
Troubleshooting Guide for Java
SE 6 with HotSpot VM

Part No: 821–1865
November 2008

Copyright ©2010 Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual
property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software,
unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.

If this is software or related software documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the following
notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data delivered to U.S. Government customers are
“commercial computer software” or “commercial technical data” pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and license terms set forth in the applicable
Government contract, and, to the extent applicable by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial
Computer Software License (December 2007). Oracle America, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently
dangerous applications, including applications which may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any
liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices. Intel and Intel Xeon are
trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC
International, Inc. UNIX is a registered trademark licensed through X/Open Company, Ltd.

This software or hardware and documentation may provide access to or information on content, products, and services from third parties. Oracle Corporation and
its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle Corporation
and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third- party content, products, or services.

100419@23626

Contents

Preface ...9

1 Diagnostic Tools and Options ..17
1.1 Introduction ... 17

1.1.1 Command-Line Options With -XX .. 18
1.1.2 Limitations ... 18
1.1.3 Developing New Tools ... 18

1.2 Summary of Tools, Options, and Commands ... 18
1.2.1 Tools and Options for Post-mortem Diagnostics ... 19
1.2.2 Tools and Options for Hung Processes .. 20
1.2.3 Tools and Options for Monitoring ... 21
1.2.4 Other Tools, Options, Variables, and Properties .. 22

2 Detailed Tool Descriptions ...25
2.1 HPROF - Heap Profiler ... 26

2.1.1 Heap Allocation Profiles (heap=sites) ... 27
2.1.2 Heap Dump (heap=dump) .. 28
2.1.3 CPU Usage Sampling Profiles (cpu=samples) .. 30
2.1.4 CPU Usage Times Profile (cpu=times) .. 30

2.2 Java VisualVM ... 31
2.3 JConsole Utility ... 32
2.4 jdb Utility ... 36

2.4.1 Attaching to a Process .. 36
2.4.2 Attaching to a Core File on the Same Machine .. 38
2.4.3 Attaching to a Core File or a Hung Process from a Different Machine 38

2.5 jhat Utility ... 39
2.5.1 Standard Queries .. 40

3

2.5.2 Custom Queries .. 42
2.5.3 Heap Analysis Hints ... 42

2.6 jinfo Utility ... 44
2.7 jmap Utility ... 46

2.7.1 Heap Configuration and Usage ... 46
2.7.2 Heap Histogram of Running Process ... 48
2.7.3 Heap Histogram of Core File ... 49
2.7.4 Getting Information on the Permanent Generation .. 50

2.8 jps Utility ... 51
2.9 jrunscript Utility .. 52
2.10 jsadebugd Daemon .. 53
2.11 jstack Utility ... 53

2.11.1 Forcing a Stack Dump .. 53
2.11.2 Printing Stack Trace From Core Dump ... 54
2.11.3 Printing a Mixed Stack ... 55

2.12 jstat Utility ... 56
2.12.1 Example of -gcutil Option .. 57
2.12.2 Example of -gcnew Option .. 58
2.12.3 Example of -gcoldcapacity Option ... 58

2.13 jstatd Daemon ... 59
2.14 visualgc Tool ... 59
2.15 Ctrl-Break Handler ... 60

2.15.1 Thread Dump .. 61
2.15.2 Deadlock Detection .. 63
2.15.3 Heap Summary ... 63

2.16 Operating-System-Specific Tools .. 64
2.16.1 Solaris Operating System ... 64
2.16.2 Linux Operating System .. 66
2.16.3 Windows Operating System .. 66
2.16.4 Tools Introduced in Solaris 10 OS .. 67

2.17 Developing Diagnostic Tools ... 70
2.17.1 java.lang.management Package .. 70
2.17.2 java.lang.instrument Package .. 71
2.17.3 java.lang.Thread Class ... 71
2.17.4 Java Virtual Machine Tools Interface ... 71
2.17.5 Java Platform Debugger Architecture .. 72

Contents

Troubleshooting Guide for Java SE 6 with HotSpot VM • November 20084

3 Troubleshooting Memory Leaks ...73
3.1 Meaning of OutOfMemoryError ... 73

3.1.1 Detail Message: Java heap space ...74
3.1.2 Detail Message: PermGen space ...74
3.1.3 Detail Message: Requested array size exceeds VM limit 75
3.1.4 Detail Message: request <size> bytes for <reason>. Out of swap space? 75
3.1.5 Detail Message: <reason> <stack trace> (Native method)76

3.2 Crash Instead of OutOfMemoryError .. 76
3.3 Diagnosing Leaks in Java Language Code .. 77

3.3.1 NetBeans Profiler .. 77
3.3.2 Using the jhat Utility ... 77
3.3.3 Creating a Heap Dump .. 77
3.3.4 Obtaining a Heap Histogram on a Running Process .. 79
3.3.5 Obtaining a Heap Histogram at OutOfMemoryError ... 79
3.3.6 Monitoring the Number of Objects Pending Finalization ... 80
3.3.7 Third Party Memory Debuggers ... 80

3.4 Diagnosing Leaks in Native Code .. 81
3.4.1 Tracking All Memory Allocation and Free Calls .. 81
3.4.2 Tracking Memory Allocation in a JNI Library .. 81
3.4.3 Tracking Memory Allocation With OS Support ... 82
3.4.4 Using dbx to Find Leaks ... 83
3.4.5 Using libumem to Find Leaks ... 85

4 Troubleshooting System Crashes ...87
4.1 Sample Crashes .. 87

4.1.1 Determining Where the Crash Occurred .. 87
4.1.2 Crash in Native Code .. 88
4.1.3 Crash due to Stack Overflow ... 89
4.1.4 Crash in the HotSpot Compiler Thread ... 91
4.1.5 Crash in Compiled Code .. 91
4.1.6 Crash in VMThread .. 92

4.2 Finding a Workaround ... 92
4.2.1 Crash in HotSpot Compiler Thread or Compiled Code .. 93
4.2.2 Crash During Garbage Collection .. 94
4.2.3 Class Data Sharing .. 96

Contents

5

4.3 Microsoft Visual C++ Version Considerations ... 97

5 Troubleshooting Hanging or Looping Processes ... 99
5.1 Diagnosing a Looping Process ... 99
5.2 Diagnosing a Hung Process .. 100

5.2.1 Deadlock Detected .. 101
5.2.2 Deadlock Not Detected .. 102
5.2.3 No Thread Dump .. 102

5.3 Solaris 8 OS Thread Library ... 104

6 Integrating Signal and Exception Handling ... 105
6.1 Signal Handling on Solaris OS and Linux ... 105

6.1.1 Reducing Signal Usage ... 106
6.1.2 Alternative Signals .. 106
6.1.3 Signal Chaining ... 107

6.2 Exception Handling on Windows ... 108
6.2.1 Signal Handling in the HotSpot Virtual Machine ... 109
6.2.2 Console Handlers .. 110

7 Submitting Bug Reports ...111
7.1 Checking for Existing Fixes in Update Releases .. 111
7.2 Preparing to Submit a Bug Report ... 111
7.3 Collecting Data for a Bug Report ... 112

7.3.1 Hardware Details .. 113
7.3.2 Operating System .. 113
7.3.3 Java SE Version .. 113
7.3.4 Command-Line Options ... 114
7.3.5 Environment Variables .. 114
7.3.6 Fatal Error Log .. 115
7.3.7 Core or Crash Dump .. 115
7.3.8 Detailed Description of the Problem .. 115
7.3.9 Logs and Traces ... 115
7.3.10 Results from Troubleshooting Steps .. 116

7.4 Collecting Core Dumps .. 116

Contents

Troubleshooting Guide for Java SE 6 with HotSpot VM • November 20086

7.4.1 Collecting Core Dumps on Solaris OS ... 117
7.4.2 Collecting Core Dumps on Linux ... 118
7.4.3 Reasons for Not Getting a Core File ... 119
7.4.4 Collecting Crash Dumps on Windows .. 120

A Environment Variables and System Properties .. 123
A.1 JAVA_HOME Environment Variable ... 123
A.2 JAVA_TOOL_OPTIONS Environment Variable ... 123
A.3 java.security.debug System Property ... 124

B Command-Line Options ...127
B.1 HotSpot VM Command-Line Options .. 127

B.1.1 Dynamic Changing of Flag Values ... 127
B.1.2 -XX:+HeapDumpOnOutOfMemoryError Option .. 128
B.1.3 -XX:OnError= Option .. 128
B.1.4 -XX:+ShowMessageBoxOnError Option .. 129
B.1.5 Other -XX Options .. 131

B.2 Other Command-Line Options .. 132
B.2.1 -Xcheck:jni Option .. 132
B.2.2 -verbose:class Option ... 134
B.2.3 -verbose:gc Option .. 134
B.2.4 -verbose:jni Option .. 134

C Fatal Error Log ..135
C.1 Location of Fatal Error Log .. 135
C.2 Description of Fatal Error Log .. 136
C.3 Header Format .. 136
C.4 Thread Section Format .. 139

C.4.1 Thread Information ... 139
C.4.2 Signal Information ... 140
C.4.3 Register Context ... 140
C.4.4 Machine Instructions ... 140
C.4.5 Thread Stack ... 141
C.4.6 Further Details .. 142

Contents

7

C.5 Process Section Format .. 142
C.5.1 Thread List .. 142
C.5.2 VM State .. 143
C.5.3 Mutexes and Monitors ... 143
C.5.4 Heap Summary ... 144
C.5.5 Memory Map .. 144
C.5.6 VM Arguments and Environment Variables ... 146
C.5.7 Signal Handlers .. 147

C.6 System Section Format ... 147

D Summary of Tools in This Release ... 151
D.1 Troubleshooting Tools Available in Java SE 6 ... 151

D.1.1 Solaris OS and Linux ... 151
D.1.2 Windows Operating System ... 151

D.2 Changes to Troubleshooting Tools in Java SE 6 ... 152

Contents

Troubleshooting Guide for Java SE 6 with HotSpot VM • November 20088

Preface

This document helps in troubleshooting problems that might occur with applications that are
developed using the release of JavaTM Platform, Standard Edition Development Kit 6 (JDKTM 6
release or Java SE 6 release). In particular, this guide addresses possible problems between the
application and the Java HotSpotTM virtual machine.

See Appendix D, “Summary of Tools in This Release,” for a list of changes to the
troubleshooting tools for this release of Java SE compared with the previous release.

This document is currently focused on providing information about the tools and options
available for diagnostics and monitoring. It does not yet include information on garbage
collection or diagnosing performance issues.

For help in troubleshooting applications that use the Java SE desktop technologies, see the
following guide: Troubleshooting Guide for Java SE 6 Desktop Technologies.

Java HotSpot Virtual Machine
The Java HotSpot virtual machine provides a runtime environment for instructions that were
generated by a Java compiler. Java SE provides two implementations of the Java virtual
machine: client VM and server VM. These two systems are essentially two different just-in-time
compilers interfacing with the same runtime system.

■ Client VM. This implementation is installed on platforms that are typically used for client,
or desktop, applications. The client VM is tuned to reduce startup time and memory
footprint. It is invoked by using the -client command-line option when launching an
application.

■ Server VM. This implementation is installed on all platforms. The server VM is designed for
maximum program execution speed. It is invoked by using the -server command-line
option when launching an application.

The default implementation depends on the platform and the class of the machine. For full
details, see Ergonomics in the 5.0 Java[tm] Virtual Machine (http://java.sun.com/docs/
hotspot/gc5.0/ergo5.html).

More information on the Java Hotspot VM can be found at the following locations:

9

http://java.sun.com/docs/hotspot/gc5.0/ergo5.html
http://java.sun.com/docs/hotspot/gc5.0/ergo5.html

■ Java SE HotSpot at a Glance (http://java.sun.com/javase/technologies/hotspot/
index.jsp)

■ Java Virtual Machine Technology, on the Java SE 6 web site (http://java.sun.com/
javase/6/docs/technotes/guides/vm/index.html)

Who Should Use This Guide
The target audience for this document comprises developers who are working with Java SE 6, as
well as support or administration personnel who maintain applications that are deployed with
Java SE 6.

This document is intended for readers with a high-level understanding of the components of
the Java Virtual Machine, as well as some understanding of concepts such as garbage collection,
threads, native libraries, and so on. In addition, it is assumed that the reader is reasonably
proficient on the operating system where the Java SE application is installed.

How This Guide Is Organized
The first chapter of this document introduces the various diagnostic and monitoring tools,
utilities, options, and system properties that are available for troubleshooting in Java SE 6. The
chapter also provides a summary of tools and options by category. Note that tool availability
depends on the platform: SolarisTM Operating System (Solaris OS), Linux, or Windows. Read
this chapter to get acquainted with the capabilities of the utilities and options that are available.

The second chapter describes the troubleshooting tools in detail. The chapter also provides a list
of the operating system tools and utilities that may be used in conjunction with the Java SE
utilities and options. Finally, the chapter describes in detail how you can develop new tools
using the APIs provided in the Java SE platform.

