ α)ϕ(a)
x |= P for at least one a ∈ As (ϕ ◦ (αax) = (ϕ ◦ α)

ϕ(a)
x)

iff B, (ϕ ◦ α)bx |= P for at least one b ∈ Bs (ϕ is surjective)

iff B,ϕ ◦ α |= ∃xP

6.1.4 Theorem

For every loose specification (Σ,Φ) the class of its models, ModΣ(Φ), is an abstract data type.

Proof. Let A,B be Σ-algebras such that A ∈ ModΣ(Φ) and A ' B. We have to show
B ∈ ModΣ(Φ). Since A ∈ ModΣ(Φ) we have A |= Φ, i.e. A |= P for all P ∈ Φ. By theorem
6.1.3 it follows that B |= P for all P ∈ Φ as well. Hence B |= Φ, i.e. B ∈ ModΣ(Φ).

6.1.5 Example

Consider the loose specification (Σ,Φ), where

Signature Σ

Sorts boole

Constants T,F: boole

Operations not : boole→ boole
and, or : boole× boole→ boole

and Φ = {P1, . . . , P6}, with

P1 :≡ not(T) = F

P2 :≡ not(F) = T

P3 :≡ and(T,T) = T

P4 :≡ ∀x (and(F, x) = F)

62

P5 :≡ ∀x (and(x,F) = F)

P6 :≡ ∀x, y (or(x, y) = not(and(not(x), not(y))))

Consider the following Σ-algebras

Algebra Boole

Carriers B := {#t,#f}
Constants #t, #f

Operations ¬ : B→ B (negation)
∧ : B×B→ B (conjunction)
∨ : B×B→ B (disjunction)

Algebra Pow(N)

Carriers P(N) := {A | A ⊆ N}, the powerset of N

Constants N, ∅
Operations N \ · : P(N)→ P(N) (complement)

∩ : P(N)× P(N)→ P(N) (intersection)
∪ : P(N)× P(N)→ P(N) (union)

which are clearly models of the loose specification (Σ,Φ), that is

Boole |= Φ and Pow(N) |= Φ

or
Boole,Pow(N) ∈ ModΣ(Φ)

The ADT ModΣ(Φ) is polymorphic since it contains the non-isomorphic algebras Boole and
Pow(N) (why are they non-isomorphic?).

If we want to have the algebra Boole as the ‘only’ model of the loose specification –up to
isomorphism of course– we have to add further axioms. Let us add an axiom expressing that
every element of the algebra is either true or false (thus ‘killing’ the model Pow(N)).

P7 :≡

The extended loose specification ModΣ(Φ∪{P7}) still has an unwanted model, namely the one
element algebra. To rule this out we further add

P8 :≡

Now it is easy to see that the loose specification (Σ,Φ ∪ {P7, P8}) characterises the algebra
Boole up to isomorphism, i.e. ModΣ(Φ ∪ {P7, P8}) is a monomorphic ADT containing Boole.

In the previous example we succeeded in specifying an algebra up to isomorphism (which is the
best we can get). The next example will show that we just happened to be lucky.

63

6.1.6 Example

Consider the following signature.

Signature Σ0S+

Sorts nat

Constants 0: nat

Operations succ : nat→ nat
+: nat× nat→ nat

As the names suggest the intended algebra for this signature is the algebra N0S+ of natural
numbers with the constant 0, the usual successor function succ : N→ N, succ(n) := n+ 1, and
addition +: N×N→ N.

Let us try to characterise N0S+ up to isomorphism by a loose specification (Σ0S+,Φ) with a
suitable set of axioms Φ. Let us put into Φ formulas P1, . . . , P5 expressing that

1. 0 is not a successor,

2. succ is injective (one-to-one)

3. every number is either 0 or a successor,

4/5. addition can be defined from 0 and succ by primitive recursion in the usual way.

P1 :≡ ∀x (0 6= succ(x))

P2 :≡ ∀x, y (succ(x) = succ(y)→ x = y)

P3 :≡ ∀x (x = 0 ∨ ∃y (x = succ(y)))

P4 :≡ ∀x (x+ 0 = x)

P5 :≡ ∀x, y (x+ succ(y) = succ(x+ y))

Clearly the algebra N0S+ is a model of {P1, . . . , P5}.

But there are still unwanted models. For example the Σ0S+-algebra A with Anat := {0} ×N ∪
{1}×Z with 0A := (0, 0), succA((i, n)) := (i, n+1), and +A((i, n), (j,m)) := (max(i, j), n+m).
It is easy to check that A is a model of {P1, . . . , P5}.

Let us try to find an axiom killing this unwanted model. For example the axiom

P6 :≡ ∀x (x+ x = x→ x = 0)

holds in N0S+, but doesn’t hold in A (for example (1, 0) + (1, 0) = (1, 0)).

But there are still models of {P1, . . . , P6} that are non-isomorphic to N0S+. We could carry
on by adding more and more axioms, but would never succeed in characterising N0S+ up to
isomorphism. This is due to the following theorem.

64

6.1.7 Theorem (Loewenheim-Skolem)

If a loose specification (Σ,Φ) has a countably infinite model A, then it also has an uncountable
model B. In particular A and B are non-isomorphic, and therefore the abstract data type
ModΣ(Φ) is polymorphic.

Remark. The inability to characterise algebras by first-order formulas explains the term
‘loose specification’.

Notation. We will display loose specifications in a similar way as we display signatures. The
axioms will be displayed without universal quantifier prefix.

6.1.8 Example

The loose specification (Σ, {P1, . . . , P5}) of Example 6.1.6 is displayed as follows.

Loose Spec

Sorts nat

Constants 0: nat

Operations succ : nat→ nat
+: nat× nat→ nat

Variables x, y : nat

Axioms 0 6= succ(x)
succ(x) = succ(y)→ x = y
x = 0 ∨ ∃y (x = succ(y))
x+ 0 = x
x+ succ(y) = succ(x+ y)

6.1.9 Definition

A loose specification (Σ,Φ) is called adequate for a Σ-algebra A if A ∈ ModΣ(Φ).

(Σ,Φ) is called strictly adequate for A if A ∈ ModΣ(Φ) and ModΣ(Φ) is monomorphic, i.e.
for any Σ-algebra B

B ∈ ModΣ(A) iff B ' A.

Hence, a strictly adequate loose specification characterises an algebra ‘up to isomorphism’.

65

For example, the loose specification in example 6.1.5 is strictly adequate for the algebra Boole,
whereas the loose specification in example 6.1.6 is only adequate for the algebra N0S+, but not
strictly adequate.

6.1.10 Definition

A loose specification (Σ′,Φ′) is called extension of a loose specification (Σ,Φ) of the signature
Σ′ is an expansion if the signature Σ (see definition 5.2.2) and Φ′ ⊇ Φ.

(Σ′,Φ′) is called persistent extension of (Σ,Φ) if (Σ′,Φ′) is an extension of (Σ,Φ) and addition
for every closed Σ-formula P it holds that Φ′ |= P if and only of Φ |= P .

Remark. Persistence is an important property of an extension of a specification: It says
that the old operations are not affected by the extension, that is, no new facts about the old
operations follow from the new axioms.

6.1.11 Lemma

Let the loose specification (Σ′,Φ′) be an extension of the loose specification (Σ,Φ) such that
very Σ-algebra A satisfying Φ can be expanded to a Σ′-algebra A′ satisfying Φ′.

Then (Σ′,Φ′) is a persistent extension of (Σ,Φ).

Proof. Let P be a closed Σ-formula such that Φ′ |= P . We have to show Φ |= P . To this
end we take an arbitrary Σ-algebra A satisfying Φ and have to show that A satisfies P . By
assumption there is an expansion A′ of A such that A′ satisfies Φ′. Since we assumed that
Φ′ |= P we may conclude that A′ satisfies P . Since A′ is an expansion of A it follows that A
satisfies P too (Exercise 6 at the end of this Chapter).

6.1.12 Example

Let (Σ,Φ) be the specification in Example 6.1.8. Extend (Σ,Φ) by the operation

pred: nat→ nat

and the equation

pred(succ(x)) = x

to obtain (Σ′,Φ′). We use Lemma 6.1.11 to show that (Σ′,Φ′) is persistent: Let A be any
model of (Σ,Φ). Thanks to the axiom succ(x) = succ(y) → x = y the function succA is
injective. Hence we can define predA(a) := b if succA(b) = a (the b is unique if it exists) and
predA(a) := a otherwise. This defines an expansion of A which is a model of (Σ′,Φ′).

66

6.2 Initial specifications

In order to increase the expressiveness of loose specifications we restrict their semantics to
algebras that are initial in the class of all models of the loose specification. Unfortunately
initial models do not exist for arbitrary loose specifications, as shown by the following example.

6.2.1 Example

Let Σ := ({s}, {a : s, b : s, c : s}) and Φ := {a = b ∨ a = c}. We will show that the loose
specification (Σ,Φ) has no initial model. Let A be a Σ-algebra that is initial for ModΣ(Φ). We
have show A 6∈ ModΣ(Φ), i.e. the formula a = b ∨ a = c is false in A.

Define two Σ-algebra B,C by Bs = Cs = {0, 1} and

aB = bB := 0, cB := 1.

aC = cB := 0, bC := 1.

Obviously in both algebras the formula a = b ∨ a = c is true, i.e. B,C ∈ ModΣ(Φ). Since we
assumed A to be initial for ModΣ(Φ), we have homomorphisms

ϕ : A→ B, ψ : A→ C

Using the homomorphic property of ϕ and ψ we see

ϕ(aA) = aB 6= cB = ϕ(cA), hence aA 6= cA

ψ(aA) = aC 6= bC = ϕ(bA), hence aA 6= bA

Hence the formula a = b ∨ a = c is false in A.

In order to guarantee the existence of such initial algebras we now drastically restrict the form
of axioms.

Notation. Recall that an equation over a signature Σ is a formulas of the form

t1 = t2

where t1, t2 are Σ-terms of the same sort.

If E is a set of equations over Σ we set

∀E := {∀(t1 = t2) | t1 = t2 ∈ E}

67

6.2.2 Definition

Let E be a set of equations over a signature Σ. We define

TE(Σ) := TModΣ(∀E)(Σ)

(cf. the proof of theorem 5.3.7), i.e. TE(Σ) = T(Σ)/∼E where for closed Σ-terms t1, t2

t1 ∼E t2 ⇔ ∀E |= t1 = t2

Hence the elements of TE(Σ) are equivalence classes of closed terms, where two closed terms
are equivalent iff they have the same value in all models of ∀E .

6.2.3 Theorem

Let E be a set of equations over a signature Σ. Then the Σ-algebra TE(Σ) is initial in
ModΣ(∀E).

For every A ∈ ModΣ(∀E) the unique homomorphism ϕA : TE(Σ)→ A is given by

ϕA([t]∼E) = tA

for each t ∈ T(Σ).

Proof. In theorem 6.2.3 it was proved that TE(Σ) is initial for ModΣ(∀E), and that ϕA is
the unique homomorphism from TE(Σ) to A. Hence it only remains to show that TE(Σ) is a
model of ∀E . Take an equation t1 = t2 ∈ E. We have to prove that the formula ∀(t1 = t2) is
true in TE(Σ).

In preparation of proving this we first show

t1θ ∼E t2θ for all substitutions θ : X → T(Σ) (+)

where the congruence ∼E is defined as in definition 6.2.2 above and X := FV(t1 = t2).

In order to prove (+) we take an arbitrary model A of ∀E and show that the equation t1θ = t2θ
is true in A, i.e. (t1θ)

A = (t2θ)
A. This can be seen as follows:

(t1θ)
A 3.5.4

= tA,θ
A

1

A|=∀(t1=t2)
= tA,θ

A

2
3.5.4
= (t1θ)

A

Having proved (+) it is now easy to prove that the formula ∀(t1 = t2) is true in TE(Σ). Let
α : X → TE(Σ) be a variable assignment. We have to prove

t
TE(Σ),α
1 = t

TE(Σ),α
2 (++)

68

Note that for every variable x ∈ X, α(x) is an ∼E-equivalence class. For every x ∈ X chose
a term θ(x) ∈ α(x). This defines a substitution θ : X → T(Σ). By definition we have α(x) =
[θ(x)]∼E for every x ∈ X, i.e. α = [·]∼E ◦ θ. Note also that [·]∼E : T(Σ)→ TE(Σ) (=T(Σ)/∼E)
is a homomorphism. Finally note that the substitution θ can also be viewed as a variable
assignment for the closed term algebra T(Σ). Baring all this in mind we can now prove (++).
We have

t
TE(Σ),α
1 = t

TE(Σ),[·]∼E ◦θ
1

6.1.2
= [t

T(Σ),θ
1]∼E

coursework 1
= [t1θ]∼E

and similarly t
TE(Σ),α
2 = [t2θ]∼E . Since by (+) we have [t1θ]∼E = [t2θ]∼E , we have proved (++).

6.2.4 Definition

Let Σ be a signature and E a set of equations over Σ. Then

Init−Spec(Σ, E)

is called an initial specification.

A Σ-algebra A is a model of Init−Spec(Σ, E) if it is an initial model of the loose specification
(Σ,∀E), i.e. A is initial in ModΣ(∀E).

We let Init−ModΣ(E) denote the class of all models of Init−Spec(Σ, E).

We also say that Init−Spec(Σ, E) is an adequate initial specification for the Σ-algebra A if
A ∈ Init−ModΣ(E).

6.2.5 Theorem

Let TE(Σ) be an initial specification. Then for any Σ-algebra A the following conditions are
equivalent:

(i) A is a model of Init−Spec(Σ, E).

(ii) A is initial in ModΣ(∀E) (i.e. A is an initial model of the loose specification (Σ,∀E)).

(iii) A ' TE(Σ).

(iv) A is generated and for any two closed Σ-terms t1, t2 of the same sort we have

A |= t1 = t2 ⇔ ∀E |= t1 = t2

(i.e. t1 and t2 have the same value in A iff they have the same value in all models of ∀E).

(v) A is a generated model of ∀E and for any two closed Σ-terms t1, t2 of the same sort we
have

69

A |= t1 = t2 ⇒ ∀E |= t1 = t2

In particular Init−ModΣ(E) is a monomorphic ADT containing TE(Σ).

Proof. ‘(i)⇔(ii)’ is just a repetition of definition 6.2.4 above.

‘(ii)⇔(iii)’ follows from theorem 6.2.3 and the fact that initial algebras are unique up to iso-
morphism (coursework 2).

