
Lower Bounds

0.0.1 Lower Bounds

Example 1 Given an array of numbers A[1, 2, ..., n], find the maximum and
the minimum of the set of the given numbers using only pairwise comparisons.

Example 2 Given an array of numbers A[1, 2, ..., n], find the minimum and
the second lowest elements of the set of the given numbers using only pairwise
comparisons.

For both these problems, the straight forward process of finding one and
then the other takes 2n − 3 comparisons. Again, for both these problems,
divide-and-conquer methods give a better bound of

§
3
2n− 2

¨
. We now ask if

there is a better algorithm for these two problems.
A similar question for sorting using only comparisons is treated in the book

in pp. 172-4.
For the problem of finding minimum and second minimum, there is a better

algorithm based on tournaments. Here we compare A[2i−1] with A[2i] for i = 1
to n. (We assume for simplicity that n is even.) We compare the ”winners” in
pairs and so on. For example, see the diagram below:

1

5

6 5

10569

1

1 7

7841

The light blue cells are those that lost to the final winner (in green). The
red are those that lost to the light blue ones and dark blue is one that lost to
a red. So for the second minimum we need only compare the light blue ones.
There is exactly one of these per level and there are dlgne levels and hence we
get a total of n+ dlgne− 2 comparisons in all.
The question about the existence of still better algorithms still is around.

Now we show that any algorithm based on comparisons has lower bounds equal
to the amount of work done by these algorithms for these two problems. But
before that, we show lower bounds for some other simpler problems.
Sorting:Decision Tree Model (Chapter 9.1)

1



Using only comparisons of pairs of elements, we want to sort an array of n
elements. That is given two elements, ai and aj , we perform one of the following
tests: ai < aj ; ai ≤ aj ; ai = aj; ai ≥ aj ; ai > aj . This determines the relative
order among these two elements. In order to get lower bounds, we may assume
the input has special characteristics with out loss. For, if the special case has a
lower bound, then this lower bound applies to the general case as well. In this
example, we assume that the elements are distinct. Given this assumption, we
never perform the middle test and the remaining are equivalent. So from now
on we talk of a test in the form ai : aj . Any algorithm does a comparison and
based on the outcome of this comparison, branches into two parts and for each
part does another comparison (and these two do not have to be the same) and
so on. This creates a binary tree called the decision tree. For example, here is
one taken from your book :

a2:a3

a1:a2

a1:a3a2:a3

[1,3,2]

a1:a3

<=

<=

<=

<=

<=

>

>

>
>

>

[1,2,3]

[3,1,2]

[2,3,1] [3,2,1]

[2,1,3]

This corresponds to insertion sort. The square boxes represent possible
permutations of the input. Thus, this tree must have at least n! leaves. The
complexity of the algorithm in the worst case, corresponds to the depth of the
tree, Since this is a binary tree, if h is depth, then we must have

n! ≤ 2h

and hence the lower bound on the complexity of any algorithm based only
on comparisons is lg(n!) = Ω(n lgn).

Adversary Arguments:
In order to get lower bounds we employ an adversary scenario. The algo-

rithms designer makes the decision as to, say, the next comparison. Knowing

2



this, an adversary gives the result of this comparison so as to make the algo-
rithm look bad (i.e. take many steps). The only restriction is that the adversary
needs to be consistent. Since the entire input is not used in the algorithm at
any step, and only the results of the comparisons can be used, the adversary
does not need to specify the input till the end. But when it does, this must be
consistent with all the answers given by it from the beginning. The key is to
design a strategy for the adversary so that the algorithm designer is forced to
take as long a time as possible. Let us take some examples to illustrate this
approach.

Example 3 Find minimum of an unsorted array A[1, 2, ..., n] of n numbers by
using comparisons of pairs of elements.

For the purposes of lower bound analysis, we may assume without loss that
the elements are distinct. Let us call the smaller of two elements in a comparison
the ”winner” and the other the ”loser”. For the purposes of lower bounds we
assume that the elements are distinct. At any stage, we have possibly two
types of elements: (A)those that have lost to some other element; (B)those that
have not lost any comparison. In the beginning we have only type B. When
the algorithm designer, chooses to compare two elements at any stage of the
algorithm, the comparison may be one of three types: AA,BA, or BB. The
adversary strategy that we choose is the following:

y−→
x↓ B A
B x < y
A x > y

In the above, blank space refers to being consistent with previous answers.
Note that the specific answers in the other cases also maintains consistency.
This can be done by suitably increasing the value of the B type.
In this process, we count the number of elements of type A. In order for

the algorithm to end, we must have (n − 1) elements of type A. Let us call
this count, the information content of the algorithm. The adversary is trying
to keep this as low as possible while the algorithm designer is trying to increase
this quantity. Note that when a comparison of the type BB is made, we increase
this quantity by 1 regardless of what the adversary says. But in the remaining
cases, the adversary strategy does not allow any increase of this quantity. So
the best the algorithm designer can do is make sure that at each step,
we are doing a BB type comparison. And in this case, we take (n − 1)
comparisons. Thus, this is a lower bound for this problem. Any algorithm
that only does BB type comparison is optimal. Thus, out of this analysis,
we not only got a lower bound but also a description of optimal algorithms.
Let see our first example again from the point of lower bounds. We repeat

the example for the sake of convenience.