The third through fifth chapters suggest procedures to try when you encounter a problem with
memory leaks, crashes, or hangs.

The sixth chapter deals with applications that use signal handlers.

The last chapter provides suggestions on what to try before submitting a bug report, guidance
on how to submit a report, and suggestions on what data to collect for the report.

Finally, there is an appendix for each of the following reference areas: environment variables,
command line options, details about the format of the fatal error report, and a list of tools in this
release.

Preface

Troubleshooting Guide for Java SE 6 with HotSpot VM • November 200810

http://java.sun.com/javase/technologies/hotspot/index.jsp
http://java.sun.com/javase/technologies/hotspot/index.jsp
http://java.sun.com/javase/6/docs/technotes/guides/vm/index.html
http://java.sun.com/javase/6/docs/technotes/guides/vm/index.html

Feedback and Suggestions
Troubleshooting is a very important topic. If you have feedback on this document or if you have
suggestions for topics that could be covered in a future version, use the Feedback Form
(http://developers.sun.com/contact/feedback.jsp?category=javase). Fill in the
relevant fields and click Send.

Note – Do not use this feedback form for support requests; they will not be answered. Technical
support is provided at the Services site for Sun Developer Network (http://
developers.sun.com/services).

Other Resources
Troubleshooting information for J2SE 1.5 is described in the Java 2 Platform, Standard Edition
5.0, Troubleshooting and Diagnostic Guide (http://java.sun.com/j2se/1.5/pdf/
jdk50_ts_guide.pdf).

In addition, the following online troubleshooting resources are available:

■ The article Monitoring and Managing Java SE 6 Platform Applications
(http://java.sun.com/developer/technicalArticles/J2SE/monitoring/) describes
the most common problems in Java SE applications and suggests how to use several tools for
troubleshooting these problems.

■ The article Troubleshooting Java SE 6 Deployment (http://java.sun.com/developer/
technicalArticles/javase/troubleshoot/) explores several ways to troubleshoot
running Java SE 6 applications, with examples.

■ The Java Tuning White Paper (http://java.sun.com/performance/reference/
whitepapers/tuning.html) provides performance tuning information, techniques, and
pointers for the Java programming language.

■ The Performance Documentation for the Java HotSpot VM (http://java.sun.com/docs/
hotspot/) provides information about performance tuning of the Java HotSpot virtual
machine, including garbage collection tuning.

■ The Java SE 6 Release Notes, Microsoft Windows Installation (32–bit)
(http://java.sun.com/
javase/6/webnotes/install/jdk/install-windows.html#troubleshooting) provides
tips to work around issues that can arise during or following the installation of Java SE on
Windows.

■ The Java Plug-in Guide (http://java.sun.com/
javase/6/docs/technotes/guides/plugin/developer_guide/contents.html) provides
troubleshooting FAQ as well as information on how to enable tracing when trying to
diagnose issues with the Java Plug-in.

Preface

11

http://developers.sun.com/contact/feedback.jsp?category=javase
http://developers.sun.com/contact/feedback.jsp?category=javase
http://developers.sun.com/services
http://developers.sun.com/services
http://java.sun.com/j2se/1.5/pdf/jdk50_ts_guide.pdf
http://java.sun.com/j2se/1.5/pdf/jdk50_ts_guide.pdf
http://java.sun.com/j2se/1.5/pdf/jdk50_ts_guide.pdf
http://java.sun.com/developer/technicalArticles/J2SE/monitoring/
http://java.sun.com/developer/technicalArticles/J2SE/monitoring/
http://java.sun.com/developer/technicalArticles/javase/troubleshoot/
http://java.sun.com/developer/technicalArticles/javase/troubleshoot/
http://java.sun.com/performance/reference/whitepapers/tuning.html
http://java.sun.com/performance/reference/whitepapers/tuning.html
http://java.sun.com/docs/hotspot/
http://java.sun.com/docs/hotspot/
http://java.sun.com/javase/6/webnotes/install/jdk/install-windows.html#troubleshooting
http://java.sun.com/javase/6/webnotes/install/jdk/install-windows.html#troubleshooting
http://java.sun.com/javase/6/webnotes/install/jdk/install-windows.html#troubleshooting
http://java.sun.com/javase/6/docs/technotes/guides/plugin/developer_guide/contents.html
http://java.sun.com/javase/6/docs/technotes/guides/plugin/developer_guide/contents.html

■ The Java Web Start FAQ (http://java.sun.com/products/javawebstart/faq.html) has
a troubleshooting section dealing with issues that might arise with Java Web Start.

■ The bug database (http://developer.java.sun.com/developer/bugParade/
index.jshtml) can be a useful resource to search for problems and solutions.

■ The Solaris Operating System Freeware site (http://www.sun.com/software/solaris/
freeware/) is the source for freeware that is packaged for the Solaris Operating System.

■ The Sunfreeware.com site (Freeware for Solaris) (http://www.sunfreeware.com/) explains
how to download freeware that is packaged for the Solaris Operating System.

■ The OpenSolaris site (http://opensolaris.org/os/) is the principle open source
community site for OpenSolaris technology.

■ The blastwave.org site (http://www.blastwave.org/) supports a collective effort to
assemble free software that can be automatically installed on a Solaris computer.

Commercial Support
Sun provides a wide range of support offerings, from developer technical support for software
developers using Sun development products or technologies, to support for production systems
in enterprise environments. Two commercial support options are summarized here: developer
technical support and Java mulitplatform support.

Developer Technical Support
Developer technical support is aimed at developers who are using Sun development products or
technologies, and who are working at the source-code level of their own applications.

This support offering includes response to technical questions, diagnostic and troubleshooting
help, suggestions for best practices, bug escalation, and more.

Details on these support offerings are provided at the Services site for Sun Developer Network
(http://developers.sun.com/services). This site steers you to information about developer
support from Sun, for example:
■ Sun Developer Solutions site (http://developers.sun.com/)
■ Sun Solution Support Engineering Services (http://www.sun.com/service/sse/)

Java Multiplatform Support
The Java multiplatform support offering is designed to provide production support for shipping
releases of Java technology-based applications using Sun's Java runtime environment (JRE) and
distributed to end users in heterogeneous environments. This support offering helps to
optimize application performance and to reduce time spent keeping applications up and
running.

Preface

Troubleshooting Guide for Java SE 6 with HotSpot VM • November 200812

http://java.sun.com/products/javawebstart/faq.html
http://developer.java.sun.com/developer/bugParade/index.jshtml
http://developer.java.sun.com/developer/bugParade/index.jshtml
http://www.sun.com/software/solaris/freeware/
http://www.sun.com/software/solaris/freeware/
http://www.sunfreeware.com/
http://opensolaris.org/os/
http://www.blastwave.org/
http://developers.sun.com/services
http://developers.sun.com/services
http://developers.sun.com/
http://www.sun.com/service/sse/

The highest level of this support offering can include accelerated access to an engineer and
emergency software fixes. Details on this support offering are available at the SunSpectrum Java
MultiPlatform site (http://www.sun.com/service/javamultiplatform/index.xml).

Community Support
Community support can often be obtained using the Java Technology Forums. The forums
provide a way to share information and locate solutions to problems. The forums are located at
http://forums.java.sun.com.

Typographic Conventions
The following table describes the typographic conventions that are used in this book.

TABLE P–1 Typographic Conventions

Typeface Meaning Example

AaBbCc123 The names of commands, files, and directories,
and onscreen computer output

Edit your .login file.

Use ls -a to list all files.

machine_name% you have mail.

AaBbCc123 What you type, contrasted with onscreen
computer output

machine_name% su

Password:

aabbcc123 Placeholder: replace with a real name or value The command to remove a file is rm
filename.

AaBbCc123 Book titles, new terms, and terms to be
emphasized

Read Chapter 6 in the User's Guide.

A cache is a copy that is stored
locally.

Do not save the file.

Note: Some emphasized items
appear bold online.

Preface

13

http://www.sun.com/service/javamultiplatform/index.xml
http://www.sun.com/service/javamultiplatform/index.xml
http://forums.java.sun.com

Shell Prompts in Command Examples
The following table shows the default UNIX® system prompt and superuser prompt for shells
that are included in the Solaris OS. Note that the default system prompt that is displayed in
command examples varies, depending on the Solaris release.

TABLE P–2 Shell Prompts

Shell Prompt

Bash shell, Korn shell, and Bourne shell $

Bash shell, Korn shell, and Bourne shell for superuser #

C shell machine_name%

C shell for superuser machine_name#

Related Third-Party Web Site References
Third-party URLs are referenced in this document and provide additional, related information.

Note – Sun is not responsible for the availability of third-party web sites mentioned in this
document. Sun does not endorse and is not responsible or liable for any content, advertising,
products, or other materials that are available on or through such sites or resources. Sun will not
be responsible or liable for any actual or alleged damage or loss caused or alleged to be caused by
or in connection with use of or reliance on any such content, goods, or services that are available
on or through such sites or resources.

Acknowledgments
Many people contributed technical expertise and other input to this guide: Alan Bateman
(major contributor), Tim Bell (major contributor and reviewer), Stephen Bohne, Mandy
Chung, Stuart Clements, Uday Dhanikonda (responsible engineering manager), Christine
Dorffi, Daniel Fuchs, Jim Holmlund (major contributor and reviewer), David Holmes, Karen
Kinnear, Peter LaPierre, James C. Lee, Antonia Lewis (writer), Teresa London, Srinivas
Madishetty, Keith McGuigan, Kelly O'Hair, Coleen Phillimore, Leif Samuelsson, Bill Situ, A.
Sundararajan, Jesse Suen, Adam Wisnewski.

Preface

Troubleshooting Guide for Java SE 6 with HotSpot VM • November 200814

Document History
The following table tracks the changes in version of this guide.

Version Date Changes

December 2006 Original version.

January 2007 New feedback form.

May 2007 Minor corrections.

August 2007 Corrections to tool support by platform.

September 2007 Addition to jmap entry in Appendix D. Minor corrections and improvements.

November 2008 Addition of the Java VisualVM tool. Corrections to changed link locations.

Preface

15

16

Diagnostic Tools and Options

This chapter introduces the various diagnostic and monitoring tools which can be used with
Java Platform Standard Edition Development Kit 6 (JDK 6 or Java SE 6). The tools are described
in detail in Chapter 2, “Detailed Tool Descriptions.”

See Appendix D, “Summary of Tools in This Release,” for a list of tools available in this release of
Java SE, as well as the changes since the previous release.

Note – Some of the command-line utilities described in this chapter are experimental. The
jstack, jinfo, and jmap utilities are examples of utilities that are experimental. These utilities
are subject to change in future JDK releases, and might not be included in future releases.

1.1 Introduction
Most of the command-line utilities described in this chapter are either included in the JDK
release or are operating system tools and utilities. Although the JDK command-line utilities are
included in the JDK download, it is important to note that they can be used to diagnose issues
and monitor applications that are deployed with the Java runtime environment (JRE).

In general, the diagnostic tools and options described in this chapter use various mechanisms to
obtain the information they report. In many cases the mechanisms are specific to the virtual
machine implementation, operating system, and version of each. Consequently, there is some
overlap of the information reported by some of the tools. This should be viewed in the context
of the various problems and issues for which these tools are intended. In many cases only a
subset of the tools will be applicable to a given issue at a particular point in time.

1C H A P T E R 1

17

1.1.1 Command-Line Options With -XX

Command-line options that are prefixed with -XX are specific to the Java HotSpot Virtual
Machine. Many of these options are important for performance tuning and diagnostic
purposes, and are therefore described in this guide. See “B.1 HotSpot VM Command-Line
Options” on page 127.

However, it is important to note that these -XX options are not part of the Java API and can vary
from one release to the next.

1.1.2 Limitations
In some cases, the tools described here are available only for some operating systems. In
addition, Solaris 10 OS introduced many advanced diagnostic features and tools that can be
used in production environments, and many of the native tools are capable of providing
information that is specific to the Java runtime environment.

The format of log files and of other output from command-line utilities or options is
version-specific. For example, if you develop a script that relies on the format of the fatal error
log, then this script might cease to work as expected if the format of the log file changes in the
future.

1.1.3 Developing New Tools
In addition to the tools described in this document, you can develop new tools using the APIs
that are provided with the JDK release. See “2.17 Developing Diagnostic Tools” on page 70.

1.2 Summary of Tools, Options, and Commands
The tools and options are divided into the following categories, where certain tools might fall
into more than one category. The tools and options are described in detail in further sections.

■ Post-mortem diagnostics. These tools and options can be used to diagnose a problem after
an application has crashed. See “1.2.1 Tools and Options for Post-mortem Diagnostics” on
page 19.

■ Hung processes. These tools can be used to investigate a hung or deadlocked process. See
“1.2.2 Tools and Options for Hung Processes” on page 20.

■ Monitoring. These tools can be used to monitor a running application. See “1.2.3 Tools and
Options for Monitoring” on page 21.