‘(iii)⇒(iv)’. Let ϕ : TE(Σ)→ A be an isomorphism. By lemma 6.1.2 and the fact that tTE(Σ) =
[t] we have tA = ϕ([t]) for all closed Σ-terms. This clearly implies (iv).

‘(iv)⇒(v)’. Assume that (iv) holds. We have to show that A is a model of ∀E .

Let t1 = t2 be an equation in E and α : X → A a variable assignment, where X := FV(t1 = t2).
We have to show tA,α1 = tA,α2 . Since A is generated we have for every variable x ∈ X a closed
term θ(x) with α(x) = θ(x)A, i.e. α = θA. According to the substitution theorem 3.5.6 we have

tA,α1 = tA,θ
A

1 = (t1θ)
A

and similarly tA,α1 = (t1θ)
A. Since t1 = t2 is an equation in E we have ∀E |= t1θ = t2θ (we

showed this in detail in the proof of theorem 6.2.3). Hence (t1θ)
A = (t2θ)

A by assumption (iv).
Therefore tA,α1 = tA,α2 .

‘(v)⇒(iii)’. Assume that (v) holds. Since by assumption A ∈ ModΣ(∀E) we now by initiality
of TE(Σ) that there is unique homomorphism ϕ : TE(Σ) → A. Using once more the fact that
tA = ϕ([t]) for all closed Σ-terms (see ‘(iii)⇒(iv)’ above) it is plain that our assumption (v)
implies that ϕ is bijective.

The following theorem characterises equality between open terms in initial models.

6.2.6 Theorem

Let A be a model of the initial specification Init−Spec(Σ, E). Then for two terms t1, t2 of the
same sort the following statements are equivalent:

(i) A |= ∀(t1 = t2) .

(ii) B |= ∀(t1 = t2) for all generated models B of ∀E .

(iii) ∀E |= t1θ = t2θ for all substitutions θ : X → T(Σ), where X := FV(t1 = t2).

Proof. ‘(i)⇒(ii)’. Assume A |= ∀(t1 = t2) , and let B be a generated model of ∀E . By
initiality of A there is a homomorphism ϕ : A → B. Since A and B are both generated ϕ is
surjective. Hence clearly B |= ∀(t1 = t2) .

70

‘ (ii)⇒(i) ’. Obvious, since A is generated.

‘(i)⇔(iii)’. Since A is generated A |= ∀(t1 = t2) is equivalent to A |= t1θ = t2θ for all
substitutions θ : X → T(Σ), and by theorem 6.2.5 (iv) the latter is equivalent to (iii).

6.2.7 Example

Let us give an adequate initial specification of the algebra Boole defined in example 6.1.5.

Init Spec BOOLE

Sorts boole

Constants T,F : boole

Operations ¬ : boole→ boole
and, or : boole× boole→ boole

Variables x, y : boole

Equations ¬T = F
¬F = T
and(T,T) = T
and(F, x) = F
and(x,F) = F
or(x, y) = ¬(¬x,¬y)

Note that it is no longer necessary to specify that T and F are different and the only elements
of the carrier set.

How do we show that this specification is adequate? We use Theorem 6.2.5 (v). Clearly, Boole
is a generated model of ∀E where E is the set of six equations of our specification above.
Furthermore, by induction on closed terms t, we show:

(*) If tBoole = b where b ∈ {T,F}, then ∀E |= t = b.

Now, if for two closed terms t1, t2 of the same sort we have A |= t1 = t2, say, tBoole
i = T for

i = 1, 2, then, by (*), it follows ∀E |= t1 = T = t2. Hence, by Theorem 6.2.5 “(v)⇒(i)” it
follows that that the specification is adequate.

6.2.8 Example

Let Σ := ({nat}, {0: nat, succ : nat → nat, +: nat × nat → nat}) and E := {x + 0 =
x, x+ succ(y) = succ(x+ y)}.

71

We display the initial specification Init−Spec(Σ, E) by

Init Spec NAT

Sorts nat

Constants 0: nat

Operations succ : nat→ nat
+: nat× nat→ nat

Variables x, y : nat

Equations x+ 0 = x
x+ succ(y) = succ(x+ y)

We can show that this specification is adequate for the standard algebra N0S+ of natural numbers
with 0 and addition (see Example 5.2.7), with a similar method as in Example 6.1.5: It suffices
to show that if a closed term t has value n in the standard algebra, then ∀E |= t = succn(0).
Again, this can easily proven by induction on t.

From this, it also follows that the elements of the carrier set of TE(Σ) are the equivalence
classes [0], [succ(0)], [succ(succ(0))], One has for instance

[0] = {0, 0 + 0, (0 + 0) + 0, . . .}
= the set of closed terms built from 0 and +

[succ(0)] = {succ(0), succ(0) + 0, 0 + succ(0), . . .}
= the set of closed terms built from 0 and + and exactly one occurrence of succ

and in general

[n] = the set of closed terms built from 0 and + and exactly n-times occurrences of succ

= the set of closed terms t such that tA = n

In the next chapter we will develop tools that will facilitate similar proofs for a large class of
initial specifications.

The constant 0 and the f operation succ form a system of generators for N0S+, since all elements
are generated by terms built from 0 and succ. NAT is freely generated by 0 and succ, because
different terms built from 0 and succ denote different numbers.

6.2.9 Example

Let us modify example 6.2.8 as follows. We extend the initial specification by an operation
− : nat× nat→ nat and add the two equations

72

x− 0 = x

succ(x)− succ(y) = x− y

Let E be this extended set of equations. We also expand the standard algebra of natural
numbers in 6.2.8 by interpreting the new operation, −, by the operation

.
− : N×N→ N

n
.
− m :=

{
n−m if n ≥ m
0 otherwise

Let A be this expanded algebra. Clearly the new equations are valid under this interpretation
of −, i.e. A is a model of the loose specification (Σ,∀E), but not an initial model, that is A is
not a model of the initial specification Init−Spec(Σ, E), since, for example in A the equation

0− succ(0) = 0

holds, whereas clearly

∀E 6|= 0− succ(0) = 0

Therefore 6.2.5 (v) does not hold.

6.2.10 Exercises

Let the set of equations E and the algebra A be as in example 6.2.9.

(a) Find a model of ∀E where the equation 0− succ(0) = 0 does not hold.

(b) Find terms t, t′ such that the algebra A is a model of the initial specification Init−Spec(Σ, E ′),
where E ′ := E ∪ {t = t′}.

(c) Give an informal description of ‘the’ model of the initial specification Init−Spec(Σ, E ′).

73

6.2.11 Example

Init Spec NATSET

Sorts boole, nat, set

Constants T : boole
F : boole
0: nat
emptyset : set

Operations succ : nat→ nat
isempty : set→ boole
insert : set× nat→ set

Variables x, y : nat, s : set

Equations insert(insert(s, x), x) = insert(s, x)
insert(insert(s, x), y) = insert(insert(s, y), x)
isempty(emptyset) = T
isempty(insert(s, x)) = F

Let A be the classical algebra of finite set of natural numbers with the obvious interpretation
of the constants and operation. In order to show that NATSET is an adequate specification of
A we use again Theorem 6.2.5. Clearly A is a generated model of the equations E of NATSET.
By induction closed terms t one can also show that ∀E |= t = t′ where

t′ = insert(...insert(emptyset, succn1(0)), . . . succnk(0))

where tA = {n1, . . . , nk} with n1 < . . . < nk. With a similar argument as in the previous
examples it follows that if A |= t1 = t2, then ∀E |= t1 = t2.

6.2.12 Example

We wish to specify a simple editor. The editor should be able to edit a file by performing the
following possible actions:

- write(x): insert the character x immediately to the left of the cursor;

- B: move the cursor one position to the right;

- C: move the cursor one position to the left;

- del: delete the character immediately to the right of the cursor.

74

Consider for example the file

edir|or

where the ‘|’ represents the cursor. After entering C we get

edi|ror

and entering del thereafter yields

edi|or

Finally we write the character t and obtain

edit|or

It is convenient to represent a file with a cursor by a pair of lists of characters representing the
part of the file left and right to the cursor, where the left part is represented in reverse order.
Then the actions in the example above create the following sequence of representations of files:

([r, i, d, e], [o, r])

([i, d, e], [r, o, r])

([i, d, e], [o, r])

([t, i, d, e], [o, r])

We see that only the elementary operations of adding an element in front of a list, or removing
the first element of a list are needed to implement all possible actions of the editor.

To create a file we will use the generator cf : charlist × charlist → file and for creating lists of
characters the usual generators nil : charlist and cons : char × charlist→ charlist.

In order to keep things simple we stipulate that typing the command B whilst the cursor is at
the right end of the file will not modify the file (similarly del and for the right end).

The following initial specification formalises our ideas:

75

Init Spec EDITOR

Sorts char, charlist, file

Constants newfile : file
a, . . . , z, : char
nil : charlist

Operations cons : char × charlist→ charlist
cf : charlist× charlist→ file
write : char × file→ file
C : file→ file
B : file→ file
del : file→ file

Variables x : char, l, r : charlist

Equations newfile = cf(nil, nil)
write(x, cf(l, r)) = cf(cons(x, l), r)
C (cf(nil, r)) = cf(nil, r)
C (cf(cons(x, l), r)) = cf(l, cons(x, r))
B (cf(l, nil)) = cf(l, nil)
B (cf(l, cons(x, r))) = cf(cons(x, l), r)
del(cf(l, nil)) = cf(l, nil)
del(cf(l, cons(x, r))) = cf(l, r)

6.2.13 Exercises

(a) Extend the editor specified in example 6.2.12 by a command backspace that deletes the
character immediately to the left of the cursor.d

(b) Extend the editor by a character for a new line and a command that deletes all text in one
line to the right of the cursor.

(c) Improve (b) by putting the deleted text into a buffer and providing a command for yanking
back to the right of the cursor the text currently in the buffer.

6.3 Exception handling

In section 5.1 we considered the algebra SeqN of finite sequences of natural numbers. We
defined that the head and tail of an empty list are respectively zero and the empty list. It

76

would however been more natural to raise an exception in this situation, reflecting the fact that
the operations head and tail should not be performed on an empty list.

There are essentially four ways to handle exceptions (see [LEW]):

(i) Loose specification: We do not specify what the result in an exceptional situation is. This
forces us to accept polymorphic abstract data types as models of data.

(ii) Partial algebras : We interpret operations like head and tail as partial functions. This
means one has to develop a logic (syntax and semantics) for partial algebras.

(iii) Subsorts : One introduces, for example, the subsort of nonempty lists, and defines head
and tail on this subsort only. Algebras with subsorts are also called order-sorted algebras.

(iv) Algebras with error elements : One requires that every carrier set contains a special element
called error, and defines all operations such that they propagate errors. For example
error + n = n+ error = error for all n ∈ N ∪ {error}.

All four approaches have advantages and disadvantages. In this course we will pursue approach
no. (iv) because it can be easily combined with the initial algebra semantics. As an example we
consider the specification NAT of example 6.2.8 extended by subtraction, such that 0− succ(m)
raises an exception.

Init Spec NAT

Sorts nat

Constants 0: nat

Operations succ : nat→ nat
+: nat× nat→ nat
− : nat× nat→ nat

Variables x, y : nat

Equations x+ 0 = x
x+ succ(y) = succ(x+ y)
x− 0 = x
0− 0 = 0
succ(x)− succ(y) = x− y
0− succ(x) = error

This specification is shorthand for the initial specification containing an extra constant error
and equations specifying that an exception is propagated by all operations. Therefore the full
specification (which we however usually do not write out) reads:

77

Init Spec NAT

Sorts nat

Constants 0: nat, error : nat

Operations succ : nat→ nat
+: nat× nat→ nat
− : nat× nat→ nat

Variables x, y : nat

Equations x+ 0 = x
x+ succ(y) = succ(x+ y)
x− 0 = x
0− 0 = 0
succ(x)− succ(y) = x− y
0− succ(x) = error

succ(error) = error
error + x = error
x+ error = error
x− error = error
error − x = error

6.4 Modularisation

In example 6.2.11 we considered an initial specification of the algebra of finite sets of natu-
ral numbers. There are two obvious way to improve this specification using modularisation
techniques:

Firstly, it seems unnecessary to repeat the signature of the booleans. Instead it would be better
to import these from the ADT of booleans specified in example 6.1.5. This would give us the
extra advantage of having available the usual operations on boolean values.

Secondly, there is nothing special about the natural numbers as being the type of elements of
sets. Instead we could have specified finite sets of an arbitrary element type element. Abstract-
ing from a concrete type of elements gives us a parametric or polymorphic specification.

Applying both modularisation techniques we arrive at the following specification:

78

Init Spec SET(element)

import BOOLE

Sorts set

Constants emptyset : set

Operations isempty : set→ boole
insert : set× element→ set

Variables x, y : element, s : set

Equations insert(insert(s, x), x) = insert(s, x)
insert(insert(s, x), y) = insert(insert(s, y), x)
isempty(emptyset = T
isempty(insert(s, x)) = F

The specification NATSET of example 6.2.11 con now simply obtained as SET(nat).

Combining specifications in the way described above requires some care. For example, one has
to make sure that signatures do not overlap (e.g. in the example above nat must occur in no
other signature than the one of the specification NAT). If there is an overlap, then appropriate
renaming mechanisms have to resolve conflicts.

Our specification of the editor (example 6.2.12 can also be improved through modularisation
as it contains the signature of finite lists (of characters). It would be better to import the
specification of finite lists rather then mix it up with operations that concern the editor.

6.5 Abstraction through Information hiding

Another important aspect of algebraic specifications of abstract data types is information hid-
ing. For example, in our specification of the editor we used the constructors for lists and also
the constructor cf for creating a file from two lists. The constructor cf was a detail of a possible
implementation of the data type of files, it was not present in the original informal description
of an editor. Since we may later decide to change the implementation it is important that
the user of the editor does not have access to such details. Otherwise a small change of an
implementation detail of our editor my have a disastrous effect on a software system using this
editor. All modern specification languages (see next chapter) and also most modern high-level
programming languages have mechanisms for hiding operations, for example by making only
those operations visible that are explicitely exported. Our specification of the editor might
then, for example, look as follows (we also import lists):

79

Init Spec EDITOR

Export file, newfile,B,C, del,write

Import LIST(char)

Sorts char, charlist, file

Constants newfile : file
a, . . . , z, : char
nil : charlist

Operations cons : char × charlist→ charlist
cf : charlist× charlist→ file
write : char × file→ file
C : file→ file
B : file→ file
del : file→ file

Variables x : char, l, r : charlist

Equations newfile = cf(nil, nil)
write(x, cf(l, r)) = cf(cons(x, l), r)
C (cf(nil, r)) = cf(nil, r)
C (cf(cons(x, l), r)) = cf(l, cons(x, r))
B (cf(l, nil)) = cf(l, nil)
B (cf(l, cons(x, r))) = cf(cons(x, l), r)
del(cf(l, nil)) = cf(l, nil)
del(cf(l, cons(x, r))) = cf(l, r)

6.6 Specification languages

Stand alone specifications (loose or initial) that are not combined from other specifications (e.g.
BOOLE, NAT) are called atomic specifications. Starting from these atomic specifications
one can build more complex specifications by certain operations. The operations import and
parametrisation were discussed in the previous section. Other important operations are:

Union If Spec1 and Spec2 are specifications then Spec1 + Spec2 is a specification.

