
1

Computer Science Dept Va Tech January 2000 ©2000 McQuain WD

12D Arrays

OO Software Design and Construction

Managing 2D Arrays
Simple Dynamic Allocation
Passing a 2D Array to a Function
Example: 2D Array Parameter
Memory Layout for 2D Arrays
There MUST be a Better Way
2D Array Encapsulation
Array2D Construction and Destruction
Array2D Use

Computer Science Dept Va Tech January 2000 ©2000 McQuain WD

22D Arrays

OO Software Design and Construction

Simple Dynamic Allocation

A 2-dimensional int array of any fixed size can be allocated and initialized as follows:

const int Col = 4;
int Row = 2;

int (*A)[Col];
A = new int[Row][Col];

for (int i = 0; i < Row; i++)
for (int j = 0; j < Col; j++)

A[i][j] = i;

The primary shortcoming of the approach above is that the column dimension MUST be a
constant.

Passing a 2D array to a function also involves a requirement…

Spec addition:

in order to make your
lives a bit easier, we will
guarantee that the maze
for MazeCrawler will
never have more than 20
columns.

Note: you must still allocate
the array dynamically!!

Computer Science Dept Va Tech January 2000 ©2000 McQuain WD

32D Arrays

OO Software Design and Construction

Passing a 2D Array to a Function

A 2-dimensional array parameter requires that the column dimension of the array be
specified in the function prototype:

void init2D(int A[][C], int nRows, int nCols) {

for (int i = 0; i < Row; i++)
for (int j = 0; j < Col; j++)

A[i][j] = i;
}

The reason relates to the manner in which the elements of the array A will be laid out in
memory…

Actual number of
columns in array A.

Computer Science Dept Va Tech January 2000 ©2000 McQuain WD

42D Arrays

OO Software Design and Construction

Example: 2D Array Parameter
#include <iostream>
#include <iomanip>
using namespace std;
const int Col = 4;
void init2D(int A[][Col], int nRows, int nCols) ;

void main() {
int Row = 2;
int (*A)[Col];
A = new int[Row][Col];

init2D(A, Row, Col);

for (int i = 0; i < Row; i++) {
for (int j = 0; j < Col; j++)

cout << setw(5) << A[i][j];
cout << endl;

}
}

void init2D(int A[][Col], int nRows, int nCols) {

for (int i = 0; i < nRows; i++)
for (int j = 0; j < nCols; j++)

A[i][j] = i;
}

2

Computer Science Dept Va Tech January 2000 ©2000 McQuain WD

52D Arrays

OO Software Design and Construction

Memory Layout for 2D Arrays

First, physical memory is simply a one-dimensional array of bytes, indexed by addresses.

C++ (like most languages) specifies that 2D arrays are to be mapped into this one-
dimensional environment by storing the array cells row-by-row (known as row-major
order). Assuming that the array has R rows and C columns, that results in a layout
something like:

When you make an array reference, like A[4][3], the compiler must generate code to
calculate the address of the specified cell at runtime. The formula will necessarily involve
the column dimension C of the matrix A.

…2,12,01,C-1…1,11,00,C-1…0,20,10,0

Assume address of
the first byte here is
0x1000

Then the address of the 0-th cell of the second row
depends on the number of elements in the first row
(which is the number of columns in the matrix) and
the size of each array element in bytes.

Computer Science Dept Va Tech January 2000 ©2000 McQuain WD

62D Arrays

OO Software Design and Construction

There MUST be a Better Way

Well… of course… but as usual, it’s a matter of picking which type of pain you wish to
endure.

One approach is to allocate an array of pointers, viewed say as pointers to the columns in
a 2D matrix, and then use each pointer to dynamically allocate a column of the desired
size. That’s syntactically (and conceptually) ugly but it WILL work.

Another approach is to simply allocate a one-dimensional array, say A1D, of the correct
total size and then treat it as a 2D array. How? By taking on the management of the array
indexing arithmetic yourself. (See the previous memory layout again.)