■ Other. These tools and options can be used to help diagnose other issues. See “1.2.4 Other
Tools, Options, Variables, and Properties” on page 22.

1.2 Summary of Tools, Options, and Commands

Troubleshooting Guide for Java SE 6 with HotSpot VM • November 200818

■ Operating system tools. These tools are provided by the specific operating systems. See “2.16
Operating-System-Specific Tools” on page 64.

1.2.1 Tools and Options for Post-mortem Diagnostics
This section summarizes the options and tools that are designed for post-mortem diagnostics. If
an application crashes, these options and tools can be used to obtain additional information,
either at the time of the crash or later using information from the crash dump.

Tool or Option Description and Usage

Fatal Error Log When a fatal error occurs, an error log is created. This file contains
much information obtained at the time of the fatal error. In many
cases it is the first item to examine when a crash occurs. See
Appendix C, “Fatal Error Log.”

-XX:+HeapDumpOnOutOfMemoryError

option
This command-line option specifies the generation of a heap
dump when the VM detects a native out-of-memory error. See
“B.1.2 -XX:+HeapDumpOnOutOfMemoryError Option” on page 128.

-XX:OnError option This command-line option specifies a sequence of user-supplied
scripts or commands to be executed when a fatal error occurs. For
example, on Windows, this option can execute a command to
force a crash dump. This option is very useful on systems where a
post-mortem debugger is not configured. See “B.1.3 -XX:OnError=

Option” on page 128.

-XX:+ShowMessageBoxOnError This command-line option suspends a process when a fatal error
occurs. Depending on the user response, the option can launch the
native debugger (for example, dbx, gdb, msdev) to attach to the
VM. See “B.1.4 -XX:+ShowMessageBoxOnError Option” on
page 129.

Other -XX options Several other -XX command-line options can be useful in
troubleshooting. See “B.1.5 Other -XX Options” on page 131.

Java VisualVM

(post-mortem use on Solaris OS and
Linux only)

This utility can analyze a core dump by providing a readable
display of the core dump in the form of a heap dump and a thread
dump, as well as overview information (for example, JVM
arguments, system properties, and so forth).

jdb utility Debugger support includes an AttachingConnector, which allows
jdb and other Java language debuggers to attach to a core file. This
can be useful when trying to understand what each thread was
doing at the time of a crash. See “2.4 jdb Utility” on page 36.

jhat utility This utility provides a convenient means to browse the object
topology in a heap dump. See “2.5 jhat Utility” on page 39.

1.2 Summary of Tools, Options, and Commands

Chapter 1 • Diagnostic Tools and Options 19

Tool or Option Description and Usage

jinfo utility

(post-mortem use on Solaris OS and
Linux only)

This utility can obtain configuration information from a core file
obtained from a crash or from a core file obtained using the gcore
utility. See “2.6 jinfo Utility” on page 44.

jmap utility

(post-mortem use on Solaris OS and
Linux only)

This utility can obtain memory map information, including a heap
histogram, from a core file obtained from a crash or from a core
obtained using the gcore utility. See “2.7 jmap Utility” on page 46.

jsadebugd daemon

(Solaris OS and Linux only)

The Serviceability Agent Debug Daemon (jsadebugd) attaches to a
Java process or to a core file and acts as a debug server. See “2.10
jsadebugd Daemon” on page 53.

jstack utility This utility can obtain Java and native stack information from a
Java process. On Solaris OS and Linux the utility can get the
information also from a core file or a remote debug server. See
“2.11 jstack Utility” on page 53.

Native tools Each operating system has native tools and utilities that can be
used for post-mortem diagnosis. See “2.16
Operating-System-Specific Tools” on page 64.

1.2.2 Tools and Options for Hung Processes
The options and tools in this list can help in scenarios involving a hung or deadlocked process.
These tools do not require any special options to start the application.

Tool or Option Description and Usage

Ctrl-Break handler

(Ctrl-\ or kill -QUIT pid on Solaris
OS and Linux, Ctrl-Break on
Windows)

This key combination performs a thread dump as well as deadlock
detection. The Ctrl-Break handler can optionally print a list of
concurrent locks and their owners, as well as a heap histogram. See “2.15
Ctrl-Break Handler” on page 60.

jdb utility Debugger support includes attaching connectors, which allow jdb and
other Java language debuggers to attach to a process. This can help show
what each thread is doing at the time of a hang or deadlock. See “2.4 jdb

Utility” on page 36.

jhat utility This utility provides a convenient means to browse the object topology
in a heap dump. See “2.5 jhat Utility” on page 39.

jinfo utility This utility can obtain configuration information from a Java process.
See “2.6 jinfo Utility” on page 44.

1.2 Summary of Tools, Options, and Commands

Troubleshooting Guide for Java SE 6 with HotSpot VM • November 200820

Tool or Option Description and Usage

jmap utility This utility can obtain memory map information, including a heap
histogram, from a Java process. On Solaris OS and Linux, the -F option
can be used if the process is hung. See “2.7 jmap Utility” on page 46

jsadebugd daemon

(Solaris OS and Linux only)

The Serviceability Agent Debug Daemon (jsadebugd) attaches to a Java
process or to a core file and acts as a debug server. See “2.10 jsadebugd

Daemon” on page 53.

jstack utility This utility can obtain Java and native stack information from a Java
process. On Solaris OS and Linux the -F option can be used if the
process is hung. See “2.11 jstack Utility” on page 53.

Native tools Each operating system has native tools and utilities that can be useful in
hang or deadlock situations. See “2.16 Operating-System-Specific
Tools” on page 64.

1.2.3 Tools and Options for Monitoring
These tools are designed for monitoring applications that are running at the time.

Tool or Option Description and Usage

Java VisualVM This utility provides a visual interface for viewing detailed
information about Java applications while they are running on a
Java virtual machine. This information can be used in
troubleshooting local and remote applications, as well as for
profiling local applications. See “2.2 Java VisualVM” on page 31.

JConsole utility This utility is a monitoring tool that is based on Java Management
Extensions (JMX). The tool uses the built-in JMX instrumentation
in the Java virtual machine to provide information on performance
and resource consumption of running applications. See “2.3
JConsole Utility” on page 32.

jmap utility This utility can obtain memory map information, including a heap
histogram, from a Java process, a core file, or a remote debug
server. See “2.7 jmap Utility” on page 46.

jps utility This utility lists the instrumented HotSpot Virtual Machines on
the target system. The utility is very useful in environments where
the VM is embedded, that is, it is started using the JNI Invocation
API rather than the java launcher. See “2.8 jps Utility” on page 51.

1.2 Summary of Tools, Options, and Commands

Chapter 1 • Diagnostic Tools and Options 21

Tool or Option Description and Usage

jstack utility This utility can obtain Java and native stack information from a
Java process. On Solaris OS and Linux the utility can get the
information also from a core file or a remote debug server. See
“2.11 jstack Utility” on page 53.

jstat utility This utility uses the built-in instrumentation in the HotSpot VM to
provide information on performance and resource consumption
of running applications. The tool can be used when diagnosing
performance issues, and in particular issues related to heap sizing
and garbage collection. See “2.12 jstat Utility” on page 56.

jstatd daemon This tool is an RMI server application that monitors the creation
and termination of instrumented Java virtual machines and
provides an interface to allow remote monitoring tools to attach to
VMs running on the local host. See “2.13 jstatd Daemon” on
page 59.

visualgc utility This utility provides a graphical view of the garbage collection
system. As with jstat, it uses the built-in instrumentation of the
HotSpot VM. See “2.14 visualgc Tool” on page 59.

Native tools Each operating system has native tools and utilities that can be
useful for monitoring purposes. For example, the dynamic tracing
(DTrace) capability introduced in Solaris 10 OS performs
advanced monitoring. See “2.16 Operating-System-Specific Tools”
on page 64.

1.2.4 Other Tools, Options, Variables, and Properties
In addition to the tools that are designed for specific types of problems, these tools, options,
variables, and properties can help in diagnosing other issues.

Tool or Option Description and Usage

HPROF profiler This simple profiler can present CPU usage, heap allocation
statistics, contention profiles, heap dumps, and states of all the
monitors and threads in the Java virtual machine. HPROF is useful in
analyzing performance, lock contention, memory leaks, and other
issues. See “2.1 HPROF - Heap Profiler” on page 26.

jhat utility This utility is useful in diagnosing unnecessary object retention (or
memory leaks). It can be used to browse an object dump, view all
reachable objects in the heap, and show which references are keeping
an object alive. See “2.5 jhat Utility” on page 39.

1.2 Summary of Tools, Options, and Commands

Troubleshooting Guide for Java SE 6 with HotSpot VM • November 200822

Tool or Option Description and Usage

jinfo utility This utility can dynamically set, unset, and change the values of
certain Java VM flags for a specified Java process. On Solaris OS and
Linux, it can also print configuration information. See “2.6 jinfo

Utility” on page 44.

jrunscript utility This utility is a command-line script shell, which supports both
interactive and batch-mode script execution. See “2.9 jrunscript

Utility” on page 52.

Sun Studio dbx debugger This is an interactive, command-line debugging tool, which allows
you to have complete control of the dynamic execution of a program,
including stopping the program and inspecting its state. For details,
see the latest dbx documentation, located at the Sun Studio Program
Debugging site (http://developers.sun.com/sunstudio/
debug_index.html).

Sun Studio Performance Analyzer This tool can help you assess the performance of your code, identify
potential performance problems, and locate the part of the code
where the problems occur. The Performance Analyzer can be used
from the command line or from a graphical user interface. For
details, see the Sun Studio Performance Analyzer site
(http://developers.sun.com/sunstudio/
analyzer_index.html).

Sun's Dataspace Profiling: DProfile This tool provides insight into the flow of data within Sun computing
systems, helping you identify bottlenecks in both software and
hardware. DProfile is supported in the Sun Studio 11 compiler suite
through the Performance Analyzer GUI. For information, see the
Cool Tools Community site (http://cooltools.sunsource.net/
nonav/index.html) under Other Sun Tools.

-Xcheck:jni option This option is useful in diagnosing problems with applications that
use the JavaTM Native Interface (JNI) or that employ third-party
libraries (some JDBC drivers, for example). See “B.2.1 -Xcheck:jni

Option” on page 132.

-verbose:class option This option enables logging of class loading and unloading. See
“B.2.2 -verbose:class Option” on page 134.

-verbose:gc option This option enables logging of garbage collection information. See
“B.2.3 -verbose:gc Option” on page 134.

-verbose:jni option This option enables logging of JNI. See “B.2.4 -verbose:jni Option”
on page 134.

JAVA_TOOL_OPTIONS environment
variable

This environment variable allows you to specify the initialization of
tools, specifically the launching of native or Java programming
language agents using the -agentlib or -javaagent options. See
“A.2 JAVA_TOOL_OPTIONS Environment Variable” on page 123.

1.2 Summary of Tools, Options, and Commands

Chapter 1 • Diagnostic Tools and Options 23

http://developers.sun.com/sunstudio/debug_index.html
http://developers.sun.com/sunstudio/debug_index.html
http://developers.sun.com/sunstudio/debug_index.html
http://developers.sun.com/sunstudio/analyzer_index.html
http://developers.sun.com/sunstudio/analyzer_index.html
http://developers.sun.com/sunstudio/analyzer_index.html
http://cooltools.sunsource.net/nonav/index.html
http://cooltools.sunsource.net/nonav/index.html

Tool or Option Description and Usage

java.security.debug system
property

This system property controls whether the security checks in the JRE
of the Java print trace messages during execution. See “A.3
java.security.debug System Property” on page 124.

1.2 Summary of Tools, Options, and Commands

Troubleshooting Guide for Java SE 6 with HotSpot VM • November 200824

Detailed Tool Descriptions

This chapter describes in detail the troubleshooting tools that are available in Java SE 6. In
addition, the chapter lists operating-system-specific tools that may be used in conjunction with
these troubleshooting tools. Finally, the chapter explains how you can develop new tools using
the APIs provided with the Java SE 6 platform.

The chapter contains the following sections:

■ “2.1 HPROF - Heap Profiler” on page 26
■ “2.2 Java VisualVM” on page 31
■ “2.3 JConsole Utility” on page 32
■ “2.4 jdb Utility” on page 36
■ “2.5 jhat Utility” on page 39
■ “2.6 jinfo Utility” on page 44
■ “2.7 jmap Utility” on page 46
■ “2.8 jps Utility” on page 51
■ “2.9 jrunscript Utility” on page 52
■ “2.10 jsadebugd Daemon” on page 53
■ “2.11 jstack Utility” on page 53
■ “2.12 jstat Utility” on page 56
■ “2.13 jstatd Daemon” on page 59
■ “2.14 visualgc Tool” on page 59
■ “2.15 Ctrl-Break Handler” on page 60
■ “2.16 Operating-System-Specific Tools” on page 64
■ “2.17 Developing Diagnostic Tools” on page 70

2C H A P T E R 2

25

2.1 HPROF - Heap Profiler
The Heap Profiler (HPROF) tool is a simple profiler agent shipped with the JDK release. It is a
dynamically linked library that interfaces with the Java VM using the Java Virtual Machine
Tools Interface (JVM TI). The tool writes profiling information either to a file or to a socket in
ASCII or binary format. This information can be further processed by a profiler front-end tool.

