
A GJK-Based Algorithm for Constrained Least Squares

Paul Centore

c© January 28, 2015

Abstract

A least squares problem is of the form Mx=b, where M is a matrix, and x and b are
vectors. M and b are known, and one seeks an x that minimizes the Euclidean norm of
Mx-b. Ordinary least squares (OLS) places no restrictions on x, while constrained least
squares (CLS) does. Typical approaches to CLS involve linear or quadratic program-
ming. This paper proposes a new approach, incorporating the Gilbert-Johnson-Keerthi
(GJK) algorithm, which finds the minimum distance between two convex polytopes. Mx
is treated as a set, which depends both on M and on the constrained x. In many cases,
Mx is a convex polytope P, for which a set of generators can be found; the generators are
linear combinations of columns of M. The GJK algorithm is used to find the point p on
P which is nearest to b. GJK is very fast; it needs generators for P, but does not calcu-
late a convex hull. The GJK algorithm also expresses p as a convex combination of the
generators. Since the generators are functions of M, one can work backwards to values
for x. Example applications are given, involving constrained mixture designs (CMD),
bounded variables least squares (BVLS), and non-negative least squares (NNLS).

1 Introduction

Least squares problems arise in many practical situations, particularly when fitting a linear
model to a set of measured data. A least squares problem is of the form

Mx = b, (1)

where M is a known matrix of m rows and n columns, and b is a known vector. Mx and
b are assumed to exist in the same vector space, Rm, which is equipped with a Euclidean
metric; an orthonormal basis is chosen to simplify computations. One seeks a vector x that
minimizes the norm of the vector Mx− b. In an ordinary least squares (OLS) problem, there
are no restrictions on any of the entries in x. In a constrained least squares (CLS) problem,
there are such restrictions.

Consider ordinary least squares first. Typically, there is no x̂ such that Mx̂ = b exactly.
A least squares solution x̂ that minimizes the norm of Mx − b, however, does exist. Let v
denote the vector of minimum norm:

v = Mx̂− b. (2)

1



PAUL CENTORE

Geometrically, v is a vector that joins b to a point bM in Mx, which, since x is unconstrained,
is the range of M. The range of M is a subspace of Rm, so it is convex. Since a convex set
has a unique point that is nearest to an outside point,1 both v and bM must be unique.
Furthermore,

Mx̂ = bM . (3)

Equation (3) implies that bM is in the range of M. While x̂ is not an exact solution to
Mx = b, it is an exact solution to Mx = bM . Furthermore, any other solution to Mx = bM
is also a least squares solution.

This line of reasoning suggests a geometric approach to least squares. Consider Mx as
just a subset, rather than a subspace, of Rm, and consider b as a target vector in Rm that
M is trying to reach. Since b is not in Mx, the best we can do is to choose the point bM that
is in Mx, and is as close to b as possible. Any solution to the equation Mx = bM is then a
least squares solution to Mx = b. Furthermore, at least one x̂ satisfies Mx = bM , and the
set of all solutions to Mx = bM is the set x̂+ ker(M).

This geometric approach is fruitful because it applies to both ordinary and constrained
least squares. In the preceding OLS derivation, the assumption of an unrestricted x was only
needed to insure that Mx was a subspace of Rm. When x is constrained, Mx is no longer
a subspace, but is a subset S. If we can find a point bS on S that is closest to b, the rest of
the derivation follows through, and determines a least squares solution.

The general problem of finding the shortest distance from a point to an arbitrary subset is
computationally intractable. When the subset is a convex polytope P, however, the Gilbert-
Johnson-Keerthi (GJK) algorithm2,3 can quickly find the nearest point on P to a target
point b. The GJK algorithm requires P to be expressed as the convex hull of a known set of
generating vectors. We will later see some important CLS examples in which such generator
vectors can readily be calculated from M.

The set Mx can be seen as a linear combination of the columns of M :

Mx =
n∑

i=1

xiMi, (4)

where Mi is the ith column of M. This viewpoint turns constraints on x into restrictions
on the coefficients of the Mi’s. If there are no constraints, then Mx is just the column
space of M, denoted col(M). Constraints on x make Mx a proper subset of col(M). Many
common constraints, however, lead to tractable geometric forms for Mx. For example, if
the constraints require that all entries are between 0 and 1, and also sum to 1, then Mx is
the convex hull of the column vectors of M. Since Mx is a convex hull, it is also a convex
polytope, and the GJK algorithm can be applied.

This paper’s main idea is incorporating the constraints on x into the set Mx. In many
practical cases, Mx is a convex polytope P, so the GJK algorithm can find bP , the closest
point to b on the constrained Mx. As a consequence, there exists a solution which not only
satisfies Mx = bP exactly, and Mx = b as closely as possible, but which also satisfies the
constraints.

The GJK algorithm that calculates bP is a fast, iterative method that finds the minimum
distance between two convex polytopes. In this paper, the first polytope is the set Mx, and

c© 2015 Paul Centore 2



A GJK-BASED ALGORITHM FOR CONSTRAINED LEAST SQUARES

the second polytope is the point b. The algorithm also expresses bP as a convex combination
of generators. The generators themselves are expressed as linear combinations of the columns
of M. Coefficient expressions can be manipulated to produce entries in an x that not only
solves Mx = bP , but also satisfies the constraints. Since bP minimizes the distance from Mx
to b, such an x is in fact a constrained least squares solution.