The signature of Spec1 + Spec2 is Σ1 ∪ Σ2 , where Σi is the signature of Speci (assuming
that Σ1 and Σ2 are ‘compatible’).

A Σ1 ∪ Σ2-algebra A is a model of Spec1 + Spec2 if and only if A|Σ1
is a model of Spec1

and A|Σ2
is a model of Spec2.

80

Restriction If Spec is a specification with signature Σ and Σ0 is a subsignature of Σ then
Spec|Σ0

is a specification with signature Σ0.

A Σ0-algebra A is a model of Spec|Σ0
if and only if A = B|Σ0

for some model B of Spec.

Further fundamental construction principles for specifications are renaming, inheritance and
quotients.

Describing abstract data types by atomic specifications is called specification-in-the-small,
whereas describing them by complex specifications is called specification-in-the-large.

6.6.1 Example

In example 6.2.8 we produced an initial specification of the algebra of natural numbers with
0, successor and addition. In example 6.2.9 and exercise 6.2.10 we extended this by ‘cut-off’
subtraction, n

.
− m, which, somewhat unnaturally, returns 0 if n < m.

We will now use the specification construct “+” (union) to provide a specification of the algebra
of natural numbers with 0, successor, addition and subtraction, but leaving it open what the
the result of n−m for n < m is (thus pursuing approach no. (iii) of section 6.3.

Let Init−Spec(Σ, E,) be the initial specification of example 6.2.8 (specifying the natural numbers
with 0 and addition). Let (Σ′, E ′) be the loose specification, where Σ′ is Σ expanded by the
operation − (minus), and E ′ consists of the equations

x− 0 = x

succ(x)− succ(y) = x− y

Then the models of the specification

Init−Spec(Σ, E) + (Σ′, E ′)

are, up to isomorphism, exactly those Σ′-algebras, where the natural numbers, addition and
n−m for n ≥ m have their standard meaning, but the result of n−m for n < m can be any
natural number.

A specification language is a (formal or informal) language to denote atomic and complex
specifications. Here is a selection of some of the most important specification languages cur-
rently in use:

VDM, Z Specification languages using set-theoretic notations. VDM and Z are the most
widely used specification languages in industry [Daw, Jac].

ASL A kernel language for algebraic specifications [SW].

Extended ML A specification language for functional programming languages, in particular
ML [ST].

81

Spectrum A very general specification language based on partial algebras, higher order con-
structs and polymorphism [Bro].

Larch A State oriented specification language. Contains an elaborate proof checker [GH].

CCS, CSP Formal languages for specifying concurrent processes [Mil, Hoa].

UML A design and modelling language for object oriented programming [BRJ].

CASL Common Algebraic Specification Language. Machine support by the interactive Theo-
rem Prover Isabelle/HOL. Integration of Process Algebra [Ast, Rog].

6.6.2 Remark

As already mentioned in the introduction to chapter 5 specifications as discussed in this course
are usually called algebraic or axiomatic specifications. Sometimes they are also called
functional specifications, because operations are modelled as functions on data, and they
match well with functional programming languages (LISP, SCHEME, ML, HASKELL, e.t.c.).
However in (industrially) applied specification languages (VDM, Z) it is common to write
specifications in an imperative or state oriented style. In such specifications the execution
of an operation may change the state of an algebra (our algebras don’t have a state). 2 For
example if our specification of an editor (6.2.12) were rewritten in imperative style the sort
file could be suppressed instead one would speak about the current state of the editor. The
state oriented style leads in some cases to shorter specifications which also seem to be closer to
implementations, however the model theory of state oriented specifications is more complicated
(and consequently often omitted in the literature).

6.7 Summary and Exercises

In this section the following notions and results were most important.

• Loose specifications : Arbitrary axioms are allowed. Every algebra satisfying the axioms
is a model. The class of all models of a consistent loose specification forms an ADT. By
the Loewenheim-Skolem Theorem, loose specifications usually cannot pin down ADTs up
to isomorphism, that is, the model class is a polymorphic ADT. Persistent extensions.

• Initial Specifications : Only equations are allowed as axioms. Every algebra which is
initial in the class of all loose models of a specification is an initial model. The class of all
models of an initial specification forms an ADT. Initial specifications do pin down ADTs
up to isomorphism, that is, the model class is a monomorphic ADT. A model of an initial
specification can be constructed as a quotient of the term algebra (see Theorem 6.2.5).

• Generators and observers, exception handling,

• Modularisation: Structuring specifications using import declarations and polymorphic
parametrisation. Abstraction: Information Hiding via export declarations.

2Algebras with state are often called evolving algebras (Börger), or abstract state machines (Gurevich).

82

• Specification Languages.

Exercises. 1. Consider the following loose specification LIST(BOOLE):

Loose Spec

Sorts boole, list

Constants T: boole, F : boole, nil : list

Operations cons : boole× list→ list
first : list→ boole
rest : list→ list

Variables x : boole, l : list

Axioms first(cons(x, l)) = x
rest(cons(x, l)) = l

Let Σ be the signature of LIST(BOOLE):

Show that the following Σ-algebra A is a model of LIST(BOOLE):

Aboole := {#t, #f},

Alist := the set of finite lists of boolean values.

TA := #t,

FA := #f,

nilA := [] (the empty list).

consA(a, [a1, . . . , an]) := [a, a1, . . . , an]

firstA(l) :=

#f if l = []

the first element of l otherwise

restA(l) :=

[] if l = []

the result of removing the first element from l otherwise

2. Is the Σ-algebra A, defined in the previous exercise, initial in the class of all models of
LIST(BOOLE)? Justify your answer.

83

3. Determine for the specifications BOOLE, SET, EDITOR and TREE generators and ob-
servers. Are the corresponding algebras freely generated by the generators?

4. In the exercises 5.4 (a) and (c) we discussed the algebra A of natural numbers and also the
algebra C of lists of natural numbers with the empty list and concatenation of lists (so A and
C are algebras over the same signature). Show that there is a bijection between A and C, but
no isomorphism.

Hint: For showing that A and C are not isomorphic use Theorem 6.1.3.

5. Let (Σ′,Φ′) be an extension of (Σ,Φ) such that for every closed Σ-formula P it holds that if
Φ′ |= P then Φ |= P .

Show that (Σ′,Φ′) is a persistent extension of (Σ,Φ).

6. Show that if A is a Σ-algebra and A′ is an expansion of A, then for every Σ-formula P it
holds that A |= P if and only if A′ |= P .

Hint: Structural induction on P .

7. Extend the specification NATSET in Example 6.2.11 by an operation member : nat→ set→
boole and equations that specify the new operation as a test for membership. Show that the
extension is persistent.

8. Extend the specification NATSET in Example 6.2.11 by an operation select : set→ nat and
the equations

select(nil) = 0
select(insert(s, x)) = x

Is this extension persistent?

84

9. Give an initial specification of FIFO (first-in-first-out) queues of natural numbers. The
signature should contain (among other things) the operations

- snoc : queue→ nat→ queue, inserting an element at the end of a queue,

- head : queue→ nat, computing the first element of a nonempty queue,

- tail : queue→ queue, computing the tail of a nonempty queue (first element removed),

- member : nat→ queue→ boole, testing membership,

- length : queue→ nat, computing the length of a queue,

- isempty : queue→ boole, testing whether a queue is empty.

Determine constructors and observers. Are the constructors free?

10. Let Σ be the signature with one sort, one constant, 0, and one binary operation, +. Let A
be the Σ-algebra of real numbers with 0 and addition. For any Σ-formula P with exactly one
free variable x and any real number r ∈ A, we let “A |= P (r)” mean “A,α |= P for some (or
any) variable assignment α such that α(x) = r”.

Show that if A |= P (r) for some r 6= 0, then A |= P (s) for all s 6= 0.

Hint: Show that for every real number c 6= 0 the function ϕ : A→ A, defined by ϕ(a) := c ∗ a,
is an automorphism. Now use Theorem 6.1.3.

Remark: From this exercise it follows that no non nontrivial properties of real numbers can be
expressed by a formula built from 0 and + only. The only exception are “x = 0” and “x 6= 0”.
We cannot express, for example, “x > 0”, or “x = 1”.

11. Let Σ be the signature with one sort, two constants, 0 and 1, and two binary operations,
+ and ∗. Let R be the Σ-algebra of real numbers with 0, 1, addition and multiplication.

(a) Show that “x < y” is expressible by a Σ-formula.

(b) Let ϕ : R→ R be an automorphism. Show that ϕ(q) = q for all rational numbers q.

(c) Show that the only automorphism on R is the identity.

Hint for (c). Use parts (a) and (b) as well as Theorem 6.1.3 to show that for all rationals q and
all reals r we have q < ϕ(r) if and only if q < r. This clearly implies ϕ(r) = r for all reals r.

Remark: On the Σ-algebra C of complex numbers there exist exactly two automorphisms: The
identity, and the mapping sending a complex number z = x + iy to its conjugate complex
z = x− iy.

85

7 Implementation of Abstract Data Types

Abstract data types given by an initial specification can be implemented in most modern
programming languages. By means of some simple examples, we describe and compare the
implementation of abstract data types in a functional and an object-oriented style. We discuss
the dangers of breaking abstraction barriers in software development, or using non-persistent,
that is, destructive operations (which are typical in imperative programming). We also describe
some simple techniques of improving the efficiency of the implementation of ADTs.

7.1 Implementing ADTs in Functional and Object Oriented Style

Consider the following initial specification of an abstract data type of binary trees with natural
numbers attached to each node.

Init Spec TREE

import NAT, BOOLE

Sorts tree

Operations leaf : nat→ tree
branch : tree× nat× tree→ tree
isleaf : tree→ boole
root : tree→ nat
left : tree→ tree
right : tree→ tree

Variables x : nat, s, t : tree

Equations isleaf(leaf(x)) = T
isleaf(branch(s, x, t)) = F
root(leaf(x)) = x
root(branch(s, x, t)) = x
left(leaf(x)) = error
left(branch(s, x, t)) = s
right(leaf(x)) = error
right(branch(s, x, t)) = t

We first implement the Abstract Data Type TREE in the functional programming language
Haskell. Obviously, the type of integers in TREE could be replaced by any other data type.
Therefore we define, more generally, a polymorphic data type of trees with labels from some
unspecified type a.

86

Using Haskell’s data construct the definition of the data type Tree is very easy, and, using
pattern matching, the equations of the specifications literally translate into a Haskell program.
In order to hide the the way the data type is defined the constructors are not exported directly,
but only aliases of them.

module Tree (Tree,leaf,branch,isleaf,root,left,right) where

data Tree a = Leaf a | Branch (Tree a) a (Tree a)

leaf :: a -> Tree a

leaf x = Leaf x

branch :: Tree a -> a -> Tree a -> Tree a

branch s x t = Branch s x t

isleaf :: Tree a -> Bool

isleaf (Leaf x) = True

isleaf (Branch s x t) = False

root :: Tree a -> a

root (Leaf x) = x

root (Branch s x t) = x

left :: Tree a -> Tree a

left (Leaf x) = error "left of Leaf"

left (Branch s x t) = s

right :: Tree a -> Tree a

right (Leaf x) = error "right of Leaf"

right (Branch s x t) = t

Now we implement TREE in the object-oriented programming language Java. As trees come
in two shapes, either leaf(x), or branch(s, x, t), we cannot implement trees as objects of one
class, because, roughly speaking, one class can contain objects of one shape only. One way
around this problem is to define an abstract class of trees with abstract methods getRoot and
isLeaf and two subclasses, one for trees of the shape leaf(x) and one for trees of the shape
branch(s, x, t):

public abstract class Tree {

public abstract int getRoot () ;

public abstract boolean isLeaf () ;

}

public class Leaf extends Tree {

private int label ;

public Leaf (int x) {

87

label = x ;

}

public int getRoot () {

return label ;

}

public boolean isLeaf () {

return true ;

}

}

public class Branch extends Tree {

private Tree left ;

private int label ;

private Tree right ;

public Branch (Tree s, int x, Tree t) {

left = s ;

label = x ;

right = t ;

}

public int getRoot () {

return label ;

}

public boolean isLeaf () {

return false ;

}

public Tree getLeft () {

return left ;

}

public Tree getRight () {

return right ;

}

}

The following should be noted about the Java implementation:

• The generators of trees are given by the constructors Leaf and Branch. Strictly speaking,
this violates the principle of abstractness since a detail of the implementation is revealed
to the user.

• The observers getLeft and getRight are defined only for objects of the class Branch,
but not for Tree in general.

• Java does not support polymorphic data types (as Haskell does). There are however
extensions of Java (Generic Java, Poly Java, Pizza) supporting parametric polymorphism
(and more).

88

In order to compare the functional and the object-oriented implementation according to flexi-
bility w.r.t. modifications, we enrich our abstract data type TREE by an observer

depth : tree→ nat

computing the depth of a tree.

In Haskell, we simply add to the module Tree the lines

depth :: Tree a -> Int

depth (Leaf x) = 0

depth (Branch s x t) = 1 + max (depth s) (depth t)

In Java, however, we have to enlarge the abstract class Tree as well as both subclasses, Leaf
and Branch, by suitable methods:

public abstract class Tree {

public abstract int getRoot () ;

public abstract boolean isLeaf () ;

public abstract int depth () ;

}

public class Leaf extends Tree {

private int label ;

public Leaf (int x) {

label = x ;

}

public int getRoot () {

return label ;

}

public boolean isLeaf () {

return true ;

}

public int depth () {

return 0 ;

}

}

public class Branch extends Tree {

private Tree left ;

private int label ;

private Tree right ;

public Branch (Tree s, int x, Tree t) {

left = s ;

label = x ;

right = t ;

89

}

public int getRoot () {

return label ;

}

public boolean isLeaf () {

return false ;

}

public Tree getLeft () {

return left ;

}

public Tree getRight () {

return right ;

}

public int depth () {

return (1 + max(left.depth,right.depth)) ;

}

}

In general, modifications like this, scattered through the program code, are extremely error
prone if not totally infeasible. In order to minimise the risk of introducing errors it that way,
it therefore is advisable to keep abstract data types rather small in terms of the number of
operations.