The HPROF tool is capable of presenting CPU usage, heap allocation statistics, and monitor
contention profiles. In addition, it can report complete heap dumps and states of all the
monitors and threads in the Java virtual machine. In terms of diagnosing problems, HPROF is
useful when analyzing performance, lock contention, memory leaks, and other issues.

In addition to the HPROF library, the JDK release includes the source for HPROF as JVM TI
demonstration code. This code is located in the $JAVA_HOME/demo/jvmti/hprof directory.

The HPROF tool is invoked as follows:

$ java -agentlib:hprof ToBeProfiledClass

Depending on the type of profiling requested, HPROF instructs the virtual machine to send it
the relevant events. The tool then processes the event data into profiling information. For
example, the following command obtains the heap allocation profile:

$ java -agentlib:hprof=heap=sites ToBeProfiledClass

The complete list of options is printed when the HPROF agent is provided with the help option,
as shown below.

$ java -agentlib:hprof=help

HPROF: Heap and CPU Profiling Agent (JVMTI Demonstration Code)

hprof usage: java -agentlib:hprof=[help]|[<option>=<value>, ...]

Option Name and Value Description Default

--------------------- ----------- -------

heap=dump|sites|all heap profiling all

cpu=samples|times|old CPU usage off

monitor=y|n monitor contention n

format=a|b text(txt) or binary output a

file=<file> write data to file java.hprof[{.txt}]

net=<host>:<port> send data over a socket off

depth=<size> stack trace depth 4

interval=<ms> sample interval in ms 10

cutoff=<value> output cutoff point 0.0001

lineno=y|n line number in traces? y

thread=y|n thread in traces? n

doe=y|n dump on exit? y

msa=y|n Solaris micro state accounting n

force=y|n force output to <file> y

2.1 HPROF - Heap Profiler

Troubleshooting Guide for Java SE 6 with HotSpot VM • November 200826

verbose=y|n print messages about dumps y

Obsolete Options

gc_okay=y|n

<>

Examples

- Get sample cpu information every 20 millisec, with a stack depth of 3:

java -agentlib:hprof=cpu=samples,interval=20,depth=3 classname

- Get heap usage information based on the allocation sites:

java -agentlib:hprof=heap=sites classname

Notes

- The option format=b cannot be used with monitor=y.

- The option format=b cannot be used with cpu=old|times.

- Use of the -Xrunhprof interface can still be used, e.g.

java -Xrunhprof:[help]|[<option>=<value>, ...]

will behave exactly the same as:

java -agentlib:hprof=[help]|[<option>=<value>, ...]

Warnings

- This is demonstration code for the JVMTI interface and use of BCI,

it is not an official product or formal part of the JDK.

- The -Xrunhprof interface will be removed in a future release.

- The option format=b is considered experimental, this format may change

in a future release.

By default, heap profiling information (sites and dump) is written out to java.hprof.txt (in
ASCII) in the current working directory.

The output is normally generated when the VM exits, although this can be disabled by setting
the “dump on exit” option to “n” (doe=n). In addition, a profile is generated when Ctrl-\ or
Ctrl-Break (depending on platform) is pressed. On Solaris OS and Linux a profile is also
generated when a QUIT signal is received (kill -QUIT pid). If Ctrl-\ or Ctrl-Break is pressed
multiple times, multiple profiles are generated to the one file.

The output in most cases will contain IDs for traces, threads, and objects. Each type of ID will
typically start with a different number than the other IDs. For example, traces might start with
300000.

2.1.1 Heap Allocation Profiles (heap=sites)
The following output is the heap allocation profile generated by running the Java compiler
(javac) on a set of input files. Only parts of the profiler output are shown here.

$ javac -J-agentlib:hprof=heap=sites Hello.java

SITES BEGIN (ordered by live bytes) Wed Oct 4 13:13:42 2006

2.1 HPROF - Heap Profiler

Chapter 2 • Detailed Tool Descriptions 27

percent live alloc’ed stack class

rank self accum bytes objs bytes objs trace name

1 44.13% 44.13% 1117360 13967 1117360 13967 301926 java.util.zip.ZipEntry

2 8.83% 52.95% 223472 13967 223472 13967 301927 com.sun.tools.javac.util.List

3 5.18% 58.13% 131088 1 131088 1 300996 byte[]

4 5.18% 63.31% 131088 1 131088 1 300995 com.sun.tools.javac.util.Name[]

A crucial piece of information in the heap profile is the amount of allocation that occurs in
various parts of the program. The SITES record above shows that 44.13% of the total space was
allocated for java.util.zip.ZipEntry objects.

A good way to relate allocation sites to the source code is to record the dynamic stack traces that
led to the heap allocation. The following output shows another part of the profiler output. This
output illustrates the stack traces referred to by the four allocation sites in output shown above.

TRACE 301926:

java.util.zip.ZipEntry.<init>(ZipEntry.java:101)

java.util.zip.ZipFile+3.nextElement(ZipFile.java:417)

com.sun.tools.javac.jvm.ClassReader.openArchive(ClassReader.java:1374)

com.sun.tools.javac.jvm.ClassReader.list(ClassReader.java:1631)

TRACE 301927:

com.sun.tools.javac.util.List.<init>(List.java:42)

com.sun.tools.javac.util.List.<init>(List.java:50)

com.sun.tools.javac.util.ListBuffer.append(ListBuffer.java:94)

com.sun.tools.javac.jvm.ClassReader.openArchive(ClassReader.java:1374)

TRACE 300996:

com.sun.tools.javac.util.Name$Table.<init>(Name.java:379)

com.sun.tools.javac.util.Name$Table.<init>(Name.java:481)

com.sun.tools.javac.util.Name$Table.make(Name.java:332)

com.sun.tools.javac.util.Name$Table.instance(Name.java:349)

TRACE 300995:

com.sun.tools.javac.util.Name$Table.<init>(Name.java:378)

com.sun.tools.javac.util.Name$Table.<init>(Name.java:481)

com.sun.tools.javac.util.Name$Table.make(Name.java:332)

com.sun.tools.javac.util.Name$Table.instance(Name.java:349)

Each frame in the stack trace contains class name, method name, source file name, and the line
number. The user can set the maximum number of frames collected by the HPROF agent. The
default limit is four. Stack traces reveal not only which methods performed heap allocation, but
also which methods were ultimately responsible for making calls that resulted in memory
allocation.

2.1.2 Heap Dump (heap=dump)
A heap dump is obtained using the heap=dump option. The heap dump is in either ASCII or
binary format, depending on the setting of the format option. Tools such as jhat (see “2.5 jhat

2.1 HPROF - Heap Profiler

Troubleshooting Guide for Java SE 6 with HotSpot VM • November 200828

Utility” on page 39) use the binary format and therefore the format=b option is required.
When the binary format is specified, the dump includes primitive type instance fields and
primitive array content.

The following command produces a dump from executing the javac compiler.

$ javac -J-agentlib:hprof=heap=dump Hello.java

The output is a large file. It consists of the root set as determined by the garbage collector, and
an entry for each Java object in the heap that can be reached from the root set. The following is a
selection of records from a sample heap dump.

HEAP DUMP BEGIN (39793 objects, 2628264 bytes) Wed Oct 4 13:54:03 2006

ROOT 50000114 (kind=<thread>, id=200002, trace=300000)

ROOT 50000006 (kind=<JNI global ref>, id=8, trace=300000)

ROOT 50008c6f (kind=<Java stack>, thread=200000, frame=5)

:

CLS 50000006 (name=java.lang.annotation.Annotation, trace=300000)

loader 90000001

OBJ 50000114 (sz=96, trace=300001, class=java.lang.Thread@50000106)

name 50000116

group 50008c6c

contextClassLoader 50008c53

inheritedAccessControlContext 50008c79

blockerLock 50000115

OBJ 50008c6c (sz=48, trace=300000, class=java.lang.ThreadGroup@50000068)

name 50008c7d

threads 50008c7c

groups 50008c7b

ARR 50008c6f (sz=16, trace=300000, nelems=1,

elem type=java.lang.String[]@5000008e)

[0] 500007a5

CLS 5000008e (name=java.lang.String[], trace=300000)

super 50000012

loader 90000001

:

HEAP DUMP END

Each record is a ROOT, OBJ, CLS, or ARR to represent a root, an object instance, a class, or an array.
The hexadecimal numbers are identifiers assigned by HPROF. These numbers are used to show
the references from an object to another object. For example, in the above sample, the
java.lang.Thread instance 50000114 has a reference to its thread group (50008c6c) and
other objects.

In general, as the output is very large, it is necessary to use a tool to visualize or process the
output of a heap dump. One such tool is jhat. See “2.5 jhat Utility” on page 39.

2.1 HPROF - Heap Profiler

Chapter 2 • Detailed Tool Descriptions 29

2.1.3 CPU Usage Sampling Profiles (cpu=samples)
The HPROF tool can collect CPU usage information by sampling threads. Below is part of the
output collected from a run of the javac compiler.

$ javac -J-agentlib:hprof=cpu=samples Hello.java

CPU SAMPLES BEGIN (total = 462) Wed Oct 4 13:33:07 2006

rank self accum count trace method

1 49.57% 49.57% 229 300187 java.util.zip.ZipFile.getNextEntry

2 6.93% 56.49% 32 300190 java.util.zip.ZipEntry.initFields

3 4.76% 61.26% 22 300122 java.lang.ClassLoader.defineClass2

4 2.81% 64.07% 13 300188 java.util.zip.ZipFile.freeEntry

5 1.95% 66.02% 9 300129 java.util.Vector.addElement

6 1.73% 67.75% 8 300124 java.util.zip.ZipFile.getEntry

7 1.52% 69.26% 7 300125 java.lang.ClassLoader.findBootstrapClass

8 0.87% 70.13% 4 300172 com.sun.tools.javac.main.JavaCompiler.<init>

9 0.65% 70.78% 3 300030 java.util.zip.ZipFile.open

10 0.65% 71.43% 3 300175 com.sun.tools.javac.main.JavaCompiler.<init>

...

CPU SAMPLES END

The HPROF agent periodically samples the stack of all running threads to record the most
frequently active stack traces. The count field above indicates how many times a particular stack
trace was found to be active. These stack traces correspond to the CPU usage hot spots in the
application.

2.1.4 CPU Usage Times Profile (cpu=times)
The HPROF tool can collect CPU usage information by injecting code into every method entry
and exit, thereby keeping track of exact method call counts and the time spent in each method.
This process uses Byte Code Injection (BCI) and runs considerably slower than the
cpu=samples option. Below is part of the output collected from a run of the javac compiler.

$ javac -J-agentlib:hprof=cpu=times Hello.java

CPU TIME (ms) BEGIN (total = 2082665289) Wed oct 4 13:43:42 2006

rank self accum count trace method

1 3.70% 3.70% 1 311243 com.sun.tools.javac.Main.compile

2 3.64% 7.34% 1 311242 com.sun.tools.javac.main.Main.compile

3 3.64% 10.97% 1 311241 com.sun.tools.javac.main.Main.compile

4 3.11% 14.08% 1 311173 com.sun.tools.javac.main.JavaCompiler.compile

5 2.54% 16.62% 8 306183 com.sun.tools.javac.jvm.ClassReader.listAll

6 2.53% 19.15% 36 306182 com.sun.tools.javac.jvm.ClassReader.list

7 2.03% 21.18% 1 307195 com.sun.tools.javac.comp.Enter.main

8 2.03% 23.21% 1 307194 com.sun.tools.javac.comp.Enter.complete

9 1.68% 24.90% 1 306392 com.sun.tools.javac.comp.Enter.classEnter

2.1 HPROF - Heap Profiler

Troubleshooting Guide for Java SE 6 with HotSpot VM • November 200830

10 1.68% 26.58% 1 306388 com.sun.tools.javac.comp.Enter.classEnter

...

CPU TIME (ms) END

In this output the count represents the true count of the number of times this method was
entered, and the percentages represent a measure of thread CPU time spent in those methods.

2.2 Java VisualVM
JavaTM VisualVM is one of the tools included in the JDK download (starting with Java SE release
6 update 7). This tool is useful to Java application developers to troubleshoot applications and to
monitor and improve the applications' performance. With Java VisualVM you can generate and
analyze heap dumps, track down memory leaks, perform and monitor garbage collection, and
perform lightweight memory and CPU profiling. The tool is also useful for tuning, heap sizing,
offline analysis, and post-mortem diagnosis.

In addition, you can use existing plug-ins that expand the functionality of Java VisualVM. For
example, most of the functionality of the JConsole tool is available via the MBeans tab and the
JConsole plug-in wrapper tab. You can choose from a catalog of standard Java VisualVM
plug-ins by choosing Plugins from the Tools menu in the main Java VisualVM window.

