
Application-Level
Crash Consistency

Thanumalayan Sankaranarayana Pillai, Ramnatthan Alagappan, 
Vijay Chidambaram, Samer Al-Kiswany, Andrea Arpaci-Dusseau, 
Remzi Arpaci-Dusseau



File System
Crash Consistency



File System Crash Consistency

If the system crashes during a file system update...

Ensure file system metadata is logically consistent

Techniques: FSCK, Soft Updates, Journaling, etc.



Application-Level
Crash Consistency (ALC)



Application-Level Consistency (ALC)

What happens to user data during a crash?

Consistency of user data: ALC

This work: Study of what happens to user data
‐ 12 applications
‐ BerkeleyDB, HDFS, ZooKeeper, VMWare Player



Result



Result

ALC depends on specific details of file system 
implementation

‐ 65 vulnerabilities across 12 applications
‐ All studied applications have vulnerabilities

Bad situation: Many file systems in use 
‐ Linux: ext3, ext4, btrfs, xfs etc.



Outline

Background
Framework
Study



Consistency of user data during a crash
Example:

What is ALC?

write(home/file.db)

write(home/file.db)

SQLite without ALC
(No ACID properties during crash)



Consistency of user data during a crash
Example:

What is ALC?

creat(home/journal)

append(home/journal)

fsync(home/journal)

fsync(home)

append(home/journal)

fsync(home/journal)

write(home/file.db)

fsync(home/file.db)

unlink(home/journal)

write(home/file.db)

write(home/file.db)

SQLite without ALC
(No ACID properties during crash)

SQLite with ALC
(ACID during system crash and process crash)

...

Update protocol



Update protocol needs to be highly optimized
- Involves fsync(), usually a performance bottleneck

Crash recovery rarely invoked
- Updated protocol mostly untested

ALC deals with hidden disk state

ALC is a Complex Problem



Disk State

Application-level I/O modifies buffer cache 
File system slowly persists buffer cache to disk
Disk state: State recovered by file system after a 
crash



Disk State

Application-level I/O modifies buffer cache 
File system slowly persists buffer cache to disk

/home

/home

Application-level view
(buffer cache) Disk state



Disk State

Application-level I/O modifies buffer cache 
File system slowly persists buffer cache to disk

/home

/home
/home/file

Application-level view
(buffer cache) Disk state

creat(/home/file)

Application-level I/O



Application View vs Disk State: The Difference

Durability
Ordering
Atomicity



Application View vs Disk State: The Difference

Durability
Ordering
Atomicity /home

/home/file

/home
/home/file

Application view Disk state

creat(/home/file)

Application I/O



/home
/home/file
/home/file2

/home
/home/file
/home/file2

Application view Disk state

creat(/home/file)
creat(/home/file2)

Application I/O

Application View vs Disk State: The Difference

Durability
Ordering
Atomicity



Durability
Ordering
Atomicity /home

/home/file
/home/file2 
5KB

/home
/home/file
/home/file2 10KB

Application view Disk state

creat(/home/file)
creat(/home/file2)
write(/home/file2,10KB)

Application I/O

Application View vs Disk State: The Difference



Persistence Properties

File systems vary on ordering, atomicity behavior
- ALC correctness depends on file systems

Persistence properties: Ordering and atomicity 
properties of file systems

- Example: Ordering between directory operations 
(create, unlink, rename...)



File System
Ordering Write atomicity

File writes File and directory ops Directory ops Block Multi-Block

ext2 X X X X X

ext3

data=writebac
k

X X X X

data=ordered X X X

data=journal X

ext4

data=writebac
k

X X X X

data=ordered X X X X

Btrfs X X X X

XFS X X X X

ReiserFS X X X

Reiser4 X

Fi
le

 S
ys

te
m

s
Persistence PropertiesPreliminary unverified results. Do 

not use for analysis or conclusions.



Background: Summary

Implementing ALC is complex
‐ File systems vary on ordering and atomicity behavior
‐ Update protocols are untested

Few studies on ALC vulnerabilities



Outline

Background and Motivation
Framework
Study



Framework - Overview

1. Collect application-level trace
2. Calculate possible crash states
3. Check ALC on each crash state



Outline

Background and Motivation
Framework
Study



HDFS

ZooKeeper

VMWare

BerkeleyDB

LMDB

GDBM
LevelDB

Postgres

HSQLDB

SQLite

Mercurial

Git

Applications

Non-relational Databases

Relational Databases

Version Control Systems

Virtualization Software

Distributed Services



Example: ZooKeeper

mkdir(v)
creat(v/log)

...
write(v/log)

fdatasync(v/log)
return to user



Example: ZooKeeper

mkdir(v)
creat(v/log)

...
write(v/log)

fdatasync(v/log)
return to user

Preliminary unverified 
results. Do not use for 
analysis or conclusions.



Example: ZooKeeper

mkdir(v)
creat(v/log)

...
write(v/log)

fdatasync(v/log)
return to user

Preliminary unverified 
results. Do not use for 
analysis or conclusions.



Vulnerabilities
Preliminary unverified 
results. Do not use for 
analysis or conclusions.



Vulnerabilities: Consequences

Many silent data loss,
cannot open vulnerabilities

Preliminary unverified 
results. Do not use for 
analysis or conclusions.



Vulnerabilities per File System
Preliminary unverified 
results. Do not use for 
analysis or conclusions.



Patterns
Appends need to be atomic

‐ Because of implementations of write-ahead logging
‐ Overwrites mostly don’t need to be

Append-before-rename only improves 
correctness lightly

‐ Might help more with different class of applications

A file system design that is fast, but helps ALC

Preliminary unverified 
results. Do not use for 
analysis or conclusions.



Summary
ALC is dependent on file system implementation
65 vulnerabilities in 12 applications
ALICE: A tool to find ALC vulnerabilities
BOB: A tool to determine persistence properties
Vulnerabilities follow patterns



Questions?