Next we modify our abstract data type TREE by a generator

treesucc : nat× tree

that generates from a number and one tree a new tree.

This time the extension in Haskell is more awkward because we have to extend the definition
of each observer by a new clause for the new generator. On the other hand the corresponding
extension in Java is straightforward: We just have to add a new (sub)class.

Exercise: Carry out the extensions of the abstract data type TREE by the generator treesucc
in Haskell as well as in Java.

7.2 Efficiency

In our Haskell implementation of the abstract data type TREE, all operations clearly run in
time O(1), that is, in constant time, except for the operation depth. The latter has time
complexity O(n) (where n is the number of labels of a tree) since depth has to run through
all nodes of a tree in order to determine its depth (the Java implementation has the same
complexities). There is a simple way to improve the implementation such that depth runs in
constant time: Just add an extra argument to the constructor Branch recording the depth of
the tree:

90

module Tree (Tree,leaf,branch,isleaf,root,left,right,depth) where

data Tree a = Leaf a | Branch Int (Tree a) a (Tree a)

depth :: Tree a -> Int

depth (Leaf x) = 0

depth (Branch d s x t) = d

leaf :: a -> Tree a

leaf x = Leaf x

branch :: Tree a -> a -> Tree a -> Tree a

branch s x t = Branch (1 + max (depth s) (depth t)) s x t

isleaf :: Tree a -> Bool

isleaf (Leaf x) = True

isleaf (Branch d s x t) = False

root :: Tree a -> a

root (Leaf x) = x

root (Branch d s x t) = x

left :: Tree a -> Tree a

left (Leaf x) = error "left of Leaf"

left (Branch d s x t) = s

right :: Tree a -> Tree a

right (Leaf d) = error "right of Leaf"

right (Branch d s x t) = t

Remarks.

1. Note that now no longer all objects of the form Branch d s x t represent legal trees, but
only those where d is actually the height of the tree given by s, x and t. However, this is
unproblematic because using the exported operations only legal trees can be generated. The
situation that not all elements of a type are legal representatives of the implemented ADT is
very common. Ordered lists or balanced trees representing sets or finite maps are examples.

2. How do we know that our implementation is correct? In this example, the correctness proof
is rather trivial: We show that the property “depth(t) is the depth of t” holds for terms of
the form leaf x and is preserved by the operation branch. Both facts are obvious.

3. Consider what would happen if in Section 7.1 we hadn’t made the function branch abstract,
but had used the constructor Branch directly: In that case, all expressions of the form Branch s

x t would have to be modified to Branch d s x t. Needless to say that such kinds of editings
throughout a program (not just within one ADT) are very dangerous.

91

4. The dramatic effect of this modification of the implementation on the efficiency of depth

can be seen by generating large trees using the function

mkTree :: Int -> TreeInt

mkTree n | n <= 0 = leaf 0

| otherwise = let t = mkTree (n-1) in branch t n t

and evaluating the expression depth (mkTree 100) under both implementations.

5. Finally, it should be stressed that the new implementation is, for the user, indistinguishable
from the old one (except for efficiency, of course).

7.3 Persistence

Suppose we wish to implement in Haskell the ADT of queues as described informally in Exer-
cise 9 in Section 6.7. A first solution implements queues as lists and the operation snoc(q, x) as
q ++ [x] (appending the singleton list [x] to q). For brevity we do not implement all operation
of Exercise 9. We do also make the implementation polymorphic in the type of elements of a
queue.

module Queue (Queue,emptyQ,snoc,head,tail) where

import Prelude hiding (head,tail)

type Queue a = [a]

emptyQ :: Queue a

emptyQ = []

snoc :: Queue a -> a -> Queue a

snoc q x = q ++ [x]

head :: Queue a -> a

head [] = error "head of empty queue"

head (x:xs) = x

tail :: Queue a -> Queue a

tail [] = error "tail of empty queue"

tail (x:q) = q

In this implementation the runtime of snoc is O(n) because the append function is defined by
recursion on its first argument:

(++) :: [a] -> [a] -> [a]

[] ++ ys = ys

(x:xs) ++ ys = x : (xs ++ ys)

92

Hence xs ++ ys takes length(xs) many steps and consequently snoc(q, x) takes length(q) many
steps.

In an imperative programming language a better runtime of the append function can be easily
achieved by implementing a list as a linked structure with a pointer to the head and the end
of the list. Then, appending two lists boils down to some simple pointer manipulations, as
illustrated in figure 4 on page 92. Clearly, the runtime is independent of the lengths of the
lists, that is, O(1). Note, however, that the arguments to ++ are destroyed when executing

xs -

? ?

ys -

? ?

0 - 1 - 2 • 3 - 4 •

(before)

zs -

? ?

0 - 1 - 2 - 3 - 4 •

(after)

Figure 4: Executing zs = xs ++ ys in an imperative setting. This operation destroys the
argument lists xs and ys [Oka].

the operation. In other words, the imperative implementation of ++ is not persistent.

In contrast, in a functional language, arguments of an operations are never destroyed. They can
still be freely used after executing the operation. In the case of the append operation, the first
argument is copied to be used as a part of the result, as illustrated in figure 5 on page 93. At
first glance it might seem that in this example (and many others) persistence is incompatible
with (time and space) efficiency. There are, however, possibilities to reconcile persistence and
efficiency in a purely functional setting. For example, we can implement a queue by two lists,
Qfr (Q is the constructor for queues), where f represents the front and r the reversed rear of
the queue, maintaining the invariant that whenever f is empty, so is r:

module Queue (Queue,emptyQ,snoc,head,tail) where

import Prelude hiding (head,tail)

93

xs - 0 - 1 - 2 • ys - 3 - 4 •

(before)

zs - 0 - 1 - 2

?

xs - 0 - 1 - 2 ys - 3 - 4 •

(after)

Figure 5: Executing zs = xs ++ ys in a functional setting. The arguments xs and ys are
unaffected by the operation [Oka].

data Queue a = Q [a] [a] deriving Show

emptyQ :: Queue a

emptyQ = Q [] []

snoc :: Queue a -> a -> Queue a

snoc (Q [] r) x = Q [x] []

snoc (Q f r) x = Q f (x:r)

head :: Queue a -> a

head (Q [] r) = error "head of empty queue"

head (Q (x:f) r) = x

tail :: Queue a -> Queue a

tail (Q [] r) = error "tail of empty queue"

tail (Q [x] r) = Q (reverse r) []

tail (Q (x:f) r) = Q f r

Clearly, the operations snoc and head run in constant time. Furthermore, tail(Qfr) runs in
constant time except when f happens to be a singleton. Since the runtime of of tail(Qfr)
is bounded by the number of snoc operations needed to build up r one says that tail runs in
constant amortised time. Practically, this means that when we do not make use of persistence

94

(that is, we use the queue in a single threaded way), then, when viewed as part of a sequence
of operation, the operation head behaves as if it ran in constant time (see [Oka] for details).

7.4 Structural Bootstrapping

The implementation of queues in the previous section can be slightly improved by maintaining
the stronger invariant length(f) ≥ length(r) (Exercise 3 in Section 7.6). A more substantial
performance improvement can be achieved by a technique called structural bootstrapping. The
general idea of bootstrapping (“pulling yourself up by your bootstraps”) is to obtain a solution
to a problem from another (simpler, incomplete, or inefficient) instance of the same problem.
In the case of queues, the idea is to split the front part of a queue into a list f and a queue
m1, . . . ,mk of reversed rear parts, maintaining the invariant

length(f) + length(m1) + . . .+ length(mk) ≥ length(r).

In order to make the computation of the lengths efficient we add the numbers lfm := length(f)+
length(m1) + . . .+ length(mk) and length(r) as extra arguments the constructor of a queue.

data Queue a = E | Q Int [a] (Queue [a]) Int [a] deriving Show

emptyQ :: Queue a

emptyQ = Q 0 [] E 0 []

snoc :: Queue a -> a -> Queue a

snoc E x = Q 1 [x] E 0 []

snoc (Q lfm f m lr r) x = check lfm f m (lr+1) (x:r)

head :: Queue a -> a

head E = error "head of empty queue"

head (Q lfm (x:f) m lr r) = x

tail :: Queue a -> Queue a

tail E = error "tail of empty queue"

tail (Q lfm (x:f) m lr r) = check (lfm-1) f m lr r

check,checkF :: Int -> [a] -> Queue [a] -> Int -> [a] -> Queue a

check lfm f m lr r =

if lfm >= lr then checkF lfm f m lr r

else checkF (lfm+lr) f (snoc m (reverse r)) 0 []

checkF lfm [] E lr r = E

checkF lfm [] m lr r = Q lfm (head m) (tail m) lr r

checkF lfm f m lr r = Q lfm f m lr r

Remarks. 1. In the implementation above, a queue of elements of type a has a middle part
consisting of a queue of elements of type [a]. In technical terms: the definition of the data

95

type Queue a above is an instance of polymorphic recursion.

2. The efficiency of this implementation relies to a large extent that Haskell is a lazy language,
that is, the execution of operations is suspended until the result is actually needed. The gain
in efficiency is greatest in applications that make heavy use of persistence. This is explained in
detail in [Oka].

3. Although all operations of this implementation run in constant amortised time, it can
happen that an application of a head or tail operation takes time proportional to the length of
the queue. The reason is that sometimes rather long lists need to be reversed and reversion is
a batched operation, that is, it needs to be fully executed when needed.

4. In applications where predictability is more important than raw speed (for example, one
might prefer to have 1000 times 0.2 seconds response time rather than having 999 times 0.1
seconds, but once 20 seconds), then one is more interested in worst case complexity, but not in
amortised complexity. To achieve good worst time behaviour for queues one needs to replace
the operation of reversing by a more complex operation whose execution can be scheduled (see
[Oka] for details).

7.5 Correctness

We have seen a few implementations of abstract data types. How can we prove that these
implementations are correct? Before we can answer this question we need to know what it
means for an implementation to be correct, end, first of all, we need to clarify what it means
to implement an abstract data type.

The implementation of queues by two lists (front and rear), at the end of Section 7.3, gives us
a good guideline for answering these questions.

(1) The data type

data Queue a = Q [a] [a]

together with the operations snoc, head, tail defines an algebra.

(2) Not all elements of this algebra are legal queues: For Q f r to be legal, we require that if
f is empty, then so is r. The legal elements of Queue a form a subalgebra (this requires
a proof that the operations preserve legality).

(3) Different legal elements of Queue a may denote the same queue. For example, Q [1,2]

[4,3] denotes the same queue as Q [1,2,3] [4]. The relation of denoting the same
queue is a congruence on the subalgebra defined in (2) (this requires a proof that the
operations respect this relation).

(4) Summing up, we see that the abstract data type of queues is implemented as a quotient
of a subalgebra of the algebra Queue a.

It remains to be shown that this quotient is indeed a model of our ADT of queues. This can
be done in different ways:

96

(a) We can prove directly that this quotient is a model of a given specification. In our case
we could use the initial specification to be found in Exercise 9 in Section 6.7 and use
Theorem 6.2.5.

(b) We can use a “canonical model” of queues and prove that our implementation is isomor-
phic to the canonical model. According to the Homomorphism Theorem 5.2.8 it suffices
to define an epimorphism from the subalgebra in (2) to the canonical model such that
the congruence in (3) coincides with the congruence induced by the epimorphism. The
latter means that two legal elements in Queue a denote the same queue if and only if the
homomorphism maps them to the same element in the canonical model.

In our example, the canonical model would be the data type of lists, [a], with the imple-
mentations of snoc, head, tail as defined at the beginning of Section 7.3. The homomorphism
maps Q f r to f ++ reverse r (it has to be checked that this is indeed a homomorphism).
The congruence in (3) is defined exactly such that (b) is fulfilled. Hence we know that our
implementation of queues is correct.

7.6 Summary and Exercises

In this section the following notions and results were most important.

• Implementing abstract data types in functional and object-oriented style. Abstraction by
hiding constructors of the data type. Negative effects of breaking abstraction barriers.

• Gaining efficiency through adding information to the constructors of a data type.

• Persistence: The application of an operation does not destroy the arguments. Always
satisfied in a functional, but not necessarily in an imperative setting.

• Further gain of efficiency through structural bootstrapping. Polymorphic recursion.

• Implementing an ADT as a quotient of a subalgebra of a concrete data type. Using the
Homomorphism Theorem to prove correctness.

Exercises. 1. Extend the abstract data type TREE of Section 7.1 by a generator

treesucc : nat× tree

that generates from a number and one tree a new tree. Carry out the extensions of the abstract
data type TREE by the generator treesucc in Haskell as well as in Java.

2. Implement in Haskell an ADT of integer labelled trees, similar to the trees in Section 7.1,
but with an extra operation computing the sum of the labels in a tree. Make sure that all
operations run in constant time.

3. Implement in Haskell a variant of the queues in Section 7.3 that maintains the stronger
invariant length(f) ≥ length(r).

97

4. Extend the data type Queue a defined at the beginning of Section 7.3 by all the operation
specified in Exercise 9 of Section 6.7.

5. Prove that the legal elements on Queue a, as defined in Section 7.5, form a subalgebra of
Queue a. Furthermore, prove that the map that sends a legal Q f r to f ++ reverse r is an
epimorphism.

98

99

Part III

Advanced Methods of Program
Development

100

8 Term Rewriting and Rapid Prototyping

In section 6.2 we studied initial specifications Init−Spec(Σ, E), where E is a set of equations.
One of the main theoretical results was that in a model A of Init−Spec(Σ, E) two closed terms
t1, t2 have the same value if and only if the equation t1 = t2 is a logical consequence of ∀E
(theorem 6.2.5 (iv)). Since, by Gödel’s soundness and completeness theorem, 4.3.1, 4.3.2, logical
consequence is equivalent to provability this means

A |= t1 = t2 if and only if ∀E ` t1 = t2

In this chapter we will see that in order to derive a sequent ∀E ` t1 = t2 only the rules
for universal quantification and equality rules 4.2 are needed (Birkhoff’s Theorem 8.1.5). An
important consequence of this is the fact that in many practically relevant cases derivations can
be mechanised using term rewriting yielding a procedure to decide whether or not ∀E ` t1 = t2.
Term rewriting also automatically yields correct implementations of many initial specification
of practical interest (rapid prototyping 8.5).