For comprehensive documentation for Java VisualVM, see http://java.sun.com/javase/6/
docs/technotes/guides/visualvm/index.html

Java VisualVM allows you to perform the following troubleshooting activities:

■ View a list of local and remote Java applications.
■ View application configuration and runtime environment. For each application, the tool

shows basic runtime information: PID, host, main class, arguments passed to the process,
JVM version, JDK home, JVM flags, JVM arguments, system properties.

■ Enable and disable the creation of a heap dump when a specified application encounters an
OutOfMemoryError exception.

■ Monitor application memory consumption, running threads, and loaded classes.
■ Trigger a garbage collection immediately.
■ Create a heap dump immediately. You can then view the heap dump in several views:

summary, by class, by instance. You can also save the heap dump to your local file system.
■ Profile application performance or analyze memory allocation (for local applications only).

You can also save the profiling data.
■ Create a thread dump (stack trace of the application's active threads) immediately. You can

then view the thread dump.
■ Analyze core dumps (with Solaris OS and Linux).
■ Analyze applications offline, by taking application snapshots.

2.2 Java VisualVM

Chapter 2 • Detailed Tool Descriptions 31

http://java.sun.com/javase/6/docs/technotes/guides/visualvm/index.html
http://java.sun.com/javase/6/docs/technotes/guides/visualvm/index.html

■ Get additional plug-ins contributed by the community.
■ Write and share your own plug-ins.
■ Display and interact with MBeans (after installing the MBeans tab plug-in).

When you start Java VisualVM, the main Application window opens, displaying a list of Java
applications running on the local machine, a list of Java applications running on any connected
remote machines, a list of any VM core dumps that were taken and saved (with Solaris OS and
Linux), and a list of any application snapshots that were taken and saved.

Java VisualVM will automatically detect and connect to JMX agents for Java applications that
are running on version 6 of the Java SE platform or that have been started with the correct
system properties on version 5.0. In order for the tool to detect and connect to the agents on a
remote machine, the jstatd daemon must be running on the remote machine (see “2.13
jstatd Daemon” on page 59). In cases where Java VisualVM cannot automatically discover
and connect to JMX agents that are running in a target application, the tool provides a means
for you to explicitly create these connections.

2.3 JConsole Utility
Another useful tool included in the JDK download is the JConsole monitoring tool. This tool is
compliant with Java Management Extensions (JMX). The tool uses the built-in JMX
instrumentation in the Java Virtual Machine to provide information on the performance and
resource consumption of running applications. Although the tool is included in the JDK
download, it can also be used to monitor and manage applications deployed with the Java
runtime environment.

The JConsole tool can attach to any Java SE application in order to display useful information
such as thread usage, memory consumption, and details about class loading, runtime
compilation, and the operating system.

This output helps with high-level diagnosis on problems such as memory leaks, excessive class
loading, and running threads. It can also be useful for tuning and heap sizing.

In addition to monitoring, JConsole can be used to dynamically change several parameters in
the running system. For example, the setting of the -verbose:gc option can be changed so that
garbage collection trace output can be dynamically enabled or disabled for a running
application.

The following list provides an idea of the data that can be monitored using the JConsole tool.
Each heading corresponds to a tab pane in the tool.

■ Overview
This pane displays graphs showing, over time, heap memory usage, number of threads,
number of classes, and CPU usage. This overview allows you to visualize the activity of
several resources at once.

2.3 JConsole Utility

Troubleshooting Guide for Java SE 6 with HotSpot VM • November 200832

■ Memory
■ For a selected memory area (heap, non-heap, various memory pools):

■ Graph of memory usage over time
■ Current memory size
■ Amount of committed memory
■ Maximum memory size

■ Garbage collector information, including the number of collections performed, and the
total time spent performing garbage collection.

■ Graph showing percentage of heap and non-heap memory currently used.

In addition, on this pane you can request garbage collection to be performed.
■ Threads

■ Graph of thread usage over time.
■ Live threads - Current number of live threads.
■ Peak - Highest number of live threads since the Java VM started.
■ For a selected thread, the name, state, and stack trace, as well as, for a blocked thread, the

synchronizer that the thread is waiting to acquire and the thread owning the lock.
■ Deadlock Detection button - Sends a request to the target application to perform

deadlock detection and displays each deadlock cycle in a separate tab.
■ Classes

■ Graph of number of loaded classes over time.
■ Number of classes currently loaded into memory.
■ Total number of classes loaded into memory since the Java VM started, including those

subsequently unloaded.
■ Total number of classes unloaded from memory since the Java VM started.

■ VM Summary
■ General information, such as the JConsole connection data, uptime for the Java VM,

CPU time consumed by the Java VM, complier name and total compile time, and so
forth.

■ Thread and class summary information.
■ Memory and garbage collection information, including number of objects pending

finalization, and so forth.
■ Information about the operating system, including physical characteristics, the amount

of virtual memory for the running process, swap space, and so forth.
■ Information about the virtual machine itself, such as arguments, class path, and so forth.

■ MBeans

2.3 JConsole Utility

Chapter 2 • Detailed Tool Descriptions 33

This pane displays a tree structure showing all platform and application MBeans that are
registered in the connected JMX agent. When you select an MBean in the tree, its attributes,
operations, notifications, and other information are displayed.
■ You can invoke operations, if any. For example, the operation dumpHeap for the

HotSpotDiagnostic MBean, which is in the com.sun.management domain, performs a
heap dump. The input parameter for this operation is the pathname of the heap dump
file on the machine where the target VM is running.

■ As another example of invoking an operation, you can set the value of writable
attributes. For example, you can set, unset, or change the value of certain VM flags by
invoking the setVMOption operation of the HotSpotDiagnostic MBean. The flags are
indicated by the list of values of the DiagnosticOptions attribute.

■ You can subscribe to notifications, if any, by using the Subscribe and Unsubscribe
buttons.

JConsole can monitor both local applications and remote applications. If you start the tool with
an argument specifying a JMX agent to connect to, the tool will automatically start monitoring
the specified application.

To monitor a local application, execute the command jconsole pid, where pid is the process ID
of the application.

To monitor a remote application, execute the command jconsole hostname:portnumber,
where hostname is the name of the host running the application, and portnumber is the port
number you specified when you enabled the JMX agent.

If you execute the jconsole command without arguments, the tool will start by displaying the
New Connection window, where you specify the local or remote process to be monitored. You
can connect to a different host at any time by using the Connection menu.

With the J2SE 1.5 release, you must start the application to be monitored with the
-Dcom.sun.management.jmxremote option. With the Java SE 6 release, no option is necessary
when starting the application to be monitored.

As an example of the output of the monitoring tool, the following screen shows a chart of heap
memory usage.

2.3 JConsole Utility

Troubleshooting Guide for Java SE 6 with HotSpot VM • November 200834

A complete tutorial on the JConsole tool is beyond the scope of this document. However, the
following documents describe in more detail the monitoring and management capabilities, and
how to use JConsole:

■ Monitoring and Management for the Java Platform
http://java.sun.com/javase/6/docs/technotes/guides/management/index.html

■ Monitoring and Management Using JMX
http://java.sun.com/javase/6/docs/technotes/guides/management/agent.html

■ Using JConsole
http://java.sun.com/javase/6/docs/technotes/guides/management/jconsole.html

■ Manual page for jconsole
http://java.sun.com/javase/6/docs/technotes/tools/share/jconsole.html

FIGURE 2–1 Sample Output from JConsole

2.3 JConsole Utility

Chapter 2 • Detailed Tool Descriptions 35

http://java.sun.com/javase/6/docs/technotes/guides/management/index.html
http://java.sun.com/javase/6/docs/technotes/guides/management/agent.html
http://java.sun.com/javase/6/docs/technotes/guides/management/jconsole.html
http://java.sun.com/javase/6/docs/technotes/tools/share/jconsole.html

2.4 jdbUtility
The jdb utility is included in the JDK release as the example command-line debugger. The jdb
utility uses the Java Debug Interface (JDI) to launch or connect to the target VM. The source
code for jdb is included in $JAVA_HOME/demo/jpda/examples.jar.

The Java Debug Interface (JDI) is a high-level Java API that provides information useful for
debuggers and similar systems that need access to the running state of a (usually remote) virtual
machine. JDI is a component of the Java Platform Debugger Architecture (JPDA). See “2.17.5
Java Platform Debugger Architecture” on page 72.

In JDI a connector is the means by which the debugger connects to the target virtual machine.
The JDK release has traditionally shipped with connectors that launch and establish a
debugging session with a target VM, as well as connectors that are used for remote debugging
(using TCP/IP or shared memory transports).

On Solaris OS, the JDK release also ships with several Serviceability Agent (SA) connectors that
allow a Java language debugger to attach to a crash dump or hung process. This can be useful in
determining what the application was doing at the time of the crash or hang.

The Serviceability Agent connectors are not available on the Windows platform, nor on the
Linux platform. These connectors are SACoreAttachingConnector,
SADebugServerAttachingConnector, and SAPIDAttachingConnector.

These connectors are generally used with enterprise debuggers, such as as NetBeans IDE or
commerical IDEs. The following subsections demonstrate how these connectors can be used
with the jdb command-line debugger.

For detailed information about the connectors, see http://java.sun.com/
javase/6/docs/technotes/guides/jpda/conninv.html#Connectors.

The command jdb -listconnectors prints a list of the available connectors. The command
jdb -help prints the command usage.

For more information on the jdb utility, refer to the manual pages:
■ Solaris OS and Linux: jdb man page

http://java.sun.com/javase/6/docs/technotes/tools/solaris/jdb.html

■ Windows: jdb man page
http://java.sun.com/javase/6/docs/technotes/tools/windows/jdb.html

2.4.1 Attaching to a Process
This example uses the SA PID Attaching Connector to attach to a process. The target process is
not started with any special options, that is, the -agentlib:jdwp option is not required. When

2.4 jdbUtility

Troubleshooting Guide for Java SE 6 with HotSpot VM • November 200836

http://java.sun.com/javase/6/docs/technotes/guides/jpda/conninv.html#Connectors
http://java.sun.com/javase/6/docs/technotes/guides/jpda/conninv.html#Connectors
http://java.sun.com/javase/6/docs/technotes/tools/solaris/jdb.html
http://java.sun.com/javase/6/docs/technotes/tools/windows/jdb.html

this connector attaches to a process it does so in read-only mode: the debugger can examine
threads and the running application but it cannot change anything. The process is frozen while
the debugger is attached.

The command in the following example instructs jdb to use a connector named
sun.jvm.hotspot.jdi.SAPIDAttachingConnector. This is a connector name rather than a
class name. The connector takes one argument called pid, whose value is the process ID of the
target process (9302 in this example).

$ jdb -connect sun.jvm.hotspot.jdi.SAPIDAttachingConnector:pid=9302

Initializing jdb ...

> threads

Group system:

(java.lang.ref.Reference$ReferenceHandler)0xa Reference Handler unknown

(java.lang.ref.Finalizer$FinalizerThread)0x9 Finalizer unknown

(java.lang.Thread)0x8 Signal Dispatcher running

(java.lang.Thread)0x7 Java2D Disposer unknown

(java.lang.Thread)0x2 TimerQueue unknown

Group main:

(java.lang.Thread)0x6 AWT-XAWT running

(java.lang.Thread)0x5 AWT-Shutdown unknown

(java.awt.EventDispatchThread)0x4 AWT-EventQueue-0 unknown

(java.lang.Thread)0x3 DestroyJavaVM running

(sun.awt.image.ImageFetcher)0x1 Image Animator 0 sleeping

(java.lang.Thread)0x0 Intro running

> thread 0x7

Java2D Disposer[1] where

[1] java.lang.Object.wait (native method)

[2] java.lang.ref.ReferenceQueue.remove (ReferenceQueue.java:116)

[3] java.lang.ref.ReferenceQueue.remove (ReferenceQueue.java:132)

[4] sun.java2d.Disposer.run (Disposer.java:125)

[5] java.lang.Thread.run (Thread.java:619)

Java2D Disposer[1] up 1

Java2D Disposer[2] where

[2] java.lang.ref.ReferenceQueue.remove (ReferenceQueue.java:116)

[3] java.lang.ref.ReferenceQueue.remove (ReferenceQueue.java:132)

[4] sun.java2d.Disposer.run (Disposer.java:125)

[5] java.lang.Thread.run (Thread.java:619)

In this example the threads command is used to get a list of all threads. Then a specific thread is
selected with the thread 0x7 command, and the where command is used to get a thread dump.
Next the up 1 command is used to move up one frame in the stack, and the where command is
used again to get a thread dump.

2.4 jdbUtility

Chapter 2 • Detailed Tool Descriptions 37

2.4.2 Attaching to a Core File on the Same Machine
The SA Core Attaching Connector is used to attach the debugger to a core file. The core file may
have been created after a crash (see Chapter 4, “Troubleshooting System Crashes”). The core file
can also be obtained by using the gcore command on Solaris OS or the gcore command in gdb

on Linux. Because the core file is a snapshot of the process at the time the core file was created,
the connector attaches in read-only mode: the debugger can examine threads and the running
application at the time of the crash.