This paper is organized as follows. First, the GJK algorithm is described. Second, the
GJK-based algorithm is presented: a convex polytope P is constructed from M and the
constraints on x, and the GJK algorithm finds the closest point on P to b; manipulating the
GJK output produces entries of x that both satisfy the constraints and minimize the dis-
tance from b. Third, three practical examples (constrained mixture design (CMD), bounded
variable least squares (BVLS), and non-negative least squares (NNLS)) are worked out in
detail, leading to algorithms for those sets of constraints. Finally, the algorithm’s possible
benefits are discussed.

2 The GJK Algorithm

2.1 Algorithm Setting

The Gilbert-Johnson-Keerthi (GJK) algorithm2 was introduced in 1988. The algorithm finds
the shortest distance between two convex polytopes in a finite-dimensional Euclidean space.
Besides its speed, the GJK algorithm is notable for the form of its inputs: it only requires
two sets of points, whose convex hulls are those polytopes. This form occurs naturally in
constrained least squares problems.

A convex polytope in Rm is most easily defined as the convex hull of a finite set of points.
Formally, suppose V = {v1, v2, ..., vk} is a set of points in Rm. Then co(V ), the convex hull
of V, is given by

co(V ) =

{
k∑

i=1

αivi

∣∣∣∣∣
k∑

i=1

αi = 1 and 0 ≤ αi ≤ 1∀i

}
. (5)

Intuitively, convex polytopes generalize convex polygons and polyhedra to an arbitrary
number of dimensions. Polytopes in three dimensions can be thought of as bodies with
corners, sharp edges, and flat faces; in higher dimensions, a polytope’s boundary is similarly
a union of flat objects of lower dimension. The requirement that a polytope be generated
by a finite set of points means that curved surfaces such as spheres cannot be polytopes.
Polytopes are not required to be fully dimensional. For example, a line segment in R3 is
a polytope, as is a triangle. Convex polytopes are always closed and bounded. The set of
generating points for a convex polytope is not unique. A cube, for example, is a polytope,
one of whose generating sets is its eight vertices; the union of the cube’s vertices and the
cube’s center is again a generating set.

Though the algorithm can take two convex polytopes as input, CLS problems need only
a special case: one of the polytopes is a target point b. The GJK algorithm then determines
the minimum distance from the target point to the polytope, the point bP on the polytope
which is closest to the target point, and an expression for bP as a convex linear combination
of the generators, as in Equation (5).

3 c© 2015 Paul Centore



PAUL CENTORE

v1
v2

v3
v4

v5
v6

v8

v9

b

P

v7

Figure 1: Two-Dimensional Example for GJK Algorithm

2.2 Description of the GJK Algorithm

The GJK algorithm will be explained with a two-dimensional example. Suppose that a
convex polytope P in R2 is generated from a finite set V of points vi, i = 1, ..., k, as shown
in Figure 1. While all the extreme points, or corners, of P are points in V, there can also
be points of V, such as v4 and v6, in the interior of P. The interior points are superfluous
but harmless: the algorithm will reach the same result whether or not they are present. A
target point b is also shown. The GJK algorithm finds the point bP on P which is closest
to b. The convexity of P guarantees that such a point exists and is unique (see Sect. 19.2 of
Ref. 1). While b is often outside P, b can also be inside P, or on its boundary; in such cases
the distance to P is 0, and the closest point bP is just b itself.

An important concept for the GJK algorithm is the support function. The support
function ρd,u uses a unit direction vector d, which originates at a point u, as shown in Figure
2. Given any point v in the space, the support of v, relative to d and u, is defined as

ρd,u(v) = (v − u) · d. (6)

Geometrically, the vector d can be extended to a line, with the point u indexed by 0. Other
points on this line are indexed by their distance from u, with positive points in the direction
of d and negative points in the direction of −d. The point v can be projected perpendicularly
onto this line. The index of the projection point is then the support of v, relative to d and
u. The GJK algorithm uses the support function to move across P in certain directions,
approximately towards b. When the algorithm has converged, the generating points that
make a non-zero contribution to bP will all have minimum support, and no further reduction
is possible.

The GJK algorithm begins by choosing a subset W of V. W can contain up to m + 1
points, where m is the dimension of the space. The points should be affinely independent so

c© 2015 Paul Centore 4



A GJK-BASED ALGORITHM FOR CONSTRAINED LEAST SQUARES

u

v1
v2

v3 v4

v5
v6

v8

v9

P

v7

d

support = 0

support = 1

support = -1

support = 2

Figure 2: The Support Function

that they generate a simplex. Apart from these restrictions, the choice of W is arbitrary. In
two dimensions, W will be either a single point, two points which define a line segment, or
three points which define a triangle. For simplicity, W can be chosen to be a single point.
For purposes of illustration, we will start with the points v3, v6, and v8, shown in Figure 3,
which generate a triangle.