Assumption. From now on we will always assume that all signatures Σ considered are finite
and are such that for every sort s there is at least one closed term of sort s. This in particular
will imply that for every Σ-algebra A the carrier sets As are all nonempty (since tA ∈ As, where
t is a closed term of sort s).

This assumption is not a severe restriction, because it is fulfilled for any signature of interest,
but it avoids certain strange phenomena. For example, if in a Σ-algebra A we have aA 6= bA,
where a, b are constants, and x is a variable of sort s where As = ∅, then in A the formula
∀x (a = b) would be true although the equation a = b is false. Empty sorts would also cause
some complications in the formulation of the derivation calculus we are going to study now.

8.1 Equational logic

8.1.1 Definition

The deduction rules of equational logic with respect to a given signature Σ are the following.

101

Reflexivity t = t

Symmetry
t1 = t2
t2 = t1

Transitivity
t1 = t2 t2 = t3

t1 = t3

Compatibility
t1 = t′1 . . . tn = t′n
f(t1, . . . , tn) = f(t′1, . . . , t

′
n)

Instance
t1 = t2
t1θ = t2θ

In these rules t, ti, t
′
i ∈ T(Σ, X), θ : X → T(Σ, Y) is a substitution, and f is an operation of the

signature Σ. We write

`E t1 = t2

if the equation t1 = t2 can be derived starting with equations in E and using the rules above.
In this case we also say that the equation t1 = t2 is derivable from E (in equational logic).

8.1.2 Example

Let E := { x + 0 = x, x + succ(y) = succ(x + y) }. Then `E 0 + succ(0) = succ(0) as the
following derivation shows.

x+ succ(y) = succ(x+ y)
Inst

0 + succ(0) = succ(0 + 0)

x+ 0 = x
Inst0 + 0 = 0

Comp
succ(0 + 0) = succ(0)

Trans
0 + succ(0) = succ(0)

8.1.3 Lemma

If `E t1 = t2 then ∀E `m t1 = t2.

Proof. Trivial induction on the built-up of equational derivations. Let us verify, for example,
the rule Instance:

t1 = t2
t1θ = t2θ

where, say, θ = {r1/x1, . . . , rn/xn}. By induction hypothesis we have ∀E `m t1 = t2. By n-fold
application of the rule ∀+ we obtain ∀E `m ∀x1, . . . , xn (t1 = t2), and applying n-times the rule
∀− yields ∀E `m (t1 = t2){r1/x1, . . . , rn/xn}, that is, ∀E `m t1θ = t2θ.

102

8.1.4 Soundness Theorem

If `E t1 = t2 then ∀E |= ∀(t1 = t2) .

Proof. Assume `E t1 = t2. Then, by lemma 8.1.3 above, ∀E ` t1 = t2, and therefore, using
the rule ∀+ repeatedly, ∀E ` ∀(t1 = t2) . From the soundness theorem for natural deduction,
theorem 4.3.1, it follows ∀E |= ∀(t1 = t2) .

8.1.5 Completeness Theorem (Birkhoff)

If ∀E |= ∀(t1 = t2) then `E t1 = t2.

Proof. Let Σ be the signature of E ∪ {t1 = t2} and let V be the set of all variables for the
sorts of Σ. Then T(Σ, V) is the set of all Σ-terms which, according to definition 3.2.7, can be
viewed as a Σ-algebra. For Σ-terms t1, t2 of the same sort we define

t1 =E t2 :⇔ `E t1 = t2

Because of the rules Reflexivity, Symmetry, Transitivity, and Compatibility this defines a con-
gruence =E on T(Σ, V). Set

A := T(Σ, V)/=E

The following fact will be crucial in the rest of the proof. Let t be a Σ-term and α : X → A a
variable assignment, where X ⊇ FV(t). Then

tA,α = [tθ]=E (+)

for any substitution θ : X → T(Σ, V), such that θ(x) ∈ α(x) for all x ∈ X.

Proof of (+). Note that the condition on θ means that α(x) = [θ(x)]=E for all x ∈ X, i.e.
α = [.]=E ◦ θ. Hence

tA,α = tA,[.]=E ◦θ
6.1.2
= [tT(Σ,V),θ]=E

coursework 2
= [tθ]=E

We now use (+) to show the following.

A |= ∀(t1 = t2) ⇔ `E t1 = t2 (++)

for all Σ-terms t1, t2 of the same sort.

Proof of (++).

‘⇒’. Assume A |= ∀(t1 = t2) . Using (+) with X := FV(t1 = t2), α(x) := [x]=E , and θ(x) := x
we get

103

[t1]=E = [t1θ]=E
(+)
= tA,α1

A|=∀(t1=t2)
= tA,α2 = . . . = [t1]=E

i.e. `E t1 = t2.

‘⇐’. Assume `E t1 = t2. Let α : X → A be a variable assignment We have to show tA,α1 = tA,α2 .

Define a substitution θ : X → T(Σ, V) by selecting from every =E-equivalence class α(x) (x ∈
X) an element θ(x) ∈ α(x) (we did a similar thing in the proof of Theorem 6.2.3). Using (+)
a second time we get tA,αi = [tiθ]=E for i = 1, 2. From the assumption `E t1 = t2 we may infer
`E t1θ = t2θ using the rule Instance. Hence [t1θ]=E = [t2θ]=E and therefore tA,α1 = tA,α2 . Thus
(++) is proved.

From (++), ‘⇐’ it follows that A is a model of ∀E , since

∀(t1 = t2) ∈ ∀E ⇒ t1 = t2 ∈ E ⇒ `E t1 = t2
(++)⇒ A |= ∀(t1 = t2)

It is now easy to prove the theorem. Assume ∀E |= ∀(t1 = t2) . Then A |= t1 = t2, since A is
a model of ∀E . Consequently `E t1 = t2, by (++), ⇒.

8.2 Term rewriting systems

Now we show how equational logic can be mechanised.

8.2.1 Definition

A term rewriting system over a signature Σ is a finite set R of rewrite rules l 7→ r, where
r and l are Σ-terms, such that

(i) l is not a variable,

(ii) FV(r) ⊆ FV(l).

Given a term rewriting system R we define a binary relation →R on the set of Σ-terms by

t→R t
′ :⇔ t ≡ u{lθ/x} and t′ ≡ u{rθ/x}

for some rewrite rule l 7→ r ∈ R,
some Σ-term u with exactly one occurrence of some variable x, and

some substitution θ : X → T(Σ, Y)

In other words, t →R t′ holds iff t′ can be obtained from t by replacing some subterm of the
form lθ by rθ, where l 7→ r ∈ R and θ is a substitution. We also say that the subterm lθ
matches l, or is an instance of l.

If t→∗R t′ we say rewrites to t′,

We call →R the term rewriting relation generated by R.

Furthermore we define

104

t→∗R t′ :⇔ t ≡ t0 →R . . .→R tn ≡ t′ for some Σ-terms t0, . . . , tn

t↔R t
′ :⇔ t→R t

′ or t′ →R t

t 'R t′ :⇔ t ≡ t0 ↔R . . .↔R tn ≡ t′ for some Σ-terms t0, . . . , tn

Any finite or infinite sequence t0 →R t1 →R . . . is called a reduction sequence.

A term t is in normal form w.r.t. R if it cannot be rewritten, i.e. t 6→R t
′ for any t′.

We say that t′ is a normal form of t, or t normalises to t′ if t →∗R t′ and t′ is in normal
form.

8.2.2 Definition

Let E be a set of equations over the signature Σ. If the set R := {l 7→ r | l = r ∈ E} is a term
rewriting system (i.e. conditions (i) and (ii) in definition 8.2.1 are met), we call R the term
rewriting system defined by E. In this case we will write t →E t′ instead of t →R t′ and
simply say that E is a term rewriting system. The equations r = l in E will then be called
rewrite rules and will be written r 7→ l.

8.2.3 Example

Let again E := { x + 0 = x, x + succ(y) = succ(x + y) }. Clearly E is a term rewriting
system. Let us rewrite the term t :≡ 0 + (0 + succ(0)). We have to find a subterm of t
that matches the left hand side of a rule in E. 0 + succ(0) is such a subterm, since 0 +
succ(0) ≡ (x+ succ(y)){0/x, 0/y}. We mark the occurrence of this subterm in t by underlining
it: 0 + (0 + succ(0)). Now we replace this instance of x+ succ(y) by the corresponding instance
of succ(x+ y), i.e. by succ(x+ y){0/x, 0/y} ≡ succ(0 + 0), and obtain 0 + succ(0 + 0). Hence

0 + (0 + succ(0))→E 0 + succ(0 + 0)

The term 0 + succ(0 + 0) can again be rewritten by replacing the subterm 0 + 0, which matches
the left hand side of the rule x+ 0 7→ 0:

0 + succ(0 + 0)→E 0 + succ(0)

Furthermore 0 + succ(0) rewrites to succ(0 + 0) and the latter to succ(0)

0 + succ(0)→E succ(0 + 0)→E succ(0)

105

Hence we have 0 + (0 + succ(0))→∗E succ(0).

Exercise: write a reduction sequence showing that succ(0 + 0) + 0→∗E succ(0).

Obviously, the terms in normal form w.r.t. E are precisely the terms succn(0) (n ∈ N). In
particular succ(0) is in normal form.

We saw that 0 + (0 + succ(0)) and succ(0 + 0) + 0 both formalize to succ(0). Hence we have
0 + (0 + succ(0)) 'E succ(0 + 0) + 0.

Exercise: normalize 0 + (0 + succ(0)) to succ(0) using a different reduction sequence.

8.2.4 Lemma

The relation 'E is a congruence on the Σ-algebra T(Σ, X) which in addition is closed under
substitutions, i.e. if t 'E t′ then tθ 'E t′θ for every substitution θ.

Proof. Obviously 'E is an equivalence relation. In order to show that 'E is compatible with
the operation in Σ, (i.e. t1 'E t′1, . . . , tn 'E t′n ⇒ f(t1, . . . , tn) 'E f(t′1, . . . , t

′
n)) it suffices to

observe that obviously

ti →E t
′
i ⇒ f(t1, . . . , ti, . . . , tn)→E f(t1, . . . , t

′
i, . . . , tn)

Similarly in order to show that 'E is closed under substitution it suffices to observe that →E

is closed under substitution, i.e.

t→E t
′ ⇒ tθ →E t

′θ

8.2.5 Theorem

`E t = t′ ⇐⇒ t 'E t′

Proof. ‘⇒’ is proved by induction on the derivation of `E t = t′. Having lemma 8.2.4 at
hand the proof is trivial.

‘⇐’. Because of the derivation rules Reflexivity, Symmetry, and Transitivity, it obviously suffices
to show

t→E t
′ ⇒ `E t = t′

But this is easy using the rules Compatibility, and Instance.

106

8.2.6 Corollary

∀E |= ∀(t = t′) ⇐⇒ t 'E t′

Proof. Theorems 8.1.4, 8.1.5, and 8.2.5.

Remark. The relation ∀E |= ∀(t = t′) is undecidable, i.e., there is no algorithm deciding
for an arbitrary system E of equations and terms t1, t2 whether or not ∀E |= ∀(t = t′) holds.
However, due to the Soundness and Completeness Theorem of equational logic (8.1.4, 8.1.5)
there exists an algorithm that terminates if and only if ∀E |= ∀(t = t′) holds: just generate
systematically all equational derivations with axioms in E and wait until the equation t = t′

appears as end formula. In mathematical terminology: for every finite signature Σ the set

{(E, t1, t2) | E a finite system of equations over E, t1, t2 Σ-terms, ∀E |= ∀(t = t′) }

is recursively enumerable. The equivalence `E t = t′ ⇔ t 'E t′ proved in Theorem 8.2.5
provides an optimization of this algorithm, by replacing the ‘blind’ search for `E t = t′ by a
‘goal directed’ search for t 'E t′.

8.3 Termination

8.3.1 Definition

A term rewriting system R is terminating if there is no infinite reduction sequence t0 →R

t1 →R

Remark. Terminating term rewriting systems are often also called Noetherian.

In a terminating term rewriting system every term has a normal form, but the converse is not
true as the following example shows.

8.3.2 Example

Let R := { x+ 0 7→ x, x+ succ(y) 7→ succ(x+ y), 0 + y 7→ y+ 0 }. R is not terminating, since
for example 0 + 0→R 0 + 0→R Nevertheless every term has a normal form. By removing
the last rule the term rewriting system becomes terminating.

The following lemma provides a general strategy for proving termination of a term rewriting
system.

107

E Noether (1882 - 1935)

8.3.3 Lemma

Let R be a term rewriting system over a signature Σ.

Let µ be a function mapping Σ-terms to natural numbers such that

t→R t
′ ⇒ µ(t) > µ(t′)

Then R is terminating.

Proof. If we had an infinite reduction sequence t0 →R t1 →R . . ., we would get an infinite
decreasing sequence of natural numbers µ(t0) > µ(t1) > . . ., which is impossible.

8.3.4 Example

R := { x − 0 7→ x, succ(x) − succ(y) 7→ x − y }. Set µ(t) := the length of t. Then clearly
µ(t) > µ(t′) whenever t→R t

′. Hence R is terminating according to lemma 8.3.3.

8.3.5 Example

Consider R := { f(g(x), y) 7→ f(y, y) }. The right hand side of the only rule in R is shorter
than the left hand side. So, we might expect R to be terminating. But in fact it is not, since

f(g(x), g(x))→R f(g(x), g(x))→R . . .

The following lemma clarifies the situation.

108

8.3.6 Lemma

Let R be a term rewriting system over a signature Σ such for every rule l 7→ r in R

r is shorter than l,

every variable x ∈ FV(r) occurs in r at most as often as it occurs in l.

Then R is terminating.

Proof. Obviously the assumptions imply that the length of terms provides a termination
measure, i.e., if t→R t

′ then t′ is shorter than t.

Unfortunately, the applicability of Lemma 8.3.6 is rather restricted. For example for the term
rewriting system R := { x+ 0 7→ x, x+ succ(y) 7→ succ(x+ y) } any application of the second
rule will not decrease the length of a term. Nevertheless R is terminating (as we will show
later).

The following theorem provides a somewhat more sophisticated method for proving termination.

8.3.7 Theorem

Let R be a term rewriting system over a signature Σ.

Let A be a Σ-algebra with As = N for every sort s such that fA is a strictly monotone function
for every operation f in Σ, i.e.

ni > n′i ⇒ fA(n1, . . . , ni, . . . , nk) > fA(n1, . . . , n
′
i, . . . , nk),

and such that lA,α > rA,α for every rewrite rule l 7→ r ∈ R and every variable assignment α.