The following command is an example of using this connector:

$ jdb -connect sun.jvm.hotspot.jdi.SACoreAttachingConnector:\

javaExecutable=$JAVA_HOME/bin/java,core=core.20441

This command instructs jdb to use a connector named
sun.jvm.hotspot.jdi.SACoreAttachingConnector. The connector takes two arguments
called javaExecutable and core. The javaExecutable argument indicates the name of the
Java binary. The core argument is the core file name (the core from the process with PID 20441
in this example).

2.4.3 Attaching to a Core File or a Hung Process from a
Different Machine
In order to debug a core file that has been transported from another machine, the OS versions
and libraries must match. In this case you can first run a proxy server called the SA Debug
Server. Then, on the machine where the debugger is installed, you can use the SA Debug Server
Attaching Connector to connect to the debug server.

In the example below, there are two machines, machine 1 and machine 2. A core file is available
on machine 1 and the debugger is available on machine 2. The SA Debug Server is started on
machine 1 as follows.

$ jsadebugd $JAVA_HOME/bin/java core.20441

The jsadebugd command takes two arguments. The first argument is the name of the
executable. In most cases this is java, but it can be another name (in the case of embedded VMs,
for example). The second argument is the name of the core file. In this example the core file was
obtained for a process with PID 20441 using the gcore utility.

On machine 2, the debugger connects to the remote SA Debug Server using the SA Debug
Server Attaching Connector, as with the following command:

$ jdb -connect sun.jvm.hotspot.jdi.SADebugServerAttachingConnector:\

debugServerName=machine1

2.4 jdbUtility

Troubleshooting Guide for Java SE 6 with HotSpot VM • November 200838

This command instructs jdb to use a connector named
sun.jvm.hotspot.jdi.SADebugServerAttachingConnector. The connector has one
argument debugServerName, which is the hostname or IP address of the machine where the SA
Debug Server is running.

Note that the SA Debug Server can also be used to remotely debug a hung process. In that case it
takes a single argument which is the process ID of the process. In addition, if it is required to run
multiple debug servers on the same machine, each one must be provided with a unique ID.
With the SA Debug Server Attaching Connector, this ID is provided as an additional connector
argument. These details are described in the JPDA documentation.

2.5 jhatUtility
The jhat tool provides a convenient means to browse the object topology in a heap snapshot.
This tool was introduced in the Java SE 6 release to replace the Heap Analysis Tool (HAT). For
information about HAT, see the Java 2 Platform, Standard Edition 5.0, Troubleshooting and
Diagnostic Guide (http://java.sun.com/j2se/1.5/pdf/jdk50_ts_guide.pdf).

For more information about the jhat utility, see the man page for jhat- Java Heap Analysis Tool
(http://java.sun.com/javase/6/docs/technotes/tools/share/jhat.html).

The tool parses a heap dump in binary format, for example, a heap dump produced by jmap
-dump.

This utility can help debug unintentional object retention. This term is used to describe an
object that is no longer needed but is kept alive due to references through some path from the
rootset. This can happen, for example, if an unintentional static reference to an object remains
after the object is no longer needed, if an Observer or Listener fails to de-register itself from its
subject when it is no longer needed, or if a Thread that refers to an object does not terminate
when it should. Unintentional object retention is the Java language equivalent of a memory
leak.

The tool provides a number of standard queries. For example, the Roots query displays all
reference paths from the rootset to a specified object and is particularly useful for finding
unnecessary object retention.

In addition to the standard queries, you can develop your own custom queries with the Object
Query Language (OQL) interface.

When you issue the jhat command, the utility starts an HTTP server on a specified TCP port.
You can then use any browser to connect to the server and execute queries on the specified heap
dump.

The following example shows how to execute jhat to analyze a heap dump file named
snapshot.hprof:

2.5 jhatUtility

Chapter 2 • Detailed Tool Descriptions 39

http://java.sun.com/j2se/1.5/pdf/jdk50_ts_guide.pdf
http://java.sun.com/j2se/1.5/pdf/jdk50_ts_guide.pdf
http://java.sun.com/javase/6/docs/technotes/tools/share/jhat.html
http://java.sun.com/javase/6/docs/technotes/tools/share/jhat.html

$ jhat snapshot.hprof

Started HTTP server on port 7000

Reading from java_pid2278.hprof...

Dump file created Fri May 19 17:18:38 BST 2006

Snapshot read, resolving...

Resolving 6162194 objects...

Chasing references, expect 12324 dots................................

Eliminating duplicate references.....................................

Snapshot resolved.

Server is ready.

At this point jhat has started a HTTP server on port 7000. Point your browser to
http://localhost:7000 to connect to the jhat server.

When you are connected to the server, you can execute the standard queries (see the following
subsection) or create an OQL query (see “2.5.2 Custom Queries” on page 42). The All Classes
query is displayed by default.

2.5.1 Standard Queries
The standard queries are described in these subsections.

2.5.1.1 All Classes Query
The default page is the All Classes query, which displays all of the classes present in the heap,
excluding platform classes. This list is sorted by fully-qualified class name, and broken out by
package. Click on the name of a class to go to the Class query.

The second variant of this query includes the platform classes. Platform classes include classes
whose fully-qualified names start with prefixes such as java, sun., javax.swing., or char[.
The list of prefixes is in a system resource file called resources/platform_names.txt. You can
override this list by replacing it in the JAR file, or by arranging for your replacement to occur
first on the classpath when jhat is invoked.

2.5.1.2 Class Query
The Class query displays information about a class. This includes its superclass, any subclasses,
instance data members, and static data members. From this page you can navigate to any of the
classes that are referenced, or you can navigate to an Instances query.

2.5.1.3 Object Query
The Object query provides information about an object that was on the heap. From here, you
can navigate to the class of the object and to the value of any object members of the object. You
can also navigate to objects that refer to the current object. Perhaps the most valuable query is at
the end: the Roots query (“Reference Chains from Rootset”).

2.5 jhatUtility

Troubleshooting Guide for Java SE 6 with HotSpot VM • November 200840

Note that the object query also provides a stack backtrace of the point of allocation of the object.

2.5.1.4 Instances Query
The instances query displays all instances of a given class. The allInstances variant includes
instances of subclasses of the given class as well. From here, you can navigate back to the source
class, or you can navigate to an Object query on one of the instances.

2.5.1.5 Roots Query
The Roots query displays reference chains from the rootset to a given object. It provides one
chain for each member of the rootset from which the given object is reachable. When
calculating these chains, the tool does a depth-first search, so that it will provide reference
chains of minimal length.

There are two kinds of Roots query: one that excludes weak references (Roots), and one that
includes them (All Roots). A weak reference is a reference object that does not prevent its
referent from being made finalizable, finalized, and then reclaimed. If an object is only referred
to by a weak reference, it usually isn't considered to be retained, because the garbage collector
can collect it as soon as it needs the space.

This is probably the most valuable query in jhat for debugging unintentional object retention.
Once you find an object that is being retained, this query tells you why it is being retained.

2.5.1.6 Reachable Objects Query
This query is accessible from the Object query and shows the transitive closure of all objects
reachable from a given object. This list is sorted in decreasing size, and alphabetically within
each size. At the end, the total size of all of the reachable objects is given. This can be useful for
determining the total runtime footprint of an object in memory, at least in systems with simple
object topologies.

This query is most valuable when used in conjunction with the -exclude command line option.
This is useful, for example, if the object being analyzed is an Observable. By default, all of its
Observers would be reachable, which would count against the total size. The -exclude option
allows you to exclude the data members java.util.Observable.obs and
java.util.Observable.arr.

2.5.1.7 Instance Counts for All Classes Query
This query shows the count of instances for every class in the system, excluding platform
classes. It is sorted in descending order, by instance count. A good way to spot a problem with
unintentional object retention is to run a program for a long time with a variety of input, then
request a heap dump. Looking at the instance counts for all classes, you may recognize a
number of classes because there are more instances than you expect. Then you can analyze
them to determine why they are being retained (possibly using the Roots query). A variant of
this query includes platform classes.

2.5 jhatUtility

Chapter 2 • Detailed Tool Descriptions 41

The section on the All Classes query defines platform classes.

2.5.1.8 All Roots Query
This query shows all members of the rootset, including weak references.

2.5.1.9 New Instances Query
The New Instances query is available only if you invoke the jhat server with two heap dumps.
This query is similar to the Instances query, except that it shows only new instances. An
instance is considered new if it is in the second heap dump and there is no object of the same
type with the same ID in the baseline heap dump. An object's ID is a 32–bit or 64–bit integer
that uniquely identifies the object.

2.5.1.10 Histogram Queries
The built-in histogram and finalizer histogram queries also provide useful information.

2.5.2 Custom Queries
You can develop your own custom queries with the built-in Object Query Language (OQL)
interface. Click on the Execute OQL Query button on the first page to display the OQL query
page, where you can create and execute your custom queries. The OQL Help facility describes
the built-in functions, with examples.

The syntax of the select statement is as follows:

select JavaScript-expression-to-select
[from [instanceof] classname identifier
[where JavaScript-boolean-expression-to-filter]]

The following is an example of a select statement:

select s from java.lang.String s where s.count >= 100

2.5.3 Heap Analysis Hints
To get useful information from jhat often requires some knowledge of the application and in
addition some knowledge about the libraries and APIs that it uses. However in general the tool
can be used to answer two important questions:

■ What is keeping an object alive?
■ Where was this object allocated?

2.5 jhatUtility

Troubleshooting Guide for Java SE 6 with HotSpot VM • November 200842

2.5.3.1 What is keeping an object alive?
When viewing an object instance, you can check the objects listed in the section entitled
“References to this object” to see which objects directly reference this object. More importantly
you use a Roots query to determine the reference chains from the root set to the given object.
These reference chains show a path from a root object to this object. With these chains you can
quickly see how an object is reachable from the root set.

As noted earlier, there are two kinds of Roots queries: one that excludes weak references
(Roots), and one that includes them (All Roots). A weak reference is a reference object that does
not prevent its referent from being made finalizable, finalized, and then reclaimed. If an object is
only referred to by a weak reference, it usually is not considered to be retained, because the
garbage collector can collect it as soon as it needs the space.

The jhat tool sorts the rootset reference chains by the type of the root, in the following order:
■ Static data members of Java classes.
■ Java local variables. For these roots, the thread responsible for them is shown. Because a

Thread is a Java object, this link is clickable. This allows you, for example, to easily navigate
to the name of the thread.

■ Native static values.
■ Native local variables. Again, such roots are identified with their thread.

2.5.3.2 Where was this object allocated?
When an object instance is being displayed, the section entitled “Objects allocated from” shows
the allocation site in the form of a stack trace. In this way, you can see where the object was
created.

Note that this allocation site information is available only if the heap dump was created with
HPROF using the heap=all option. This HPROF option includes both the heap=dump option
and the heap=sites option.

If the leak cannot be identified using a single object dump, then another approach is to collect a
series of dumps and to focus on the objects created in the interval between each dump. The jhat
tool provides this capability using the -baseline option.

The -baseline option allows two dumps to be compared if they were produced by HPROF and
from the same VM instance. If the same object appears in both dumps it will be excluded from
the list of new objects reported. One dump is specified as a baseline and the analysis can focus
on the objects that are created in the second dump since the baseline was obtained.

The following example show how to specify the baseline:

$ jhat -baseline snapshot.hprof#1 snapshot.hprof#2

In the above example, the two dumps are in the file snapshot.hprof, and they are distinguished
by appending #1 and #2 to the file name.

2.5 jhatUtility

Chapter 2 • Detailed Tool Descriptions 43

When jhat is started with two heap dumps, the Instance Counts for All Classes query includes
an additional column that is the count of the number of new objects for that type. An instance is
considered new if it is in the second heap dump and there is no object of the same type with the
same ID in the baseline. If you click on a new count, then jhat lists the new objects of that type.
Then for each instance you can view where it was allocated, which objects these new objects
reference, and which other objects reference the new object.

In general, the -baseline option can be very useful if the objects that need to be identified are
created in the interval between the successive dumps.

2.6 jinfoUtility
The jinfo command-line utility gets configuration information from a running Java process or
crash dump and prints the system properties or the command-line flags that were used to start
the virtual machine.

The utility can also use the jsadebugd daemon to query a process or core file on a remote
machine. Note that the output takes longer to print in this case.

With the -flag option, the utility can dynamically set, unset, or change the value of certain Java
VM flags for the specified Java process. See “B.1.1 Dynamic Changing of Flag Values” on
page 127.

This utility is included in the Solaris OS and Linux releases of the JDK software. It is also
included in the JDK 6 release for Windows, but only the jinfo -flag option for a running
process.