…2,12,01,C-1…1,11,00,C-1…0,20,10,0

This is cell 0 of a 1D array. This would be cell C of a 1D array.

Now, if you want to logically refer to A[i][j], you just have to do some simple
arithmetic to calculate the correct index k and refer to A1D[k] instead.

Computer Science Dept Va Tech January 2000 ©2000 McQuain WD

72D Arrays

OO Software Design and Construction

2D Array Encapsulation

Of course, if you’re going to do that, there’s an advantage to be gained by wrapping the
one-dimensional array inside a class and hiding all the messy translation details inside its
member functions:

class Array2D {
private:

int *Data;
int nRows; // (logical) number of rows
int nCols; // (logical) number of columns
int Map(int R, int C) const; // translate [R][C] to right 1D index
bool ValidRC(int R, int C) const; // check if [R][C] specify a cell

public:
Array2D();
Array2D(int R, int C); // allocate array of R*C cells
Array2D(const Array2D& Source); // copy constructor and assignment
Array2D& operator=(const Array2D& Source);
bool Set(int R, int C, int Value); // store Value at A[R][C] (logically)
int Get(int R, int C) const; // get Value at A[R][C] (logically)
~Array2D();

};

The idea is to allow the user to act as if there’s really a normal 2D array under the hood,
while supporting pure dynamic allocation (no requirements that any dimension be a
constant). Of course, we also provide protection against array bounds errors as well.

Computer Science Dept Va Tech January 2000 ©2000 McQuain WD

82D Arrays

OO Software Design and Construction

Array2D Construction and Destruction

The constructor will provide a (logical) 2D array with any dimensions:

Array2D::Array2D(int R, int C) {

nRows = R;
nCols = C;
Data = new int[nRows * nCols];
if (Data == NULL) {

nRows = nCols = 0;
}

}

And destruction poses no new issues since Data is a simple one-dimensional array:

Array2D::~Array2D() {
delete [] Data;

}

3

Computer Science Dept Va Tech January 2000 ©2000 McQuain WD

92D Arrays

OO Software Design and Construction

Array2D Implementation

The remainder of the implementation is left to the reader. A few notes…

The copy constructor is necessary in order to pass Array2D objects as parameters or use
them as return values. The assignment overload is not used in the following example, but
it’s cheap to provide since a copy constructor must be written anyway.

The function Map() that provides the translation from 2D to 1D indices is simple. Draw
a few pictures and play around with indices and you’ll see the correct formula.

The ValidRC() function does not use Map() (or any other translation code).

It’s fairly trivial to turn Array2D into a template.

Computer Science Dept Va Tech January 2000 ©2000 McQuain WD

102D Arrays

OO Software Design and Construction

Array2D Use
#include <iostream>
#include <iomanip>
using namespace std;
#include "Array2D.h"

void init2D(Array2D& A, int Rows, int Cols);
void print2D(const Array2D A, int Rows, int Cols, ostream& Out);

void main() {

int R = 3, C = 5;
Array2D myArray(R, C);

init2D(myArray, R, C);
print2D(myArray, R, C, cout);

}

void init2D(Array2D& A, int Rows, int Cols) {

int row, col;
for (row = 0; row < Rows; row++)

for (col = 0; col < Cols; col++)
A.Set(row, col, row);

}

// . . . continues . . .

Computer Science Dept Va Tech January 2000 ©2000 McQuain WD

112D Arrays

OO Software Design and Construction

Array2D Use
// . . . continued . . .

void print2D(const Array2D A, int Rows, int Cols, ostream& Out) {

int row, col;
for (row = 0; row < Rows; row++) {

for (col = 0; col < Cols; col++)
cout << setw(5) << A.Get(row, col);

cout << endl;
}

}

0 0 0 0 0

1 1 1 1 1

2 2 2 2 2