Once W has been chosen, the convex hull co(W ) of its elements forms a simplex, such
as the triangle in Figure 3. At this point, Johnson’s sub-distance algorithm3 can be used
to determine the point bW on co(W ) that is closest to b, as well as the minimal subsimplex
of co(W ) that contains bW . In Figure 3, for example, the point bW is on the line segment
generated by v8 and v6. That line segment is the minimal subsimplex. Since v3 is not needed
to generate this subsimplex, discard v3 from W. Johnson’s algorithm returns not just the
minimal subsimplex, but also an expression for bW as a convex combination of the polytope’s
generators. In the figure, for example, bW = 0.85v8 + 0.15v6.

For the next step, Figure 4 shows how the support function expands the minimal W into
a new simplex that contains points that are closer to b. Construct the unit vector d that
originates at b and points toward bw. Calculate the support for each point in V, relative to
d and b. Choose a point vi of minimal support, and add vi to the set W. It is possible for
the support to be negative, and a point with negative support should be chosen over a point
with positive support. In Figure 4, the point v9 has minimal support, so it was added to the
new W that is shown there.

This step has some subtleties. The union of W and the new point might not be affinely
independent, so no simplex would be formed. In that case, one must delete further points
from W, try a different new point, or adjust one of the points very slightly. This problem
is expected in some realistic cases. Suppose that the polytope is a cube in R3, and that
its closest point is on a face of the cube. Then the vertices of that face all have the same

5 c© 2015 Paul Centore



PAUL CENTORE

v1
v2

v3
v4

v5
v6

v8

v9

b

W

P

v7 b
W

Figure 3: Choosing a Simplex in the Polytope P

support with respect to the minimum line segment between the target and the cube. As the
algorithm converges, it is easy to see how it could try to construct a simplex from those four
vertices—the attempt will fail because a four-point simplex should have dimension 3 rather
than dimension 2. If one of those vertices is adjusted very slightly, then the face will go from
a square to two triangles. The adjustments should have negligible effect on the closest point,
but will permit the algorithm to form simplices.

Now iterate over the previous two steps:

1. Find the nearest point bW on the simplex generated by W, and reduce W to the minimal
containing subsimplex.

2. Find a point whose support, with respect to the vector from b towards bW , is as small
as possible, and that still makes a simplex when added to W. Add that point to W.

These two steps will produce a series of points bW , that terminate in the desired bP . The
algorithm terminates when all points of minimal support are already contained in the current
W. Figure 5 shows the termination for the example, which occurs after the second set W
has been constructed. The point bP is contained in the minimal subsimplex generated by v8

and v9. The support function of bP − b takes on a minimum only at v8 and v9, which are
already in the latest W. Geometrically, the vector from b to bP is perpendicular to an edge of
P, so both vertices for that edge will have the same support. In three dimensions, the vector
from b to bP could be perpendicular to a bounding face, all of whose vertices have the same
minimal support. Analogues hold for higher dimensions.

The GJK algorithm is very fast. The reason for its speed is that generally only a small
number of simplices are needed, and the simplices themselves require only a few vertices,
often less than half a dozen. (The slowest part of the algorithm is evaluating the support
function.) This speed, however, requires that the polytope of interest be expressed by a set
of generating vectors. Although the polytope is implicitly a convex hull of its generators,

c© 2015 Paul Centore 6



A GJK-BASED ALGORITHM FOR CONSTRAINED LEAST SQUARES

v1
v2

v3 v4

v5
v6

v8

v9

b

W

P

v7 b
W

support = 0

support = -0.7

Figure 4: Choosing a New Simplex in the Polytope P

v1
v2

v3
v4

v5
v6

v8

v9

b

W

P

v7

b
P

Figure 5: Termination of the GJK Algorithm

7 c© 2015 Paul Centore



PAUL CENTORE

a surprising GJK feature is that there is no need to calculate the convex hull directly.
This features saves time, too, because finding convex hulls can be slow, especially in high
dimensions.

Convex polytopes are also commonly defined as the intersection of half-spaces resulting
from linear inequalities; this form appears in linear and quadratic programming (QP). In
fact, since the distance from a given point is a quadratic function, the problem of finding
the nearest point on a polytope comes up regularly in QP. While the GJK algorithm looks
tempting in this setting, it is likely no more efficient than standard QP methods—the GJK
algorithm requires converting the half-spaces into a set of generators for the polytope, which
can be very time-consuming. Fortuitously, the GJK algorithm seems tailor-made for the
constrained least squares problems that are the concern in this paper.

3 A GJK-Based Algorithm for Constrained Least Squares

The GJK algorithm is surprisingly useful in some common CLS problems. In this section,
we develop a GJK-based algorithm for such problems.

3.1 Constrained Least Squares Problems

A least squares problem involves a linear system

Mx = b, (7)

where M is a matrix, and x and b are column vectors. M and b are known, and x is to be
solved for. Because of measurement or model error in practical situations, it is likely that
no x satisfies Mx = b exactly. Instead, one finds an x̂, called a least squares (LS) solution,
that satisfies Mx = b as closely as possible. Closeness is measured by the squared norm of
the difference vector between Mx̂ and b:

squared norm =
m∑

i=1

((Mx̂)i − bi)2 , (8)

where the subscript i denotes the ith coordinate. (We are assuming here a Euclidean metric;
for simplicity, vectors are expressed in an orthonormal basis.) When there are no restrictions
on x,minimizing Equation (8) is the ordinary, or unconstrained, least squares (OLS) problem.