For more information on the jinfo utility, refer to the man page (http://java.sun.com/
javase/6/docs/technotes/tools/share/jinfo.html).

The following is an example of the output from a Java process.

$ jinfo 29620

Attaching to process ID 29620, please wait...

Debugger attached successfully.

Client compiler detected.

JVM version is 1.6.0-rc-b100

Java System Properties:

java.runtime.name = Java(TM) SE Runtime Environment

sun.boot.library.path = /usr/jdk/instances/jdk1.6.0/jre/lib/sparc

java.vm.version = 1.6.0-rc-b100

java.vm.vendor = Sun Microsystems Inc.

java.vendor.url = http://java.sun.com/

path.separator = :

java.vm.name = Java HotSpot(TM) Client VM

2.6 jinfoUtility

Troubleshooting Guide for Java SE 6 with HotSpot VM • November 200844

http://java.sun.com/javase/6/docs/technotes/tools/share/jinfo.html
http://java.sun.com/javase/6/docs/technotes/tools/share/jinfo.html

file.encoding.pkg = sun.io

sun.java.launcher = SUN_STANDARD

sun.os.patch.level = unknown

java.vm.specification.name = Java Virtual Machine Specification

user.dir = /home/js159705

java.runtime.version = 1.6.0-rc-b100

java.awt.graphicsenv = sun.awt.X11GraphicsEnvironment

java.endorsed.dirs = /usr/jdk/instances/jdk1.6.0/jre/lib/endorsed

os.arch = sparc

java.io.tmpdir = /var/tmp/

line.separator =

java.vm.specification.vendor = Sun Microsystems Inc.

os.name = SunOS

sun.jnu.encoding = ISO646-US

java.library.path = /usr/jdk/instances/jdk1.6.0/jre/lib/sparc/client:/usr/jdk/instances/jdk1.6.0/jre/lib/sparc:

/usr/jdk/instances/jdk1.6.0/jre/../lib/sparc:/net/gtee.sfbay/usr/sge/sge6/lib/sol-sparc64:

/usr/jdk/packages/lib/sparc:/lib:/usr/lib

java.specification.name = Java Platform API Specification

java.class.version = 50.0

sun.management.compiler = HotSpot Client Compiler

os.version = 5.10

user.home = /home/js159705

user.timezone = US/Pacific

java.awt.printerjob = sun.print.PSPrinterJob

file.encoding = ISO646-US

java.specification.version = 1.6

java.class.path = /usr/jdk/jdk1.6.0/demo/jfc/Java2D/Java2Demo.jar

user.name = js159705

java.vm.specification.version = 1.0

java.home = /usr/jdk/instances/jdk1.6.0/jre

sun.arch.data.model = 32

user.language = en

java.specification.vendor = Sun Microsystems Inc.

java.vm.info = mixed mode, sharing

java.version = 1.6.0-rc

java.ext.dirs = /usr/jdk/instances/jdk1.6.0/jre/lib/ext:/usr/jdk/packages/lib/ext

sun.boot.class.path = /usr/jdk/instances/jdk1.6.0/jre/lib/resources.jar:

/usr/jdk/instances/jdk1.6.0/jre/lib/rt.jar:/usr/jdk/instances/jdk1.6.0/jre/lib/sunrsasign.jar:

/usr/jdk/instances/jdk1.6.0/jre/lib/jsse.jar:

/usr/jdk/instances/jdk1.6.0/jre/lib/jce.jar:/usr/jdk/instances/jdk1.6.0/jre/lib/charsets.jar:

/usr/jdk/instances/jdk1.6.0/jre/classes

java.vendor = Sun Microsystems Inc.

file.separator = /

java.vendor.url.bug = http://java.sun.com/cgi-bin/bugreport.cgi

sun.io.unicode.encoding = UnicodeBig

sun.cpu.endian = big

sun.cpu.isalist =

2.6 jinfoUtility

Chapter 2 • Detailed Tool Descriptions 45

VM Flags:

If you start the target Java VM with the -classpath and -Xbootclasspath arguments, the
output from jinfo provides the settings for java.class.path and sun.boot.class.path. This
information might be needed when investigating class loader issues.

In addition to obtaining information from a process, the jinfo tool can use a core file as input.
On Solaris OS, for example, the gcore utility can be used to get a core file of the process in the
above example. The core file will be named core.29620 and will be generated in the working
directory of the process. The path to the Java executable and the core file must be specified as
arguments to the jinfo utility, as in the following example:

$ jinfo $JAVA_HOME/bin/java core.29620

Sometimes the binary name will not be java. This occurs when the VM is created using the JNI
invocation API. The jinfo tool requires the binary from which the core file was generated.

2.7 jmapUtility
The jmap command-line utility prints memory related statistics for a running VM or core file.

The utility can also use the jsadebugd daemon to query a process or core file on a remote
machine. Note that the output takes longer to print in this case.

If jmap is used with a process or core file without any command-line options, then it prints the
list of shared objects loaded (the output is similar to the pmap utility on Solaris OS). For more
specific information, you can use the options -heap, -histo, or -permstat. These options are
described in the subsections that follow.

In addition, the Java SE 6 release introduced the -dump:format=b,file=filename option, which
causes jmap to dump the Java heap in binary HPROF format to a specified file. This file can then
be analyzed with the jhat tool.

If the jmap pid command does not respond because of a hung process, the -F option can be used
(on Solaris OS and Linux only) to force the use of the Serviceability Agent.

This utility is included in the Solaris OS and Linux releases of the JDK software. It is also
included in the JDK 6 release on Windows, but only the jmap -dump:format=b,file=file pid
option and the jmap -histo[:live] pid option are available.

For more information on the jmap utility, refer to the manual page (http://java.sun.com/
javase/6/docs/technotes/tools/share/jmap.html).

2.7.1 Heap Configuration and Usage
The -heap option is used to obtain the following Java heap information:

2.7 jmapUtility

Troubleshooting Guide for Java SE 6 with HotSpot VM • November 200846

http://java.sun.com/javase/6/docs/technotes/tools/share/jmap.html
http://java.sun.com/javase/6/docs/technotes/tools/share/jmap.html

■ Information specific to the garbage collection (GC) algorithm , including the name of the
GC algorithm (Parallel GC for example) and algorithm specific details (such as number of
threads for parallel GC).

■ Heap configuration. The heap configuration might have been specified as command line
options or selected by the VM based on the machine configuration.

■ Heap usage summary. For each generation (area of the heap), the tool prints the total heap
capacity, in-use memory, and available free memory. If a generation is organized as a
collection of spaces (the new generation for example), then a space-wise memory size
summary is included.

The following example shows output from the jmap -heap command.

$ jmap -heap 29620

Attaching to process ID 29620, please wait...

Debugger attached successfully.

Client compiler detected.

JVM version is 1.6.0-rc-b100

using thread-local object allocation.

Mark Sweep Compact GC

Heap Configuration:

MinHeapFreeRatio = 40

MaxHeapFreeRatio = 70

MaxHeapSize = 67108864 (64.0MB)

NewSize = 2228224 (2.125MB)

MaxNewSize = 4294901760 (4095.9375MB)

OldSize = 4194304 (4.0MB)

NewRatio = 8

SurvivorRatio = 8

PermSize = 12582912 (12.0MB)

MaxPermSize = 67108864 (64.0MB)

Heap Usage:

New Generation (Eden + 1 Survivor Space):

capacity = 2031616 (1.9375MB)

used = 70984 (0.06769561767578125MB)

free = 1960632 (1.8698043823242188MB)

3.4939673639112905% used

Eden Space:

capacity = 1835008 (1.75MB)

used = 36152 (0.03447723388671875MB)

free = 1798856 (1.7155227661132812MB)

1.9701276506696428% used

From Space:

capacity = 196608 (0.1875MB)

used = 34832 (0.0332183837890625MB)

2.7 jmapUtility

Chapter 2 • Detailed Tool Descriptions 47

free = 161776 (0.1542816162109375MB)

17.716471354166668% used

To Space:

capacity = 196608 (0.1875MB)

used = 0 (0.0MB)

free = 196608 (0.1875MB)

0.0% used

tenured generation:

capacity = 15966208 (15.2265625MB)

used = 9577760 (9.134063720703125MB)

free = 6388448 (6.092498779296875MB)

59.98769400974859% used

Perm Generation:

capacity = 12582912 (12.0MB)

used = 1469408 (1.401336669921875MB)

free = 11113504 (10.598663330078125MB)

11.677805582682291% used

2.7.2 Heap Histogram of Running Process
The -histo option can be used to obtain a class-wise histogram of the heap.

When the command is executed on a running process, the tool prints the number of objects,
memory size in bytes, and fully qualified class name for each class. Internal classes in the
HotSpot VM are enclosed in angle brackets. The histogram is useful in understanding how the
heap is used. To get the size of an object you must divide the total size by the count of that object
type.

The following example shows output from the jmap -histo command when it is executed on a
process.

$ jmap -histo 29620

num #instances #bytes class name

1: 1414 6013016 [I

2: 793 482888 [B

3: 2502 334928 <constMethodKlass>

4: 280 274976 <instanceKlassKlass>

5: 324 227152 [D

6: 2502 200896 <methodKlass>

7: 2094 187496 [C

8: 280 172248 <constantPoolKlass>

9: 3767 139000 [Ljava.lang.Object;

10: 260 122416 <constantPoolCacheKlass>

11: 3304 112864 <symbolKlass>

12: 160 72960 java2d.Tools$3

2.7 jmapUtility

Troubleshooting Guide for Java SE 6 with HotSpot VM • November 200848

13: 192 61440 <objArrayKlassKlass>

14: 219 55640 [F

15: 2114 50736 java.lang.String

16: 2079 49896 java.util.HashMap$Entry

17: 528 48344 [S

18: 1940 46560 java.util.Hashtable$Entry

19: 481 46176 java.lang.Class

20: 92 43424 javax.swing.plaf.metal.MetalScrollButton

... more lines removed here to reduce output...
1118: 1 8 java.util.Hashtable$EmptyIterator

1119: 1 8 sun.java2d.pipe.SolidTextRenderer

Total 61297 10152040

2.7.3 Heap Histogram of Core File
When the jmap -histo command is executed on a core file, the tool prints the size, count, and
class name for each class. Internal classes in the HotSpot VM are prefixed with an asterisk (*).

& jmap -histo /net/koori.sfbay/onestop/jdk/6.0/promoted/all/b100/binaries/

solaris-sparcv9/bin/java core

Attaching to core core from executable /net/koori.sfbay/onestop/jdk/6.0/

promoted/all/b100/binaries/solaris-sparcv9/bin/java, please wait...

Debugger attached successfully.

Server compiler detected.

JVM version is 1.6.0-rc-b100

Iterating over heap. This may take a while...

Heap traversal took 8.902 seconds.

Object Histogram:

Size Count Class description

4151816 2941 int[]

2997816 26403 * ConstMethodKlass

2118728 26403 * MethodKlass

1613184 39750 * SymbolKlass

1268896 2011 * ConstantPoolKlass

1097040 2011 * InstanceKlassKlass

882048 1906 * ConstantPoolCacheKlass

758424 7572 char[]

733776 2518 byte[]

252240 3260 short[]

214944 2239 java.lang.Class

177448 3341 * System ObjArray

176832 7368 java.lang.String

137792 3756 java.lang.Object[]

121744 74 long[]

2.7 jmapUtility

Chapter 2 • Detailed Tool Descriptions 49

72960 160 java2d.Tools$3

63680 199 * ObjArrayKlassKlass

53264 158 float[]

... more lines removed here to reduce output...

2.7.4 Getting Information on the Permanent Generation
The permanent generation is the area of heap that holds all the reflective data of the virtual
machine itself, such as class and method objects (also called “method area” in The Java Virtual
Machine Specification). This area also holds internalized strings.

Configuring the size of the permanent generation can be important for applications that
dynamically generate and load a very large number of classes (for example, Java Server
Pages/web containers). If an application loads “too many” classes or uses “too many”
internalized strings, then it is possible it will abort with an OutOfMemoryError. The specific
error is Exception in thread XXXX java.lang.OutOfMemoryError: PermGen space. See “3.1
Meaning of OutOfMemoryError” on page 73 for a description of this and other reasons for
OutOfMemoryError.

To get further information about the permanent generation, you can use the -permstat option
to print statistics for the objects in the permanent generation. The following example shows
output from the jmap -permstat command.

$ jmap -permstat 29620

Attaching to process ID 29620, please wait...

Debugger attached successfully.

Client compiler detected.