Example 4 Given an array of numbers A[1, 2, ..., n], find the maximum and
the minimum of the set of the given numbers using only pairwise comparisons.

3



We can declare an element to be maximum only when we know that every
other element has ”lost” in some comparison where ”lost” means that it was
not the larger element. Similarly, we can declare an element to be minimum
only when we know every other element has ”won” some comparison. For each
element we keep track of whether it has won any comparison and lost any
comparison. The total of these ”wins” and ”losses” must add up to 2(n− 1) for
us to conclude the algorithm. In this process, we count only the first time an
element wins and only the first time it loses. So at any stage, we have elements
of the following types:

• W: This has element has won in some comparison but never lost
• L: This has element has lost in some comparison but never won
• WL: This has element has won in some comparison and lost in some
comparison

• N: This element has not yet participated in any comparison.

The strategy for the adversary depends on the nature of the pair being
compared. It always tries to give out the least amount of information consistent
with previous answers. The algorithm designer is trying to increase the amount
of information gathered. If the designer compares two elements both of which
are of type N, we get two pieces of information because one of them wins and the
other loses — both for the first time. The adversary arranges it so that in every
other comparison, we get no more than one piece of information. Each element
can be in only one comparison when its condition is type N. Thus, there can
be no more than n

2 comparisons in any algorithm where both elements are of
type N — recall these yield two pieces of information per comparison. Since each
other comparison yields no more than one unit of information, we need at least
[2(n− 1)− n] such comparisons. Thus, we need a total of n2 + (n− 2) = 3

2n− 2
comparisons. Now we describe the actual strategy of the adversary.

y−→
x↓ N W L WL
N 2 1 1 1
W 1 1 0 ≤ 1
L 1 0 1 ≤ 1
WL 1 ≤ 1 ≤ 1 0

We want to avoid giving two pieces of information in all cases except the NN
case. This forces specific answers in WN, LN, and LW cases as shown. That we
can do this and maintain consistency is why this strategy works. The adversary
maintains the following condition at all times: for each comparison except WL-
WL combination, we choose so that either the winner of this choice has
never lost before or the loser of this choice has never won before or
both. This way we never give more than one piece of information at each step

4



except in NN. This is always possible by choosing a high enough value for the
winner in the first case or a small enough value for the loser in the second case.

y−→
x↓ N W L WL
N x < y x > y
W x > y x > y
L x < y x < y
WL

All the blank squares correspond to the case when the adversary simply
choses answers consistent with previous answers in an arbitrary manner. In the
WN case, choose y small enough — this can not conflict with previous answers.
In the LN case, choose y large enough and this can not cause conflicts with
previous answers. In the LW case, either increase the value of y or decrease the
value of x.
While this gives us a lower bound, it also gives us an algorithm that achieves

this bound.

• Never include an element of the type WL in any comparison; this element
is not a candidate for either maximum or minimum.

• Do as many NN comparisons as possible — this is
¥
n
2

¦
. Thus, we give

priority to NN comparisons.

• Never do LW comparisons.

Thus, we do a series of NN first; then if the number of elements is odd,
do one NX comparison where X 6= WL. At this stage, there no more N type
elements. Now we do either WW type or LL type depending which type has
more than one element. Each comparison yields at least one unit of information
and the NN ones yield two. And the bound is achieved. Within this framework,
there are many possible implementations and each one is optimal.
Now we take up the second example:

Example 5 Given an array of numbers A[1, 2, ..., n], find the minimum and
the second lowest elements of the set of the given numbers using only pairwise
comparisons.

So far we have an algorithm that does n+dlgne−2 comparisons. The obvious
question is: ”Can we do better or is this also a lower bound?” To produce a
lower bound we turn to the adversary argument. For the lower bound, we
may assume that elements are distinct and we do this from now on. Before
we proceed further, we note that in order to know that a certain element is
the second smallest, we must know which is smallest. This is so because if we
declare element x as the second smallest, (and not the smallest), must have lost
to some element y. In this case, y must be the smallest. Thus, we already have
a lower bound of (n− 1) comparisons. But we can get a better lower bound.
Adversary Strategy:

5



Let nj represent the number of elements that have ”lost” to j or more
elements at the end in some algorithm that finds the second smallest element.
The total number of comparisons must be equal to

P
j=1 nj . We know, from

the above discussion, that n1 = (n− 1). Now we will show that n2 ≥ dlgne− 1.
Suppose at the end, the smallest element has been involved in p comparisons in
which the other element has not lost to any element prior to this comparison.
These and only these can be candidates for second smallest element. All other
elements have ”lost” at least to two elements or lost to an element that has lost
to another element and are not candidates for second smallest. Hence n2 ≥ p−1.
So we complete the proof by showing that the smallest element must be involved
in at least dlgne comparisons of the above type and the adversary scenario is
to find such a strategy.
So here is the adversary strategy: decide x < y, if x has never lost before

and y has or if both have never lost before this comparison and x has won
more comparisons than y as of now. In the remaining cases, make a decision
consistent with previous results.
We say x supersedes y either if they are the same or if x beats y and y was

unbeaten prior to this or if x supercedes z which supercedes y. An element that
has won p comparisons (in which the other element has not lost to any element
prior to this comparison) and lost none can supercede at most 2p elements. But
the smallest element must supercede n elements at the end. Hence it must have
been involved in dlgne direct comparisons. This completes the proof.

6