The constrained least squares problem is to minimize (8) when there are restrictions, or
constraints, on the coordinates of x. Two important CLS problems are non-negative least
squares (NNLS), in which every coordinate must be positive or zero, and bounded variables
least squares (BVLS), in which the ith coordinate must satisfy γi ≤ xi ≤ δi. A third example
is constrained mixture design (CMD), in which the ith coordinate must satisfy 0 ≤ xi ≤ 1,
and all the entries must sum to 1. CMD problems arise naturally when estimating the
concentrations of ingredients in a mixture. In general, many other kinds of constraints are
possible.

Stable and efficient procedures4 are well established for ordinary least squares. Con-
strained least squares problems are considerably more challenging. NNLS and BVLS solu-
tions are often recast as problems in linear or quadratic programming, which can be com-
putationally demanding. The following sections formulate some constrained least squares

c© 2015 Paul Centore 8



A GJK-BASED ALGORITHM FOR CONSTRAINED LEAST SQUARES

problems geometrically, viewing Mx as a convex polytope. In this formulation, the GJK
algorithm has the potential of offering a faster and more intuitive procedure.

3.2 Geometric Interpretation of Mx = b

Suppose the matrix M has m rows and n columns. Then M can be viewed as a linear
transformation from the vector space Rn to the vector space Rm. The vector b on the right
side of Equation (7) is a target vector in Rm. The left side, Mx, can be seen as a set of linear
combinations of the columns of M. In fact, each column Mi of M can be seen as a vector
in Rm: Mi is the image under M of the vector x which is zero in all coordinates except
the ith, where it takes on the value 1. If the variables in x are unconstrained, then Mx is
just col(M). While col(M) has considerable structure, for now it is best just to view it as a
subset S of Rm.

S will change if constraints are placed on x. NNLS, for example, assumes that the entries
of x are non-negative, so Mx is the convex cone generated by the columns of M. For BVLS,
we will see later that Mx is the zonotope generated by the columns of M. The three subsets
in these examples have a strict containment relationship:

subspace ⊃ convex cone ⊃ zonotope. (9)

The variety of forms resulting from different constraints suggests that algorithms might be
adapted to certain sets of constraints.

When Mx is seen as a set S in Rm, the equation Mx = b, where b is also in Rm, becomes
a set containment problem: is the vector b in the set S? Since we are assuming that there is
no x exactly satisfying Mx = b, it must be that b is not contained in S. Given that failure,
the least squares approach to Mx = b finds a point bS that is in S, and is as close to b as
possible. Then the equation Mx = bS will have an exact solution, because bS is in the range
of M. Furthermore, that solution can be expressed so as to satisfy constraints on x, because
those constraints were incorporated into the set Mx. In fact, this method is used implicitly
in OLS. The set Mx is the subspace col(M), and bS is the orthogonal projection of b onto
that subspace.

Containment relationships like (9) show why constraints cause difficulty in the first place.
A point bS might be the closest point to b on the subspace col(M), and thus be helpful in
the ordinary least squares problem—but likely bS is not contained in the BVLS zonotope.
Solving the BVLS problem requires the closest point to b on the zonotope.

GJK can be helpful in least squares by quickly finding closest points, when Mx is a
convex polytope. An important observation is that, for many CLS cases in practice, the set
Mx, under the constraints imposed on x, is a convex polytope P. Apply the GJK algorithm
to P to find the point bP on P, which is closest to b. Then the equation Mx = bP has an
exact solution, because bP was chosen to belong to the set Mx.

3.3 A Set of Generators for Mx

One limitation of the GJK algorithm—which turns out to be a strength for CLS problems—
is that it requires a set of generators for the convex polytope P. In many CLS problems, the

9 c© 2015 Paul Centore



PAUL CENTORE

generators are linear combinations of the columns of M, so they can be computed quickly
and easily. The choice of linear combinations is adapted to the constraints. A later section
will give some concrete examples. This section will assume that the generators are linear
combinations of the columns of M, and calculate a potential CLS solution x.

Denote the set of generators for P by V, and assume that every element of V is a linear
combination of the the column vectors of M. A convenient notation for V uses an index
matrix J, that gives the coefficients of Mi in the generators. If n were 3, for example, and
the coefficients could be any combination of 0’s and 1’s, then we could write

v1

v2

v3

v4

v5

v6

v7

v8


=



0 0 0
1 0 0
0 1 0
0 0 1
1 1 0
1 0 1
0 1 1
1 1 1



 M1

M2

M3

 ,
(10)

where each vj is an element of V, and J is the matrix of 0’s and 1’s. Each Mi has a coordinate
expression in Rm, so each vj also has a coordinate expression in Rm. This example has 2n

generators; other examples would have different numbers of generators.
The v’s in V generate the convex polytope P, and the GJK algorithm can find the point

bP on P that is nearest to b. The algorithm returns its results in the form

bP =
2n∑

j=1

αjvj (11)

= αivi + α2v2 + ...+ α2nv2n , (12)

where bP and the vi’s are vectors in Rm, and the αi’s are scalars. Substituting Equation (10)
into Equation (12) gives

bP = α1 (J1,1M1 + J1,2M2 + ...+ J1,nMn) + ...

+α2 (J2,1M1 + J2,2M2 + ...+ J2,nMn) + ...

+ ...+ ...