Then R is terminating.

Proof. We set µ(t) := tA,α, where α is an arbitrary variable assignment (e.g. α(x) := 0 for all
variables x). By Lemma 8.3.3 it suffices to show that µ(t) > µ(t′) whenever t→R t

′.

To this end we first show that for any Σ-term t and x ∈ FV(t)

n > m ⇒ tA,α
n
x > tA,α

m
x (+)

We prove (+) by induction on t.

Base: t ≡ x. xA,α
n
x = n > m = xA,α

m
x .

Step: t = f(t1, . . . , tk). Let ni := t
A,αnx
i , and mi := t

A,αmx
i . By induction hypothesis ni > mi if

x ∈ FV(ti), and this the case at least for one i ∈ {1, . . . , k}, and, of course ni = mi if x 6∈ FV(ti).
Hence, because fA is strictly monotone,

109

f(t1, . . . , tk)
A,αnx = fA(n1, . . . , nk) > fA(m1, . . . ,mk) = f(t1, . . . , tk)

A,αmx

Having proved (+), can now easily complete the proof. Assume t→R t
′. Then t ≡ u{lθ/x} and

t′ ≡ u{rθ/x}, where l 7→ r ∈ R and x occurs exactly once in u. With n := (lθ)A,α we clearly
have {lθ/x}A,α = αnx and therefore, using the Substitution Lemma 3.5.4

µ(t) = tA,α = (u{lθ/x})A,α = uA,{lθ/x}
A,α

= uA,α
n
x

Similarly µ(t′) = uA,α
m
x , with m := (rθ)A,α. Hence, by virtue of (+) it suffices to show that

n > m. But this follows easily by applying the Substitution Lemma 3.5.4 once more and using
the assumption on R:

n = lA,θ
A,α

> rA,θ
A,α

= m

8.3.8 Example

Let us use Theorem 8.3.7 to prove termination of the term rewriting system R := { x + 0 7→
x, x+ succ(y) 7→ succ(x+ y) }.

We define the algebra A by setting

0A := 1

succA(n) := n+ 1

n+A m := n+ 2 ∗m

Then, with n := α(x) and m := α(y), we have

(x+ 0)A,α = n+A 0A = n+ 2 ∗ 1 > n = xA,α

(x+ succ(y))A,α = n+A succA(m) = n+ 2 ∗ (m+ 1) > n+ 2 ∗m+ 1 = succ(x+ y)A,α

Now we show that the strategy of proving termination by assigning a measure µ(t) to each
term t such that µ(t) decreases when t is rewritten (lemma 8.3.3) is complete in the sense that
for every terminating term rewriting system such a measure exists.

110

8.3.9 Definition

Let R be a term rewriting system. For every term t the reduction tree of t is the tree of all
reduction sequences starting with t, that is,

the root of this tree is labelled by t,

the children of a node labelled by u are labelled by the terms u′ such that u→R u
′.

Clearly the immediate subtrees of the reduction tree of t are precisely the reduction trees of
the terms t′ with t→R t

′.

8.3.10 König’s Lemma

Let R be a terminating term rewriting system. Then every term has a finite reduction tree.

Proof. Assume for contradiction that there is a term t0 with an infinite reduction tree. Since
R is finite t0 can be rewritten in finite many ways only, i.e. there are only finitely many terms
t′ such that t0 →R t′. Hence there must be a term t1 such that t0 →R t1 and the reduction
tree of t1 is infinite. Proceeding with t1 in the same way as we did with t0 we obtain a term t2
such that t1 →R t2 and the reduction tree of t2 is infinite. Continuing in this way we obtain an
infinite reduction sequence t0 →R t1 →R t2 →R

8.3.11 Definition

Let R be a terminating term rewriting system. For every term t we set

](t) := height of the reduction tree of t

= max{n ∈ N | t starts a reduction sequence of length n}

](t) is called the reduction height of t. Obviously

](t) =

{
0 if t is in normal form
1 + max{](t′) | t→R t

′} otherwise

In particular t→R t
′ implies](t′) <](t).

The tacitly assumed condition on the term rewriting system R to be finite is necessary, as the
following example shows.

111

8.3.12 Example

Consider the infinite (!) term rewriting system

R := { x+ 0 7→ x, x+ succ(y) 7→ succ(x+ y) } ∪ { c 7→ 0 + succn(0) | n ∈ N }

It is easy to see that R is terminating, but the term c starts arbitrarily long reduction sequences,
namely

c→R 0 + succn(0)→R succ(0) + succn−1(0)→R . . .→R succn(0) + 0→n
succ (0)

for every n ∈ N.

Remark. It is undecidable whether or not a term rewriting system R is terminating. This
can be seen, for example, by representing each Turing machine T by a term rewriting systems
RT in such a way that the T halts if and only RT terminates, thus reducing the halting problem
for Turing machines, which is well-known to be undecidable, by the termination problem for
term rewriting systems. However, due to König’s Lemma 8.3.10, this problem is recursively
enumerable.

Although being undecidable in general the termination problem can be solved in many inter-
esting cases. In fact it is one of the most important and largest research area in term rewriting
theory. There are far reaching and powerful mathematical methods available for proving ter-
mination (see e.g. the book of Baader and Nipkow mentioned in the introduction), Theorem
8.3.7 being just one of simplest.

8.4 Confluence

8.4.1 Definition

1. A term rewriting system R over a signature Σ is confluent if for all Σ-terms t, t1, t2 such
that t→∗R t1 and t→∗R t2 there exists a Σ-term t3 such that t1 →∗R t3 and t2 →∗R t3.

t

@
@
@R

�
�
�	 ∗∗

RR
t2t1

�
�
�	

@
@
@R ∗∗

RR
t3

112

2. A term rewriting system R over a signature Σ is locally confluent if for all Σ-terms t, t1, t2
such that t→R t1 and t→R t2 there exists a Σ-term t3 such that t1 →∗R t3 and t2 →∗R t3.

t

@
@
@R

�
�
�	

RR
t2t1

�
�
�	

@
@
@R ∗∗

RR
t3

8.4.2 Example

The term rewriting system R := { a 7→ b, a 7→ c, b 7→ a, b 7→ d } is locally confluent. However,
R is not confluent, since a→R c and a→∗R d, but c and d cannot reduced to a common term.

Exercises. (a) Add one rewrite rule that makes R confluent.

(b) Remove one rewrite rule such that R becomes confluent.

(c) Is R terminating?

8.4.3 Theorem

Let R be a confluent term rewriting system over a signature Σ.

Then R has the following so-called Church-Rosser property: For all Σ-terms t1, t2

t1 'R t2 ⇔ there exists a Σ-term t3 such that t1 →∗R t3 and t2 →∗R t3

t2'Rt1

�
�
�	

@
@
@R ∗∗

RR
t3

Proof. ‘⇒’ is obvious.

‘⇒’ is easily proved by induction on n, where t1 ≡ u0 ↔R . . .↔R un ≡ t2.

113

8.4.4 Newman’s Lemma

Every terminating and locally confluent term rewriting system is confluent.

Proof. Let R be terminating and locally confluent. We prove the implication

t→∗R t1 and t→∗R t2 ⇒ there exists a Σ-term t3 such that t1 →∗R t3 and t2 →∗R t3

by induction on](t) (cf. definition 8.3.11;](t) exists because R is assumed to be terminating).
So, assume t→∗R t1 and t→∗R t2. If t ≡ t1 then we may simply chose t3 :≡ t2, and if t ≡ t2 we
chose t3 :≡ t1. Otherwise there are terms t′1 and t′2 such that for i = 1, 2 we have t →R t

′
i and

t′i →∗R ti. (It is recommended to draw a picture when reading through rest of the argument.)
Since by assumption R is locally confluent there is some term t′3 such that t′1 →∗R t′3 and
t′2 →∗R t′3. Furthermore, since](t′i) <](t), we know, by induction hypothesis, that there are
terms u1, u2 with ti →∗R ui and t′3 →∗R ui, for i = 1, 2. Using the induction hypothesis once
more, now with t′3 (we have](t′3) ≤](t′1) <](t)) we conclude that there is a term t3 such that
u1 →∗R t3 and u2 →∗R t3.

8.4.5 Lemma

Let R be a confluent and terminating term rewriting system over a signature Σ. Then every
Σ-term t has a unique normal form.

Proof. Since R is terminating t has a normal form t′, i.e. t →∗R t′ and t′ is in normal form.
If also t→∗R t′′ with t′ in normal form, then, by confluence, t′ and t′′ reduce to the same term,
but, since t′ and t′′ are normal, this can only be the case if t′ ≡ t′′.

8.4.6 Definition

Let R be a confluent and terminating term rewriting system over a signature Σ. Then every
for every Σ-term t we denote by

nf(t)

the unique normal form of t.

8.4.7 Theorem

Let E be a system of equations over a signature Σ defining confluent and terminating term
rewriting system . Then for all Σ-terms t1, t2

∀E |= t1 = t2 ⇔ nf(t1) = nf(t2)

114

In particular, the relation ∀E |= t1 = t2 is decidable.

Proof. Clearly t1 'R t2 if and only if nf(t1) = nf(t2). The result follows with Theorem 8.2.5.

Theorem 8.4.7 gives us a simple (and often also efficient) method for deciding whether an
equation t1 = t2 follows logically from a set of equations. It is therefore highly desirable
to transform a given system of equation into an equivalent one that defines a confluent and
terminating term rewriting system. The famous Knuth-Bendix completion algorithm
which we discuss next provides a method for doing this in many cases.

8.4.8 Definition

A unifier of two terms t1, t2 is a substitution θ : FV(t1) ∪ FV(t2) → T(Σ, V) (V the set of all
variables) such that

t1θ ≡ t2θ

A most general unifier of t1, t2 is a unifier θ of t1, t2 with the additional property that for
any other unifier θ′ of t1, t2 there exists a substitution σ with θ′ = σ ◦ θ.

Remark. It can be (efficiently) decided whether two terms t1, t2 are unifiable (Robinson),
and if the terms are unifiable a most general unifier can be efficiently computed.

8.4.9 Definition

A rule l′ 7→ r′ is a variant of a rule l 7→ r if l′ 7→ r′ is obtained from l 7→ r by a consistent
variable renaming.

For example y+succ(z) 7→ succ(y+z) is a variant of x+succ(y) 7→ succ(x+y), but z+succ(z) 7→
succ(z + z) is not.

8.4.10 Definition

Let R be a term rewriting system over a signature Σ and li 7→ ri, i = 1, 2, be variants of rules
in R such that FV(l1) ∩ FV(l2) = ∅.

Let t be a subterm of l1 which is not a variable and which is unifiable with l2. I.e. l1 is of the
form l1 ≡ u{t/x}, where x is a fresh variable occurring exactly once in u, and there is a most
general unifier θ of t and l2, i.p. tθ ≡ l2θ. Note that l1θ ≡ (uθ){l2θ/x} and therefore

Then (r1θ, (uθ){r2θ/x}) is called a critical pair of R.

We let CP(R) denote the set of all critical pairs of R.

Note that CP(R) is a finite set that can be easily computed from R.

115

l1θ

@
@
@R

�
�
�	 RR

(uθ){r2θ/x}r1θ

8.4.11 Lemma

A term rewriting system R is locally confluent iff for all critical pairs (t1, t2) of R there exists
a term t such that t1 →∗R t and t2 →∗R t.

Proof. See e.g. Baader/Nipkow.

8.4.12 Theorem

A terminating term rewriting system R is confluent iff for all critical pairs (t1, t2) of R there
exists a term t such that t1 →∗R t and t2 →∗R t.

In particular it is decidable whether a terminating term rewriting system is confluent.

Proof. Lemma 8.4.11 and Newman’s Lemma 8.4.4.

Remark. For arbitrary term rewriting systems confluence is undecidable (see e.g. Baader/Nipkow).

Remark. Theorem 8.4.12 suggests an obvious method of how to try to transform a termi-
nating term rewriting system R into an equivalent one that is confluent:

1. Compute CP(R). If for all (t1, t2) ∈ CP(R) there is a t with t1 →∗R t and t2 →∗R t then
stop (in this case R is confluent according to Theorem 8.4.12).

2. For any (t1, t2) ∈ CP(R) such that there is no t with t1 →∗R t and t2 →∗R t either add
the rule t1 7→ t2 or the rule t2 7→ t1 to R such that the extended term rewriting system
remains terminating (that’s the tricky part and not always possible, i.e. the method may
fail here). Set R to be the extended system and go to 1.

A refinement of this algorithm is the Knuth-Bendix completion algorithm mentioned
earlier.

8.5 Rapid prototyping

Rapid Prototyping is the process of automatically generating an implementation, called rapid
prototype, of an ADT given by an initial specification whose associated term rewriting is con-
fluent and terminating (if the term rewriting is not confluent, it can often be automatically
made so by applying the Knuth-Bendix completion algorithm. Although the automatically
generated prototype is usually not efficient it can be very useful for detecting inadequacies of
a specification at an earlier stage of a software development.

116

8.5.1 Definition

The term rewriting system associated with an initial specification Init−Spec(Σ, E) is
the term rewriting system defined by E, provided, of course, E defines a term rewriting system
(cf. Definition 8.2.2).

Rapid prototyping for an initial specification Init−Spec(Σ, E) consists in computing the
normal form of a closed Σ-term. This, of course presupposes that the term rewriting system
associated with Init−Spec(Σ, E) is confluent and terminating.

Now we show that rapid prototyping for an initial specification Init−Spec(Σ, E) may be viewed
as the calculation of the value of a closed term in a particularly perspicuous model of Init−Spec(Σ, E).

8.5.2 Definition

Let Init−Spec(Σ, E) be an initial specification such that the term rewriting system associated
with it is terminating and confluent. The algebra of closed normal terms is defined as follows.

Algebra NFE(Σ)

Carriers NFE(Σ)s := {t ∈ T(Σ) | t in normal form }
Constants cNFE(Σ) := nf(c)

Operations fNFE(Σ)(t1, . . . , tn) := nf(f(t1, . . . , tn))

8.5.3 Theorem

Let Init−Spec(Σ, E) be an initial specification such that the term rewriting system associated
with it is terminating and confluent. Then the algebra NFE(Σ) of closed normal terms is a
model of Init−Spec(Σ, E).

Furthermore for every closed Σ-term t

tNFΣ(E) = nf(t)

Proof. In order to show that NFE(Σ) is a model of Init−Spec(Σ, E) it suffices to prove that
NFE(Σ) is isomorphic to TE(Σ). Obviously the identical embedding of NFE(Σ) into TE(Σ) is
an isomorphism.

