(an i
W/ WISCONSIN 2OM

Application-Level
Crash Consistency

Thanumalayan Sankaranarayana Pillai, Ramnatthan Alagappan,
Vijay Chidambaram, Samer Al-Kiswany, Andrea Arpaci-Dusseau,
Remzi Arpaci-Dusseau

File System
Crash Consistency

If the system crashes during a file system update...
Ensure file system metadata is logically consistent

Techniques: FSCK, Soft Updates, Journaling, etc.

Application-Level
Crash Consistency (ALC)

What happens to user data during a crash?
Consistency of user data: ALC

This work: Study of what happens to user data

- 12 applications
- BerkeleyDB, HDFS, ZooKeeper, VMWare Player

Result

ALC depends on specific details of file system
implementation

- 65 vulnerabilities across 12 applications
- All studied applications have vulnerabilities

Bad situation: Many file systems in use

- Linux: ext3, ext4, btrfs, xfs etc.

Background
Framework
Study

Consistency of user data during a crash
Example:

SQLite without ALC
(No ACID properties during crash)

write(home/file.db)
write(home/file.db)

Consistency of user data during a crash
Example: SQLite with ALC

. _ (ACID during system crash and process crash)
SQLite without ALC

. . creat(home/journal)
(No ACID properties during crash) e
append(home/journal)
write(home/file.db) fsync(home/journal)
write(home/file.db) fsync(home)

append(home/journal)
fsync(home/journal)
write(home/file.db)

Update prOtOCOl fsync(home/file.db)

unlink(home/journal)

Update protocol needs to be highly optimized

- Involves fsync(), usually a performance bottleneck

Crash recovery rarely invoked
- Updated protocol mostly untested

ALC deals with hidden disk state

Application-level I/O modifies buffer cache

File system slowly persists buffer cache to disk

Disk state: State recovered by file system after a
crash

Application-level I/O modifies buffer cache
File system slowly persists buffer cache to disk

Application-level view _
(buffer cache) Disk state

/home

"~

Application-level I/O modifies buffer cache
File system slowly persists buffer cache to disk

Application-level view _
(buffer cache) Disk state

/home/file
/home

w

Application-level I/O

creat(/home/flle)

Application View vs Disk State: The Difference

Durability
Ordering
Atomicity

Application View vs Disk State: The Difference

Durablllty Application 1/0 Application view Disk state
Orderlng creat(/home/file) oGl ©
o /home/file
Atomicity home_
ALhome/file |

Application View vs Disk State: The Difference

Durability Application I/0
Orderlng creat(/home/file) /home

creat(/home/file2) Sy R

AtOmICIty /home/file2

Application view Disk state

Application View vs Disk State: The Difference

Durability Application /0

Orderlng creat(/home/file) /home
creat(/home/file2) Sy R

- write(/home/file2,10KB) :
AtomICIty /home/file2 10KB /home

Application view Disk state

I»/home/filez |
KB~~~ "~~~ 7~

File systems vary on ordering, atomicity behavior
- ALC correctness depends on file systems

Persistence properties: Ordering and atomicity
properties of file systems

- Example: Ordering between directory operations
(create, unlink, rename...)

File System
File writes

File and directory ops

Persistence Properties

Ordering

Directory ops

Write atomicity

Block

Multi-Block

data=writebac X
k

data=ordered X

data=journal

data=writebac X

k

File Systems

data=ordered X

Btrfs X

) X

ReiserFS X

X X X X
X X X
X X

X

X X X
X X X
X X X
X X X
X X

Implementing ALC is complex

- File systems vary on ordering and atomicity behavior
- Update protocols are untested

Few studies on ALC vulnerabilities

Background and Motivation
Framework
Study

1. Collect application-level trace
2. Calculate possible crash states
3. Check ALC on each crash state

Background and Motivation
Framework

Study

HDFS

ZooKeeper
VMWare — Virtualization Software
BerkeleyDB§
LMDB -

GDBM
LevelDB

Postgres
HSQLDB > Relational Databases

. Distributed Services

Non-relational Databases

J \

SQLite
Mercurial
Git

J \

— Version Control Systems

mkdir(v)
creat(v/log)

write(v/log)
fdatasync(v/log)
return to user

Example: ZooKeeper

mkdir(v)
creat(v/log)

write(v/log)
fdatasync(v/log)
return to user

mkdir(v)
creat(v/log)

{ write(v/log) J
fdatasync(v/log)
return to user

Vulnerabilities

HDFS
ZooKeeper
VMWare
BDB-BTree
BDB-Hash
Leveldb1.10
Leveldbl.15
LMDB
GDBM
Sqlite-Roll
HSQLDB
PostgreSQL
Git
Mercurial

0 5 10 15

Application (different configurations)

No. of vulnerabilities

Vulnerabilities: Consequences

Application (different configurations)

HDFS
ZooKeeper
VMWare
BDB-BTree
BDB-Hash
Leveldb1.10
Leveldbl.15
LMDB
GDBM
Sqlite-Roll
HSQLDB
PostgreSQL
Git
Mercurial

10

No. of vulnerabilities

B Silent Data
Loss

B silent
Corruption

B Cannot Open
Other

Many silent data loss,
cannot open vulnerabilities

15

Vulnerabilities per File System

ext3-writeback

g
S
S ext3-ordered
“?
O ext3-data-journaled
&
&
Q ext4-ordered
v
- btrfs
0 10 20 30

Total no. of vulnerabilities exposed

Appends need to be atomic

- Because of implementations of write-ahead logging
- Overwrites mostly don't need to be

Append-before-rename only improves
correctness lightly
- Might help more with different class of applications

A file system design that is fast, but helps ALC

ALC is dependent on file system implementation
65 vulnerabilities in 12 applications

ALICE: A tool to find ALC vulnerabilities

BOB: A tool to determine persistence properties
Vulnerabilities follow patterns

Questions?