+α2n (J2n,1M1 + J2n,2M2 + ...+ J2n,nMn) (13)

= (α1J1,1 + α2J2,1 + ...+ α2nJ2n,1)M1 + ...

+ (α1J1,2 + α2J2,2 + ...+ α2nJ2n,2)M2 + ...

+ ...+ ...

+ (α1J1,n + α2J2,n + ...+ α2nJ2n,n)Mn. (14)

By construction, bP is the nearest point to b that is also in Mx. Therefore bP will replace
b in Equation (7), giving

bP = x1M1 + x2M2 + ...+ xnMn, (15)

c© 2015 Paul Centore 10



A GJK-BASED ALGORITHM FOR CONSTRAINED LEAST SQUARES

where bP and the Mi’s are vectors, and the xi’s are scalars. Equations (14) and (15) are two
equal linear combinations of the column vectors of M, so we can find a solution (possibly
not unique) by equating coefficients. If α = [α1, α2, ...] is written as a row vector, then we
get

x = αJ. (16)

We have now found an explicit x such that Mx = bP . The next section deals with the
implications for CLS solutions.

3.4 Validity and Uniqueness

While it would seem that αJ is a CLS solution, in fact that conclusion requires more work.
The difficulty is that there can be multiple solutions to Mx = bP , some of which satisfy the
constraints and others of which do not. An example is the following system, when every xi

is constrained to be between 0 and 1:
1 2 3
4 5 6
7 8 9
10 11 12


 C1

C2

C3


=


3
6
9
12

 . (17)

The vector y = [0, 0, 1] satisfies Equation (17) and also satisfies the constraints. The vector
z = [−1/6, 1/3, 5/6], however, also satisfies Equation (17), but does not satisfy the con-
straints. We need some way of insuring that x = αJ really is a valid solution.

Several methods are available. If the equation Mx = bP has a unique solution x̂, then,
since there exists one solution that satisfies the constraints, that solution must be x̂, so we
have a valid CLS solution. Uniqueness can be inferred either from physical considerations,
or from linear algebra: if the columns of M are linearly independent, so M has full column
rank, then x̂, which is αJ in this case, is unique. Even if M does not have full column
rank, information can still be inferred about αJ. For example, α is the set of coefficients of
a convex combination of vertices. Therefore every αi is between 0 and 1, and the sum of all
the αi’s is 1. The entries of J will be known explicitly, which can place further bounds on
αJ. In the cases of constrained mixture design and bounded variables least squares, we will
see that such conditions imply that x = αJ must satisfy the constraints. In any particular
case, of course, αJ can always be tested directly to see if it satisfies the constraints; if it
does, then we have a CLS solution, regardless of theoretical considerations.

If all these methods fail, then a more difficult set intersection problem can be solved.
The set of exact solutions to Mx = bP is given by the affine subspace K = x̂+ ker(M). One
can also consider the subset C of Rn that contains all the x’s that satisfy the constraints. If
every xi were required to be between 0 and 1, for example, then C would be the unit cube.
K ∩ C is the set of all least squares solutions that satisfy the constraints. K is an affine
subspace and C is usually a convex set, so their intersection can be calculated. In addition,
one might require only one CLS solution, i.e. only one point in the intersection, rather than
the entire intersection; this requirement would simplify calculations.

Solution uniqueness is another possible concern: multiple minimizing solutions might
satisfy the constraints. One reason is that different α’s can produce the same nearest point

11 c© 2015 Paul Centore



PAUL CENTORE

bP on P. Geometrically, bP results from different convex combinations of the generators.
A practical example will be presented when we consider constrained mixture design. In
addition, different J ’s will produce different generating sets for Mx, which could affect the
calculation αJ.

In general, rigorous answers to questions of validity and uniqueness will be specific to a
particular CLS problem. The practical examples to be presented, however, show that they
are not hard to come by. Further investigations might determine how serious the question
of validity is in practice.

3.5 Summary of GJK-Based Algorithm

The following steps summarize the GJK-based algorithm for a constrained least squares
problem of the form Mx = b:

1. Determine whether Mx, given the constraints on x, is a convex polytope P. (If not,
the GJK-based algorithm cannot be used, so exit.)

2. Construct P as the convex hull of a set of linear combinations of the columns of M.
Express this set in an index matrix J. (If no such set exists, then exit.)

3. Construct V, a generating set for P, from the matrix J.

4. Apply the GJK algorithm to V to find bP , the point on P that is closest to b. The GJK
algorithm also produces a row vector α, that gives bP as a convex combination of the
elements in V.

5. Calculate x = αJ.

6. Analyze the validity and uniqueness of αJ :

(a) If possible, prove analytically that αJ must satisfy the desired constraints, or

(b) Test αJ to see whether it satisfies the constraints.

(c) If either of Steps 6a and 6b succeeds, then αJ is a least squares solution that
satisfies the constraints.

(d) If Steps 6a and 6b both fail, then find a vector p in the intersection of the set
K = αJ+ker(M) with the set C of all x’s that satisfy the constraints. The vector
p will then minimize the norm of Mx− b, while still satisfying the constraints.