Furthermore [nf] : TE(Σ)→ NFE(Σ) defined by [nf]([t]) := nf(t) clearly is a well-defined homo-
morphism. Because evaluation of terms defines another homomorphism from TE(Σ) to NFE(Σ)
(cf. 6.2.3) we have, by initiality of TE(Σ), that tNFΣ(E) = nf(t).

The following theorem provides a useful criterion for testing whether an initial specification is
adequate for a given algebra A.

117

8.5.4 Theorem

Let A be a Σ-algebra and Init−Spec(Σ, E) an initial specification defining a terminating and
confluent term rewriting system.

Then Init−Spec(Σ, E) is adequate for A (i.e. A is a model of Init−Spec(Σ, E)) iff

(i) Every element a ∈ As is the value of a unique closed normal Σ-term.

(ii) fA(tA1 , . . . , t
A
n) = (nf(f(t1, . . . , tn)))A for every operation f : s1 × . . . × sn → s and all

closed normal terms ti of sort si, i = 1, . . . , n.

Proof. By (ii) evaluation of closed normal Σ-terms in A is a homomorphism from NFE(Σ)
to A, and by (i) this homomorphism is bijective, i.e. an isomorphism. Since A is isomorphic to
NFE(Σ), and by Theorem 8.5.3, NFE(Σ) is a model of Init−Spec(Σ, E) it follows that A is a
model of Init−Spec(Σ, E), too.

On the other hand if A is a model of Init−Spec(Σ, E), then A must be isomorphic to NFE(Σ),
and hence (i) and (ii) hold.

8.5.5 Example

Let A be the algebra of the quicksort algorithm with all its auxiliary sorts and functions. Hence
A has as carrier sets the set of natural numbers the set of lists of natural numbers and the set of
Boolean values. It has the usual constants and operations on natural numbers, lists of natural
numbers and the Booleans, it has a less-than predicate < on natural numbers, operations low
and high such that low(n, l) selects from the list l the list of those elements that are ≤ n,
and high(n, l) selects from l the list of those elements that are > n. Finally, A has the main
operation sort that sorts list using the auxiliary operations low and high. Since low and high
use case analysis in their definitions, A also needs an if-then-else operation.

Our goal is to design an initial specification QUICKSORT that is adequate for A, i.e. A shall
be a model of QUICKSORT. We also aim for rapid prototyping. Hence we have to ensure that
the term rewriting system associated with QUICKSORT is confluent and terminating.

118

Init Spec QUICKSORT

Sorts nat, boole, natlist

Constants 0: nat
T: boole
F: boole
nil : natlist

Operations succ : nat→ nat
cons : nat× natlist→ natlist
if : nat× natlist× natlist→ natlist
< : nat× nat→ boole
@ : natlist× natlist→ natlist
low : nat× natlist→ natlist
high: nat× natlist→ natlist
sort : natlist→ natlist

Variables x, y : nat, l, l1, l2 : natlist

Equations if(T, l1, l2) = l1
if(F, l1, l2) = l2

x < x = F
0 < succ(x) = T
succ(x) < 0 = F
succ(x) < succ(y) = x < y

nil @ l = l
cons(x, l1) @ l2 = cons(x, l1 @ l2)

low(x, nil) = nil
low(x, cons(y, l)) = if(y < x, low(x, l), cons(y, low(x, l)))

high(x, nil) = nil
high(x, cons(y, l)) = if(x < y, cons(y, high(x, l)), high(x, l))

sort(nil) = nil
sort(cons(x, l)) = sort(low(x, l)) @ cons(x, sort(high(x, l)))

The term rewriting system R associated with QUICKSORT is terminating, although we are
not in the position to prove this easily with the methods developed so far.

In order to check confluence we compute the critical pairs. The only one critical pair is (F, x <

119

x), which is generated by the first and last rule for <. Since x < x →R F we conclude with
Theorem 8.4.12 that R is confluent.

It follows with Theorem 8.5.3 that QUICKSORT is adequate fort A.

If we are unable to prove that a given initial specification is confluent and terminating, the
following theorem might be useful.

8.5.6 Theorem

Let E be a system of equations over a signature Σ defining a term rewriting system such that
every Σ-term has a normal form. Let A be a generated model of ∀E such that tA1 6= tA2 for
every two different terms t1, t2 in normal form. Then Init−Spec(Σ, E) is adequate for A.

Proof. By Theorem 6.2.5 (iv) it suffices to show that for any two closed Σ-terms t1, t2 with
tA1 = tA2 we have `E t1 = t2. Let u1, u2 be normal forms of t1, t2 respectively. Then tAi = uAi and
hence uA1 = uA2 . By the assumption of the theorem we get `E u1 = u2 and hence `E t1 = t2,
because `E ti = ui.

8.6 Summary and Exercises

The central notions and results of this section were the following.

• The deduction rules of equational logic (8.1.1);

• the notion of a term rewriting system R and associated with it the relations

t→R t
′

t→∗R t′

t↔R t
′

t 'R t′

and the notion of a term in normal form (8.2.1);

• the term rewriting system associated with a system of equations (8.2.2)

• the Soundness Theorem (8.1.4) and Birkhoff’s Completeness Theorem (8.1.5) for equa-
tional logic; together with 8.2.5 they yield the equivalences

∀E |= ∀(t = t′) ⇐⇒ `E t = t′ ⇐⇒ t 'E t′

• the property of termination (8.3.1) and some simple techniques for proving termination
(8.3.3, 8.3.6, 8.3.7);

• the property of confluence (8.4.1);

120

• the normal form of a term nf(t) w.r.t a confluent and terminating term rewriting system
(8.4.6);

• the term rewriting system associated with an initial specification;

• rapid prototyping (8.5.1), which consists in computing the normal forms of closed terms
with respect to the term rewriting system associated with the equations of the initial
specification Init−Spec(Σ, E); it can be applied if E is confluent and terminating, which
ensures that every term has a unique normal form; rapid Prototyping can be used to
mechanically decide equations t1 = t2 between closed terms by checking whether their
normal forms are the same, because of the equivalence

∀E |= t1 = t2 ⇐⇒ nf(t1) ≡ nf(t2)

(8.4.7); it can also be used to implement the model of closed normal forms of the initial
specification (see below);

• the model of closed normal forms of an initial specification whose associated term rewriting
system is confluent and terminating (8.5.2, 8.5.3)

Exercises.

1. Consider the following initial specification

Init Spec DH

Sorts rat

Constants one: rat

Operations double : rat→ rat
half : rat→ rat

Variables x : rat

Equations half(double(x)) = x
double(half(x)) = x

Let Σ be the signature of DH. Let Q+ be the Σ-algebra of positive rational numbers with the
obvious interpretation of the constant and the operations.

(a) Show that Q+ is not a model of DH.

(b) Describe a subalgebra of Q+ that is a model of DH.

121

(c) Describe the closed Σ-terms that are in normal form with respect to the term rewriting
system associated with DH.

(d) Construct a model A of DH with Arat = Z = {. . . ,−3,−2,−1, 0, 1, 2, 3, . . .} and oneA :=
0.

2. Consider the initial specification

Init Spec I

Sorts nat, boole

Constants 0: nat, T: boole, F : boole

Operations succ : nat→ nat
iszero : nat→ boole

Variables x : nat

Equations succ(succ(0)) = 0
iszero(0) = T
iszero(succ(x)) = F

Let Σ be the signature of I, and E the set of equations of I.

(a) Describe the closed Σ-terms that are in normal form with respect to the term rewriting
system R associated with I. Show that R is terminating, but not confluent.

(b) Show that `E T = F.

(c) Show that `E succ(succ(x)) = x does not hold.

(d) Construct a model of I. How many elements do its carriers contain?

3. Consider the signature Σ := ({s}, {c : s, f : s → s}) and the term rewriting system R :=
{f(f(x)) 7→ c} over Σ.

Show that R is terminating, but not confluent.

4. Investigate whether the initial specification of queues in Exercise 9 of Section 6.7 can be
used for rapid prototyping.

122

9 Programs from proofs

In Chapter 3 we distinguished between classical, intuitionistic and minimal logic. It seemed
that classical logic, which includes the use of the rule reductio-ad-absurdum, is the ‘right’ logic,
because it is with respect to this logic that Gödel’s Completeness Theorem 4.3.2, asserting a
perfect match between (algebraic) logical validity and formal provability, holds. On the other
hand, the Completeness Theorem does not hold for intuitionistic logic. For example, Peirce’s
law, ((P → Q)→ P)→ P , is logically valid, but it is not provable in intuitionistic logic. (other
examples of logically valid, but intuitionistically unprovable formulas are ¬¬P → P , P ∨ ¬P ,
¬∀xP (x)→ ∃x¬P (x) and many others).

Despite its apparent deficiencies, intuitionistic logic is very important historically and philosoph-
ically, and has nowadays great impact on cutting edge developments in Theoretical Computer
Science.

Historically, intuitionistic logic can be seen as an attempt to overcome the crisis in the founda-
tion of Mathematics caused by the discovery of set-theoretic paradoxes in the beginning of the
last century (e.g. Russell’s paradox). Philosophically, intuitionism has emerged from a critique
of reasoning methods used in classical mathematics.

In classical logic usually a Platonistic view of the mathematical universe is adopted. According
to this view, infinite entities, like, for example, the set of natural numbers, are assumed to exist
in some ‘ideal world’, like finite entities exist in the real world. Consequently, any mathematical
statement, represented by a closed formula P say, is either true or false in this world. We did
adopt this view in the previous chapter when we introduced algebras as (fragments of) the
mathematical universe and defined when a formula is true or false in an algebra. Looking at
one of the controversial formulas, like P ∨¬P , we see that it is clearly valid classically, since in
any algebra either P is true or ¬P is true.

Intuitionists reject the platonistic view of Mathematics as intuitively unjustified. They rather
see Mathematics as a system of mental constructions. Consequently, in intuitionistic logic only
such axioms and proof rules are accepted that can be directly justified as providing mental
constructions for evidence of a formula. For example, in order to accept P ∨ ¬P as an axiom
for every formula P , an intuitionist would demand a uniform construction that for every formula
P and any interpretation of the symbols in P yields either a proof of P or its negation. Since
no such construction is known, this axiom is rejected. By a similar argument the rule reductio-
ad-absurdum is rejected.

Some of the most important historical figures of intuitionism are Kronecker, Brouwer, Heyting,
Kolmogorov, and also Gödel. I recommend to read Heyting’s book Intuitionism - An introduc-
tion [Hey] for a very entertaining introduction into the ideas of intuitionism: In its introductory
chapter Heyting lets fictive protagonists of classical, intuitionistic, and other schools in logic
have a controversial dispute on their standpoints. An excellent in depth introduction to intu-
itionism provides the book Constructivism in Mathematics, Vol. I, by A S Troelstra and D van
Dalen [TD]. Also very useful is chapter 5 in van Dalen’s text book [Dal].

In this chapter (of this course) we will study how the constructive aspect of intuitionistic logic
can be exploited to automatically synthesise correct programs from intuitionistic proofs. We
shall follow the idea of the so-called Curry-Howard Correspondence according to which formulas

123

correspond to data types and proofs correspond to programs.

L Kronecker (1823 - 1891) L E J Brouwer (1881 - 1966)

A Heyting (1898 - 1980) A Kolmogorov (1903 - 1987)

9.1 Formulas as data types

Let us, for the moment, identify the notion of a ‘data type’ with the notion of a ‘set’. On data
types A, B we have the following familiar constructions:

A×B := {(a, b) | a ∈ A, b ∈ B} (cartesian product)

A+B := {(0, a) | a ∈ A} ∪ {(1, b) | b ∈ B} (disjoint sum)

A→ B := {f | f : A→ B} (function type)

124

Figure 6 shows how each constructor for formulas corresponds to a data type construction
(assuming the sort s of the variable x corresponds to the data type D).

Formula Data Type

conjunction P ∧Q A×B cartesian product

implication P → Q A→ B function type

disjunction P ∨Q A+B disjoint sum

for all ∀xP (x) D → A function type

exists ∃xP (x) D × A cartesian product

equations s = t {∗} a singleton set

falsity ⊥ {} the empty set

Figure 6: The formulas-as-types correspondence

9.1.1 Example

Assume the variables x, y are of sort nat. Then the formula

P :≡ ∀x∃y(x = y + y ∨ x = y + y + 1)

corresponds to the data type
N→ N× ({∗}+ {∗})

Since {∗} + {∗} (= {(0, ∗), (1, ∗)}) is a set with two (different) elements we may replace it by
the type B of boolean values. Therefore the formula above corresponds to the data type

N→ N×B

The idea is that a proof of P yields a program of that type (that is, an operation that accepts
as input a natural number and outputs a pair consisting of a natural number and a boolean
value) that realizes the formula P , that is, solves the problem naturally associated with P . In
our example the problem consists in deciding for every natural number x whether it is even

125

or odd and computing the integer half of x (rounded down). So, if on input x the program
outputs a pair 〈y,T〉, this means that x is even and x = y+ y, whereas an output 〈y,F〉 means
that x is odd and x = y + y + 1.

9.2 A notation system for proofs

We now introduce for every proof a proof term that will give us the desired program corre-
sponding to the proof as briefly explained in example 9.1.1. The definition of proof terms is
given in figure 7. The names of the term constructors indicate their intended computational
meaning. Proof rules and axioms that are not mentioned in these tables have proof terms with
a trivial computational meaning.