4 Three Examples

The following sections apply the GJK-based algorithm to some common CLS cases. In all
three cases, the GJK-based algorithm provides a simple solution that can be proven to satisfy
the constraints.

c© 2015 Paul Centore 12



A GJK-BASED ALGORITHM FOR CONSTRAINED LEAST SQUARES

4.1 Constrained Mixture Designs

The constrained mixture design (CMD) problem is to find a least squares solution to Mx = b,
under the constraints that

0 ≤ xi ≤ 1, (18)
n∑

i=1

xi = 1. (19)

CMD problems arise when multiple ingredients are combined into one mixture. (In fact, this
paper was motivated by such a problem, involving the Kubelka-Munk paint-mixing model.)
The variable xi is the concentration of the ith ingredient in the mixture. The concentrations
can be expressed as percentages of the entire mixture. For example, a mixture might be 50%
ingredient 1, 40% ingredient 2, and 10% ingredient 3. Physically, concentrations must be 0
and 100% and must sum to 100%, leading to the constraints.

The set Mx is simply characterized under these constraints. A point in Mx is of the
form ∑

i

xiMi, (20)

where the xi’s are coefficients in a linear combination and satisfy (18) and (19). Geometri-
cally, these constraints define the set of convex combinations of the vectors Mi. The set Mx
is therefore a convex polytope, and a generating set V is just the column vectors of M. The
index matrix J is then just the identity matrix. Apply the GJK algorithm to the generating
set V to find the point bP on P that is nearest to b, and also a vector α such that

bP =
∑

i

αivi. (21)

Since J is the identity matrix, vi = Mi, and Equation (21) becomes

bP =
∑

i

αiMi. (22)

Either from Equation (22) or by calculating x = αJ, we see that setting xi = αi guarantees
that the variables xi minimize the norm of Mx− b.

We now investigate whether those xi’s also satisfy the constraints. In this case, it is
clear that they do. Since αi are the coefficients of a convex combination produced by the
GJK algorithm, αi must be between 0 and 1, and all the αi’s must sum to 1. These are
exactly the conditions in (18) and (19), so the xi’s, which just equal the αi’s, must satisfy
the desired constraints. We have therefore found a general, easily calculated, solution for
the CMD problem.

Though a valid solution has been found, it might not be unique. While the GJK algorithm
has found one vector α that satisfies Equation (21), there could be another vector β that
also satisfies that equation. For a practical example, let the xi’s represent the concentrations
of a set of paints in a mixture. Suppose we are trying to find a mixture of paints whose

13 c© 2015 Paul Centore



PAUL CENTORE

colour most closely matches the colour of a target paint b. Then α might tell us that the
closest match is given by a mixture of 80% of Paint 1 and 20% of Paint 2, and β might tell
us that the closest match is given by a mixture of 60% of Paint 3 and 40% of Paint 4. The
physical interpretation is that these two mixtures produce the same colour, and that that
colour most closely matches the target colour.

4.2 Bounded Variables Least Squares

The bounded variables least squares (BVLS) problem is to find a least squares solution to
Mx = b, under the constraints that γi ≤ xi ≤ δi. By making the transformation

x̄, =
xi − γi

δi − γi

, (23)

the constraints can be simplified to 0 ≤ xi ≤ 1. An element p of Mx can be written as a
linear combination of the columns of M :

p =
n∑

i=1

xiMi. (24)

From this point of view, Mi’s are vectors in Rm, and the variables xi are coefficients in a
linear combination of those vectors. Since xi is between 0 and 1, the set xiMi, for a fixed i,
is geometrically the line segment that joins the origin to Mi. Write pi = xiMi. Denote this
line segment by σi. Then pi is a point on σi, and

p = p1 + p2 + ...+ pn. (25)

This kind of sum, in which each vector is an element of a different set, is an example of
the Minkowski or vector sum, here denoted ⊕. The Minkowski sum of two subsets A and B
of a vector space is defined by

A⊕B = {a+ b
∣∣a ∈ A, b ∈ B}. (26)

The Minkowski sum naturally generalizes to any number of sets. Minkowski addition is
commutative: A ⊕ B is the same set as B ⊕ A. It is also associative: (A ⊕ B) ⊕ C and
A⊕(B⊕C) are the same set, so that we can unambiguously write A⊕B⊕C. Geometrically,
the Minkowski sum of A and B is the set covered by all the copies of A whose centers touch
B at at least one point. The Minkowski sum of a line segment and a triangle (in two different
planes), for example, would be a prism.

The definition of Minkowki sum allows us to write

Mx = σ1 ⊕ σ2 ⊕ ...⊕ σn. (27)

This relationship is important because all the summands on the right are convex polytopes,
and the Minkowski sum of convex polytopes is again a convex polytope.6 Furthermore, an
extreme point of a Minkowski sum must be the sum of extreme points of the summands.
We can therefore create a set V that contains all Mx’s extreme points: let V contain all

c© 2015 Paul Centore 14



A GJK-BASED ALGORITHM FOR CONSTRAINED LEAST SQUARES

possible sums of extreme points for individual σi’s, where each σi contributes one extreme
point. Some elements of V will not be extreme points of Mx, but every extreme point of
Mx will be in V. Since a convex polytope is generated by its extreme points, we can use V
as a set of generators for Mx.

Since a line segment is a convex polytope, Mx in Equation (27) is the Minkowski sum of
a set of convex polytopes, and is therefore itself a convex polytope. A Minkowski sum of line
segments, each of which starts at the origin, is called a zonotope.5 The extreme points, or
vertices, of this zonotope are sums of the extreme points of the line segments that generate
the zonotope. The ith line segment has two extreme points: 0 and Mi. Formally, let Ei

denote these extreme points. Then Ei = {0,Mi} , and

V =
n∑

i=1

ei, such that ei ∈ Ei ∀i. (28)

Since Ei contains two elements, V contains 2n elements. In the context of zonotopes, each
element of V is called a node. While every vertex of the zonotope is a node,5 not every node
is a vertex. Likely, some of the nodes will be in the interior of the zonotope. Nevertheless,
since V contains all the vertices of the zonotope P, V is a generating set for P. The interior
nodes, like the points v4 and v6 in Figure 1, are superfluous but harmless.

The index matrix J assigns a coefficient of 0 or 1 to each Mi, in all possible combinations.
Each row of J is therefore a sequence of 0’s and 1’s, and there are 2n rows, one for each
possible sequence. Equation (10) gives an example of J, when there are three column vectors.
J thus defines a set V of 2n vectors that generate the zonotope. Applying the GJK algorithm
to V produces a point on the zonotope that is closest to b, and a vector α that expresses
that point as a convex combination of generators.

We calculate

x = αJ, (29)

and investigate whether it satisfies the constraints. Since α gives the coefficients of a convex
combination, all its entries are bounded by 0 and 1. From the node construction, all the
entries of J are also bounded by 0 and 1. Each entry xi is the dot product of α and the
ith column of J. Since all entries of α and J are non-negative, any such dot product is non-
negative. The maximum of any such dot product occurs when every element in that column
of J is 1. Since the entries of α sum to 1, any dot product of α and a column of 1’s would
itself be 1, which is the maximum possible value. Therefore every xi satisfies the constraint
of being between 0 and 1.

4.3 Non-Negative Least Squares

The non-negative least squares (NNLS) problem is to find a least squares solution to Mx = b,
under the constraint that each xi is non-negative. As before, begin by investigating the
geometric form of Mx, given the constraints. When all the coefficients xi in the sums∑
xiMi are zero or greater, then Mx is the convex cone generated by the column vectors of

M. A convex cone consists of rays that start at the origin. Let Ri denote the ray that starts
at the origin and goes through Mi. Then Mx is the convex hull of all the rays Ri.

15 c© 2015 Paul Centore



PAUL CENTORE

The first step of the GJK-based algorithm is to determine whether Mx is a convex
polytope. In the NNLS case, Mx is unbounded, so it cannot be a polytope. We will adapt
the algorithm, however, by imposing a sequence of artificial constraints on Mx. We can use
the fact that the convex cone generated by {Mi,M2, ...,Mn} is identical to the convex cone
generated by {γ1Mi, γ2M2, ..., γnMn} , where each γi is positive. We can therefore multiply
each Mi by a γi such that the norm of γiMi is some Γ.

For a particular Γ, construct

ΓCH = co ({0, γ1Mi, γ2M2, ..., γnMn}) . (30)

ΓCH is the convex hull of the origin and the adjusted column vectors. ΓCH is contained in
the convex cone Mx. In fact, ΓCH fits perfectly inside Mx at the origin, because ΓCH simply
truncates each ray in Mx. As Γ increases, ΓCH occupies more and more of the convex cone.

The boundary of ΓCH can be thought of as consisting of two parts: a conical part and
a cap. The conical part consists of the truncated rays that ΓCH shares with Mx, and that
are on the boundary of Mx. The cap is all the other boundary points, and makes a sort
of faceted base, most likely irregular, for the truncated cone. Since the conical part of the
boundary is shared in common with Mx, the behavior in terms of nearest points is identical:
if Γ is large enough, and the nearest point bΓ to b on ΓCH occurs on its conical boundary,
then bΓ is also the nearest point to b on Mx.

While the convex cone Mx is not a polytope, each ΓCH is a polytope, with a generating
set V given by the set in Equation (30). We can thus use the GJK algorithm to find bΓ, the
closest point to b on ΓCH. We would like, of course, to find bM , the closest point on Mx to b.
When Γ is large enough that bΓ occurs on its conical boundary rather than on its cap, then
bΓ will also be the nearest point to b on Mx.

A suggested approach to NNLS, then, is to apply the GJK algorithm to ΓCH, for a
sequence of Γ’s that increase by a factor of 10. For example, the Γ’s could be 1, 10, 100, etc.
The result will be a sequence of points bΓ. At some point, the sequence bΓ will settle on a
common point, no matter how much Γ is increased. Geometrically, bΓ will have reached the
conical boundary of ΓCH, which agrees with the boundary of Mx when Γ is large enough.
(There is actually another possibility: that b is in the interior of some ΓCH. This possibility
will be easily recognized, however, when the GJK distance is 0.) Since the GJK algorithm
returns the coefficients α in a convex combination of the generators in V, and since V is just
scaled versions of the columns of M, augmented by the zero vector, it is a straightforward
calculation to obtain x from α.