9.2.1 Example

Consider the proof

P ∧Q
∧−r

Q

P ∧Q ∧−l
P
∧+

Q ∧ P
→+

(P ∧Q)→ (Q ∧ P)

Written with proof terms this reads:

u :P ∧Q
∧−r

πr(u) : Q

u :P ∧Q ∧−l
πl(u) : P

∧+

〈πr(u), πl(u)〉 : Q ∧ P
→+

λu :P ∧Q.〈πr(u), πl(u)〉 : (P ∧Q)→ (Q ∧ P)

The complete information about this proof is contained in the proof term

λu :P ∧Q.〈πr(u), πl(u)〉

9.2.2 Exercises

(a) Find the proof term for the following proof:

P ∧Q→ R
P Q

∧+

P ∧Q
→−

R →+

Q→ R
→+

P → (Q→ R)
→+

(P ∧Q→ R)→ (P → (Q→ R))

126

assumption variable u :P

∧+ pairing
d : P e : Q

∧+

〈d, e〉 : P ∧Q

∧− projections
d : P ∧Q ∧−l
πl(d) : P

d : P ∧Q
∧−r

πr(d) : Q

→+ abstraction
d : Q

→+

λu :P.d : P → Q

→− procedure call
d : P → Q e : P

→−
(de) : Q

∨+ injections
d : P ∨+

l
inlQ(d) : P ∨Q

d : Q
∨+

r
inrP (d) : P ∨Q

∨− case analysis
d : P ∨Q e1 : P → R e2 : Q→ R

∨−
cases[d, e1, e2] : R

∀+ abstraction
d : P (x)

∀+
λx.d : ∀xP (x)

(*)

∀− procedure call
d : ∀xP (x)

∀−
(dt) : P (t)

∃+ pairing
d : P (t)

∃+〈t, d〉 : ∃xP (x)

∃− matching
d : ∃xP (x) e : ∀x (P (x)→ Q)

∃−
match[d, e] : Q

(**)

induction recursion
d : P (0) e : ∀x (P (x)→ P (x+ 1))

ind
ind[d, e] : ∀xP (x)

Figure 7: Natural deduction with proof terms

127

(b) To which proof does the following proof term correspond?

λu :P → (Q→ R) . λv :P ∧Q . ((uπl(v))πr(v))

9.3 Program synthesis from intuitionistic proofs

In the previous section we assigned to each proof a certain proof term written in a language
very similar to a functional programming language. Indeed, if the proof was intuitionistic, only
little modifications and simplification are necessary in order to transform the corresponding
proof term into an executable functional program. Technically, this transformation is done via
a so-called formalized realizability interpretation. Its main task is to

• give the constructors of the proof terms a computational interpretation,

• delete all parts of the proof term that are computationally meaningless.

The method of program synthesis from proofs is summarised in the following theorem:

9.3.1 Theorem (Program synthesis from constructive proofs)

From every constructive, that is, intuitionistic proof of a formula

∀x ∃y R(x, y)

one can extract a program p such that

∀xR(x, p(x))

is provable, that is, p is provably correct.

The statement of this theorem is a little bit simplified. So, for example instead of single
variables x and y one may have lists ~x, ~y of variables, and the variables in ~x may be subject to
preconditions.

9.3.2 Example (Quotient and remainder)

An example of such a generalised formula is

(+) ∀b (b > 0→ ∀a ∃q ∃r (a = b ∗ q + r ∧ r < b))

where the variables range over natural numbers. This formula says that division with remainder
by a positive number b is possible for all b. The numbers q and r whose existence is claimed
are the quotient and the remainder of this division.

128

According to the theorem above a constructive proof of (+) should yield a program that for
inputs b and a, where b > 0, computes numbers q and r such that

a = b ∗ q + r and r < b.

We now sketch a proof of (+) and show how two extract a program from it. Then a full formal
proof will be given and program extraction will be carried out in the interactive proof system
Minlog (http://www.minlog-system.de)

In order to prove (+) let b > 0 be given (∀+ and →+ backwards). We prove

∀a∃q ∃r (a = b ∗ q + r ∧ r < b))

by induction on a.

Base. We need to prove ∃q ∃r (0 = b ∗ q+ r ∧ r < b)). But that is easy: take q := 0 and r := 0.

Step. We have to prove

∀a [∃q ∃r (a = b ∗ q + r ∧ r < b))→ ∃q1 ∃r1 (a+ 1 = b ∗ q1 + r1 ∧ r1 < b))]

So, let a be given and assume as induction hypothesis:

∃q ∃r (a = b ∗ q + r ∧ r < b)

We have to prove ∃q1 ∃r1 (a+ 1 = b ∗ q1 + r1 ∧ r1 < b).

Using the ind. hyp. we may assume we have q and r such that

u : a = b ∗ q + r ∧ r < b

(formally we use ∃− backwards followed by ∀− and →− backwards). We need to find q1 and r1

such that a+ 1 = b ∗ q1 + r1 ∧ r1 < b (in order to apply ∃+).

Case r + 1 < b. Then we can set q1 := q and r1 := r + 1, because from assumption u it follows
that a+ 1 = b ∗ q + r + 1.

Case r+1 6< b. Then, by assumption u, we must have r+1 = b. We set q1 := q+1 and r1 := 0.
This works, because, using u once more, we obtain a+1 = b∗q+r+1 = b∗q+b = b∗(q+1)+0.

This ends the proof of the induction step and completes the proof.

Intuitively this proof corresponds to the following program:

129

function quotrem (b,a:integer, b>0) : integer × integer
begin

if a=0 then quotrem := (0,0)
else let (q,r) := quotrem(b,a-1)

if r<b then quotrem := (q,r+1)
else quotrem := (q+1,0)

end

The program is recursive because the proof was done by induction. More formally, if we have
a proof

d : P (0) e : ∀x (P (x)→ P (x+ 1))
ind

ind[d, e] : ∀xP (x)

and we assume we have already extracted programs g and h from the proof terms d and e,
respectively, then the program extracted from the proof term ind[d, e] is a procedure f that is
defined from g and h by primitive recursion:

f(0) = g

f(a+ 1) = h(a, f(a))

In the lecture we carried out the formal proof of (+) in the Minlog system.

We do not show the proof term, since it would fill several pages. But here is the program which
is extracted fully automatically from the proof:

(define (quotrem-prog n^1)

((nat-rec-run (cons 0 0))

(lambda (n^3)

(lambda (nat*nat^4)

(cons (if ((<-run ((plus-run (cdr nat*nat^4)) 1)) n^1)

(car nat*nat^4)

((plus-run (car nat*nat^4)) 1))

(if ((<-run ((plus-run (cdr nat*nat^4)) 1)) n^1)

((plus-run (cdr nat*nat^4)) 1)

0))))))

This is a functional program in the programming language Scheme (a Lisp dialect). Let us
try it out:

((quotrem-prog 7) 93)

> (13 . 2)

130

This means

93 = 7 ∗ 13 + 2

The advantage of program synthesis from proofs over conventional programming can be sum-
marised as follows:

• Programs extracted from proofs are guaranteed to be correct and their correctness can
mechanically be checked by simply checking whether the proof is syntactically correct.

• Such a correctness check is impossible for conventional programs. Conventional programs
can only be checked for syntactical and type correctness, but these checks do not guarantee
that the program behaves as it should.

9.4 Program synthesis from classical proofs

We begin with an example showing that we cannot expect theorem 9.3.1 to hold for classical
proofs, that is proofs using the rule reductio ad absurdum, in general. We prove classically the
following

9.4.1 Theorem

There are irrational numbers x and y such that xy is rational.

Proof. We do case analysis according to whether or not
√

2
√

2
is rational. This case analysis

makes use of the classically valid formula P ∨¬P where P is the statement “
√

2
√

2
is rational”.

Case
√

2
√

2
is rational. Then we can take x :=

√
2 and y :=

√
2, because, as we all know,

√
2

is irrational.

Case
√

2
√

2
is irrational. Then take x :=

√
2
√

2
and y :=

√
2. Now again x and y are irrational

and we have

xy = (
√

2
√

2
)
√

2 =
√

2
√

2∗
√

2
=
√

2
2

= 2

so xy is rational.

Although this is a nice and short proof, it is somewhat unsatisfactory since it does not provide
examples of irrational numbers x, y such that xy is rational. A constructive proof would yield
such examples.

Nevertheless we have the following restricted form of program synthesis from proofs for classical
logic.

131

9.4.2 Theorem (Program synthesis from classical proofs)

From every classical proof of

∀x ∃y R(x, y)

where the formula R(x, y) is quantifier free one can extract a program p such that

∀xR(x, p(x))

is provable, that is, p is provably correct.

Proof (sketch) The proof of this theorem proceeds (roughly) in the following steps:

1. The classical proof of ∀x ∃y R(x, y) is first transformed into a classical proof of ∃y R(x, y) (by
one application of ∀−) and is then transformed in to a minimal-logical proof of ¬¬∃y R(x, y),
that is

(∃y R(x, y)→ ⊥)→ ⊥

(“It’s impossible that there doesn’t exist y with R(x, y)”). The second transformation is due
to Gödel and is called negative translation.

2. Since in minimal logic neither efq nor raa are used, the symbol ⊥ has no special meaning
and can therefore be replaced by any formula (without spoiling the proof). Replacing ⊥ by the
formula ∃y R(x, y) we obtain an intuitionistic proof of

(∃y R(x, y)→ ∃y R(x, y))→ ∃y R(x, y)

and from this we trivially obtain an intuitionistic proof of

∀x ∃y R(x, y).

3. Now we apply Theorem 9.3.1 to obtain a program p satisfying ∀xR(x, p(x)).

Note that theorem 9.4.2 does not apply to the last example, because the statement “xy is
irrational”, when formalized does contain quantifiers.

9.5 Applications

Presently research groups at many Universities pursue the approach of program synthesis from
proofs and a number of implementations of theorem provers supporting this technique have been
developed. For example: Agda (Coquand, Gothenburg, [Agd]), Coq (Huet, INRIA, [Coq]), Fred
(Crossley, Melbourne, [Cro]),

Isabelle (Paulson, Cambridge, [Isa]),

Minlog (Schwichtenberg, Munich, [Min]),

132

PX (Hayashi, Kyoto, [PX]).

Nuprl (Constable, Cornell, [Con]).

Several important programs have been obtained by program synthesis. For example:

• Efficient algorithms in lambda-calculus and term rewriting.

• Algorithms in Computer Algebra (computation of Gröbner bases).

• Graph-theoretic algorithms.

• Algorithms extracted from theorems in infinitary combinatorics.

• Sorting algorithms.

Although not yet industrially applied the method of program synthesis from proofs is a promis-
ing technology that in the future might play an important role in the development of reliable
and maintainable software.

9.6 Summary and Exercises

• The difference between classical and intuitionistic logic.

• The correspondence between formulas and data types.

• Proof terms; the correspondence between proofs and programs.

• Program extraction from intuitionistic proofs.

• Program extraction from classical proofs.

Exercises

1. Find the proof term for the following proof:

P ∨Q

P ∨+
r

Q ∨ P
→+

P → Q ∨ P

Q ∨+

l
Q ∨ P

→+

Q→ Q ∨ P
∨−

Q ∨ P

2. To which proof does the following proof term correspond?

λu :P → (Q→ R) . λv :P → Q . λw :P . ((uw)(vw))

3. Why is the following statement intuitionistically not provable?

133

“Every Turing machine either halts or doesn’t halt.”

References

[Agd] http://www.cs.chalmers.se/~catarina/agda/

[Ast] E Astesiano et al, CASL: The Common Algebraic Specification Language, Theoretical
Computer Science, 2002.

[BaNi] A Baader, T Nipkow, Term Rewriting and All That, Cambridge University Press, 1998.

[BRJ] G Booch, J Rumbaugh, I Jacobson. The Unified Modeling Language User Guide,
Addison-Wesley, 1999.

[Bro] Broy et. al., The Requirement and Design Specification Language SPECTRUM, Technical
Report, TU-München, 1993.

[Con] Constable et al., Implementing Mathematics with the Nuprl Proof Development System,
Prentice–Hall, 1986.

[Coq] Y Bertot, P Casteran, Coq’Art: The Calculus of Inductive Constructions, Interactive
Theorem Proving and Program Development, Texts in Theoretical Computer Science. An
EATCS Series, http://coq.inria.fr/doc-eng.html, 2004.

[Cro] Fred: An Approach to Generating Real, Correct, Reusable Programs from Proofs, J
Crossley, I Poernomo, Journal of Universal Computer Science, Vol 7(1), 2001.

[Dal] D van Dalen, Logic and Structure, 3rd ed., Springer, 1994.

[Daw] J Dawes. The VDM-SL Reference Guide, Pitman, 1991.

[Eli] A Eliens, Principles of Object-Oriented Software Development, 2nd ed., Addison Wesley,
2000.

[GH] J V Guttag, J J Horning, Larch: Languages and tools for formal specification, Springer,
1993.

[Hey] A Heyting, Intuitionism - An introduction, North-Holland, 1966.

[Hoa] C A R Hoare, Communicating Sequential Processes, Prentice Hall, 1985.

[Isa] Isabelle/HOL – A Proof Assistant for Higher-Order Logic, T Nipkow, L Paulson, M
Wenzel, LNCS 2283, Springer, 2002.

[Jac] J Jacky, The way of Z - practical programming with formal methods, Cambridge Univer-
sity Press, 1997.

[JR] B Jacobs, J Rutten, A Tutorial on (Co)Algebras and (Co)Induction, EATCS Bulletin 62,
pages 222–259, 1997.

134

[LEW] J Loeckx, H-D Ehrich, M Wolf, Specification of Abstract Data Types, Wiley/Teubner,
1996.

[McL] S Mac Lane. Categories for the Working Mathematician. Springer Verlag, 1971.

[MeTu] K Meinke, J V Tucker, Universal Algebra, pp. 189-411 in Handbook of Logic in Com-
puter Science, Oxford University Press, 1992.

[Mil] R Milner, Communication and Concurrency, Prentice Hall, 1989.

[Min] Proof theory at work: Program development in the Minlog system, Benl et. al., in:
Automated Deduction – A Basis for Applications, W Bibel, P H Schmitt, eds., Applied
Logic Series, pages 41 – 71, Dordrecht, 1998.

[Oka] C Okasaki, Purely Functional Data Structures, Cambridge University Press, 1998.

[PX] S Hayashi, H Nakano, PX: A Computational Logic, MIT Press, 1988.

[Rog] M Roggenbach, CSP CASL - A new Integration of Process Algebra and Algebraic Speci-
fication, In F.Spoto, G.Scollo, A.Nijholt: Proceedings of AMiLP-2003, TWLT 21, Univer-
siteit Twente, 2003.

[Sho] J R Shoenfield, Mathematical Logic, Addison-Wesley, 1967.

[ST] D Sannella, A Tarlecki, Foundations of Algebraic Specifications, Cambridge University
Press 1997.

[SW] D Sannella, M Wirsing, A kernel language for algebraic specification and implementation,
LNCS 158, Springer, 1983.

[Sch] H Schwichtenberg, Minimal Logic for Computable Functionals,
http://www.mathematik.uni-muenchen.de/~minlog/minlog/, 2004.

[TD] A S Troelstra, D van Dalen, Constructivism in Mathematics, Vol. I, North-Holland, 1988.

[TS] A S Troelstra, H Schwichtenberg, Basic Proof Theory, Cambridge University Press, 1996.

[Tuc] J V Tucker, Theory of Programming Languages, Course Notes, UWS, 2005.