This algorithm is not guaranteed to converge, and is still subject to the same kinds of
instability that affect other NNLS algorithms. Suppose, for example, that

M1 = [0, 1], (31)

M2 = [1,−δ], (32)

b = [1, 1], (33)

where δ is positive. The point b is always in the convex cone generated by M1 and M2,
because

(δ + 1) · [0, 1] + 1 · [1,−δ] = [1, 1]. (34)

c© 2015 Paul Centore 16



A GJK-BASED ALGORITHM FOR CONSTRAINED LEAST SQUARES

The angle between M1 and M2 is π/2 + arctan(δ). If δ becomes very large, then the angle is
nearly π. Then the coordinate x1 = δ + 1 in the solution to Mx = b also become very large,
even though b is small. Geometrically, any ΓCH is a very narrow, almost flat, triangle. This
situation invites numerical instability, which can degrade many algorithms.

In more stable cases, however, the GJK-based algorithm should be simple and effective.
A handful of applications of the GJK algorithm should cover half a dozen orders of magnitude
of variability in x, at a modest computational cost.

5 Discussion

The chief innovation of the approachs in this paper are incorporating constraints geomet-
rically in the set Mx, and using the GJK algorithm for finding the closest point on Mx
to the target vector b. The form of the problems themselves motivated the GJK algorithm:
some practical examples produced convex polytopes with an obvious set of extreme points.
Other benefits, and potential benefits, were discovered later, which suggested that the GJK
approach was well suited for constrained least squares problems.

One likely benefit is speed. Quadratic programming is used in problems such as BVLS.
The distance-squared function from b is a quadratic function on the zonotope P, so quadratic
programming can be used to find the nearest point bP . Quadratic programming methods,
however, can be slow, while the GJK algorithm is fast. While speed differences have not yet
been tested and quantified, the use of GJK in real-time applications such as robotics, where
computing time is at a premium, suggests that GJK performs well. Other factors could make
a difference, of course. For example, some algorithms behave differently in high-dimensional
spaces, or when polytopes have very large generating sets. The GJK-based algorithm was
tested on some examples in 31-dimensional space, though with only a handful of generators.
The algorithm had no difficulty, but no speed comparison was made to other methods.
While GJK-based algorithms seem to have the potential for faster performance than current
methods, controlled comparisons would be needed to make any definite statements.

Another desirable characteristic of the GJK-based algorithm is its natural fit with the
formats encountered in least squares problems. As the examples have shown, a generating
set for Mx, that incorporates constraints, is usually easily constructed, as linear combina-
tions of the column vectors of M. This small bit of computation provides enough input for
the GJK algorithm. By contrast, a convex polytope for programming problems must usually
be expressed as an intersection of half-spaces, where each half-space corresponds to a con-
straint stated as a linear inequality. Any convex polytope can be expressed in either form,
but translating from one to the other can be a significant computational burden. Using
quadratic programming methods on a zonotope would require finding all its bounding faces,
or, equivalently, its convex hull. Even if quadratic programming were faster, any gain could
easily be overbalanced by the convex hull calculation. Of course, if the polytope was naturally
formulated as an intersection of half-spaces, then the expense of converting to a generating
set could overbalance the gain from using the GJK algorithm. In the examples considered
in this paper, however, the generating set formulation is clearly more natural, and allows
distance-minimizing algorithms to be used immediately, with minimal data preparation.

Lastly, the GJK approach is intuitive and constructive. As the examples have shown,

17 c© 2015 Paul Centore



PAUL CENTORE

often a practitioner can, with a bit of analysis, find a simple way to build his own polytope.
The understanding gained by this analysis is helpful in its own right, and might suggest
further ways of solving particular problems.

This paper presents the GJK-based algorithm as a promising suggestion, which would
benefit from further investigation. Any standard methods have undergone long periods of re-
vision and refinement, and undoubtedly the GJK approach could be considerably improved.
Also, speed tests and comparisons with other methods would show whether the GJK ap-
proach offers any benefits, and if so, how significant they are and what situations they occur
in. Along these lines, the author has released some open-source Octave/MATLAB code
that implements some of the procedures discussed in this paper. They appear in the folder
“GJK,” in the author’s Munsell And Kubelka-Munk Toolbox, available at

http://www.99main.com/∼centore/MunsellAndKubelkaMunkToolbox.

Other researchers are encouraged to use, test, correct, and improve this code, with the
understanding that they likewise make any changes publicly available.

References

1. S. R. Lay, Convex Sets and Their Applications, Dover Publications, 2007.

2. Elmer G. Gilbert, Daniel W. Johnson, & Sathiya Keerthi, “A Fast Procedure for Comput-
ing the Distance Between Complex Objects in Three-Dimensional Space,” IEEE Journal
of Robotics and Automation, Vol. 4, No. 2, April 1988, pp. 193-203.

3. Rich Rabbitz, “Fast Collision Detection of Moving Convex Polyhedra,” in Section I.8 of
Graphics Gems IV (IBM version), ed. Paul Heckbert, Academic Press, 1994.

4. William H. Press, Saul A. Teukolsky, William T. Vetterling, & Brian P. Flannery. Nu-
merical Recipes: The Art of Scientific Computing, 3rd ed., Cambridge University Press,
2007.

5. P. McMullen, “On Zonotopes,” Transactions of the American Mathematical Society, Vol.
159, pp. 91-109, September 1971.

6. R. V. Benson, Euclidean Geometry and Convexity, McGraw-Hill Book Company, New
York, 1966.

c© 2015 Paul Centore 18