JVM version is 1.6.0-rc-b100

12674 intern Strings occupying 1082616 bytes.

finding class loader instances ..Unknown oop at 0xd0400900

Oop’s klass is 0xd0bf8408

Unknown oop at 0xd0401100

Oop’s klass is null

done.

computing per loader stat ..done.

please wait.. computing liveness...done.

class_loader classes bytes parent_loader alive? type

<bootstrap> 1846 5321080 null live <internal>

0xd0bf3828 0 0 null live sun/misc/Launcher$ExtClassLoader@0xd8c98c78

0xd0d2f370 1 904 null dead sun/reflect/DelegatingClassLoader@0xd8c22f50

0xd0c99280 1 1440 null dead sun/reflect/DelegatingClassLoader@0xd8c22f50

0xd0b71d90 0 0 0xd0b5b9c0 live java/util/ResourceBundle$RBClassLoader@0xd8d042e8

0xd0d2f4c0 1 904 null dead sun/reflect/DelegatingClassLoader@0xd8c22f50

0xd0b5bf98 1 920 0xd0b5bf38 dead sun/reflect/DelegatingClassLoader@0xd8c22f50

0xd0c99248 1 904 null dead sun/reflect/DelegatingClassLoader@0xd8c22f50

2.7 jmapUtility

Troubleshooting Guide for Java SE 6 with HotSpot VM • November 200850

0xd0d2f488 1 904 null dead sun/reflect/DelegatingClassLoader@0xd8c22f50

0xd0b5bf38 6 11832 0xd0b5b9c0 dead sun/reflect/misc/MethodUtil@0xd8e8e560

0xd0d2f338 1 904 null dead sun/reflect/DelegatingClassLoader@0xd8c22f50

0xd0d2f418 1 904 null dead sun/reflect/DelegatingClassLoader@0xd8c22f50

0xd0d2f3a8 1 904 null dead sun/reflect/DelegatingClassLoader@0xd8c22f50

0xd0b5b9c0 317 1397448 0xd0bf3828 live sun/misc/Launcher$AppClassLoader@0xd8cb83d8

0xd0d2f300 1 904 null dead sun/reflect/DelegatingClassLoader@0xd8c22f50

0xd0d2f3e0 1 904 null dead sun/reflect/DelegatingClassLoader@0xd8c22f50

0xd0ec3968 1 1440 null dead sun/reflect/DelegatingClassLoader@0xd8c22f50

0xd0e0a248 1 904 null dead sun/reflect/DelegatingClassLoader@0xd8c22f50

0xd0c99210 1 904 null dead sun/reflect/DelegatingClassLoader@0xd8c22f50

0xd0d2f450 1 904 null dead sun/reflect/DelegatingClassLoader@0xd8c22f50

0xd0d2f4f8 1 904 null dead sun/reflect/DelegatingClassLoader@0xd8c22f50

0xd0e0a280 1 904 null dead sun/reflect/DelegatingClassLoader@0xd8c22f50

total = 22 2186 6746816 N/A alive=4, dead=18 N/A

For each class loader object, the following details are printed:

■ The address of the class loader object at the snapshot when the utility was run
■ The number of classes loaded
■ The approximate number of bytes consumed by meta-data for all classes loaded by this class

loader
■ The address of the parent class loader (if any)
■ A “live” or “dead” indication of whether the loader object will be garbage collected in the

future
■ The class name of this class loader

2.8 jpsUtility
The jps utility lists the instrumented HotSpot Virtual Machines for the current user on the
target system. The utility is very useful in environments where the VM is embedded, that is, it is
started using the JNI Invocation API rather than the java launcher. In these environments it is
not always easy to recognize the Java processes in the process list.

The following example demonstrates the usage of the jps utility.

$ jps

16217 MyApplication

16342 jps

The utility lists the virtual machines for which the user has access rights. This is determined by
operating-system-specific access-control mechanisms. On Solaris OS, for example, if a
non-root user executes the jps utility, the output is a list of the virtual machines that were
started with that user's uid.

2.8 jpsUtility

Chapter 2 • Detailed Tool Descriptions 51

In addition to listing the process ID, the utility provides options to output the arguments passed
to the application's main method, the complete list of VM arguments, and the full package
name of the application's main class. The jps utility can also list processes on a remote system if
the remote system is running the jstat daemon (jstatd).

If you are running several Java Web Start applications on a system, they tend to look the same,
as shown in the following example:

$ jps

1271 jps

1269 Main

1190 Main

In this case, use jps -m to distinguish them, as follows:

$ jps -m

1271 jps -m

1269 Main http://bugster.central.sun.com/bugster.jnlp

1190 Main http://webbugs.sfbay/IncidentManager/incident.jnlp

For more information on the jps utility, refer to the man page (http://java.sun.com/
javase/6/docs/technotes/tools/share/jps.html).

The utility is included in the JDK download for all operating system platforms supported by
Sun.

Note – The HotSpot instrumentation is not accessible on Windows 98 or Windows ME. In
addition, the instrumentation might not be accessible on Windows if the temporary directory is
on a FAT32 file system.

2.9 jrunscriptUtility
The jrunscript utility is a command-line script shell. It supports script execution in both
interactive mode and in batch mode. By default, the shell uses JavaScript, but you can specify
any other scripting language for which you supply the path to the script engines's JAR file of
.class files.

Thanks to the communication between the Java language and the scripting language, the
jrunscript utility supports an exploratory programming style.

For more information on the jrunscript utility, refer to the man page (http://
java.sun.com/javase/6/docs/technotes/tools/share/jrunscript.html).

2.9 jrunscriptUtility

Troubleshooting Guide for Java SE 6 with HotSpot VM • November 200852

http://java.sun.com/javase/6/docs/technotes/tools/share/jps.html
http://java.sun.com/javase/6/docs/technotes/tools/share/jps.html
http://java.sun.com/javase/6/docs/technotes/tools/share/jrunscript.html
http://java.sun.com/javase/6/docs/technotes/tools/share/jrunscript.html

2.10 jsadebugdDaemon
The Serviceability Agent Debug Daemon (jsadebugd) attaches to a Java process or to a core file
and acts as a debug server. This utility is currently available only on Solaris OS and Linux.
Remote clients such as jstack, jmap, and jinfo can attach to the server using Java Remote
Method Invocation (RMI).

For more information on jsadebugd, refer to the man page (http://java.sun.com/javase/6/
docs/technotes/tools/share/jsadebugd.html).

2.11 jstackUtility
The jstack command-line utility attaches to the specified process or core file and prints the
stack traces of all threads that are attached to the virtual machine, including Java threads and
VM internal threads, and optionally native stack frames. The utility also performs deadlock
detection.

The utility can also use the jsadebugd daemon to query a process or core file on a remote
machine. Note that the output takes longer to print in this case.

A stack trace of all threads can be useful in diagnosing a number of issues such as deadlocks or
hangs.

The utility is included in the Solaris OS and Linux releases of the JDK software. It is also
included in the JDK 6 release on Windows, but only the jstack pid option and jstack -l pid
option.

The Java SE 6 release introduced the -l option, which instructs the utility to look for ownable
synchronizers in the heap and print information about java.util.concurrent.locks.
Without this option, the thread dump includes information only on monitors.

Starting with Java SE 6, the output from the jstack pid option is the same as that obtained by
pressing Ctrl-\ at the application console (standard input) or by sending the process a QUIT
signal. See “2.15 Ctrl-Break Handler” on page 60 for an output example.

Thread dumps can also be obtained programmatically using the Thread.getAllStackTraces
method, or in the debugger using the debugger option to print all thread stacks (the where
command in the case of the jdb sample debugger).

For more information on the jstack utility , refer to the man page (http://java.sun.com/
javase/6/docs/technotes/tools/share/jstack.html).

2.11.1 Forcing a Stack Dump
If the jstack pid command does not respond because of a hung process, the -F option can be
used (on Solaris OS and Linux only) to force a stack dump, as in the following example:

2.11 jstackUtility

Chapter 2 • Detailed Tool Descriptions 53

http://java.sun.com/javase/6/docs/technotes/tools/share/jsadebugd.html
http://java.sun.com/javase/6/docs/technotes/tools/share/jsadebugd.html
http://java.sun.com/javase/6/docs/technotes/tools/share/jstack.html
http://java.sun.com/javase/6/docs/technotes/tools/share/jstack.html

$ jstack -F 8321

Attaching to process ID 8321, please wait...

Debugger attached successfully.

Client compiler detected.

JVM version is 1.6.0-rc-b100

Deadlock Detection:

Found one Java-level deadlock:

=============================

"Thread2":
waiting to lock Monitor@0x000af398 (Object@0xf819aa10, a java/lang/String),

which is held by "Thread1"
"Thread1":
waiting to lock Monitor@0x000af400 (Object@0xf819aa48, a java/lang/String),

which is held by "Thread2"

Found a total of 1 deadlock.

Thread t@2: (state = BLOCKED)

Thread t@11: (state = BLOCKED)

- Deadlock$DeadlockMakerThread.run() @bci=108, line=32 (Interpreted frame)

Thread t@10: (state = BLOCKED)

- Deadlock$DeadlockMakerThread.run() @bci=108, line=32 (Interpreted frame)

Thread t@6: (state = BLOCKED)

Thread t@5: (state = BLOCKED)

- java.lang.Object.wait(long) @bci=-1107318896 (Interpreted frame)

- java.lang.Object.wait(long) @bci=0 (Interpreted frame)

- java.lang.ref.ReferenceQueue.remove(long) @bci=44, line=116 (Interpreted frame)

- java.lang.ref.ReferenceQueue.remove() @bci=2, line=132 (Interpreted frame)

- java.lang.ref.Finalizer$FinalizerThread.run() @bci=3, line=159 (Interpreted frame)

Thread t@4: (state = BLOCKED)

- java.lang.Object.wait(long) @bci=0 (Interpreted frame)

- java.lang.Object.wait(long) @bci=0 (Interpreted frame)

- java.lang.Object.wait() @bci=2, line=485 (Interpreted frame)

- java.lang.ref.Reference$ReferenceHandler.run() @bci=46, line=116 (Interpreted frame)

2.11.2 Printing Stack Trace From Core Dump
To obtain stack traces from a core dump, execute the following command:

$ jstack $JAVA_HOME/bin/java core

2.11 jstackUtility

Troubleshooting Guide for Java SE 6 with HotSpot VM • November 200854

2.11.3 Printing a Mixed Stack
The jstack utility can also be used to print a mixed stack, that is, it can print native stack frames
in addition to the Java stack. Native frames are the C/C++ frames associated with VM code and
JNI/native code.

To print a mixed stack, use the -m option, as in the following example:

$ jstack -m 21177

Attaching to process ID 21177, please wait...

Debugger attached successfully.

Client compiler detected.

JVM version is 1.6.0-rc-b100

Deadlock Detection:

Found one Java-level deadlock:

=============================

"Thread1":
waiting to lock Monitor@0x0005c750 (Object@0xd4405938, a java/lang/String),

which is held by "Thread2"
"Thread2":
waiting to lock Monitor@0x0005c6e8 (Object@0xd4405900, a java/lang/String),

which is held by "Thread1"

Found a total of 1 deadlock.

----------------- t@1 -----------------

0xff2c0fbc __lwp_wait + 0x4

0xff2bc9bc _thrp_join + 0x34

0xff2bcb28 thr_join + 0x10

0x00018a04 ContinueInNewThread + 0x30

0x00012480 main + 0xeb0

0x000111a0 _start + 0x108

----------------- t@2 -----------------

0xff2c1070 ___lwp_cond_wait + 0x4

0xfec03638 bool Monitor::wait(bool,long) + 0x420

0xfec9e2c8 bool Threads::destroy_vm() + 0xa4

0xfe93ad5c jni_DestroyJavaVM + 0x1bc

0x00013ac0 JavaMain + 0x1600

0xff2bfd9c _lwp_start

----------------- t@3 -----------------

0xff2c1070 ___lwp_cond_wait + 0x4

0xff2ac104 _lwp_cond_timedwait + 0x1c

0xfec034f4 bool Monitor::wait(bool,long) + 0x2dc

0xfece60bc void VMThread::loop() + 0x1b8

0xfe8b66a4 void VMThread::run() + 0x98

0xfec139f4 java_start + 0x118

2.11 jstackUtility

Chapter 2 • Detailed Tool Descriptions 55

0xff2bfd9c _lwp_start

----------------- t@4 -----------------

0xff2c1070 ___lwp_cond_wait + 0x4

0xfec195e8 void os::PlatformEvent::park() + 0xf0

0xfec88464 void ObjectMonitor::wait(long long,bool,Thread*) + 0x548

0xfe8cb974 void ObjectSynchronizer::wait(Handle,long long,Thread*) + 0x148

0xfe8cb508 JVM_MonitorWait + 0x29c

0xfc40e548 * java.lang.Object.wait(long) bci:0 (Interpreted frame)

0xfc40e4f4 * java.lang.Object.wait(long) bci:0 (Interpreted frame)

0xfc405a10 * java.lang.Object.wait() bci:2 line:485 (Interpreted frame)

... more lines removed here to reduce output...
----------------- t@12 -----------------

0xff2bfe3c __lwp_park + 0x10

0xfe9925e4 AttachOperation*AttachListener::dequeue() + 0x148

0xfe99115c void attach_listener_thread_entry(JavaThread*,Thread*) + 0x1fc

0xfec99ad8 void JavaThread::thread_main_inner() + 0x48

0xfec139f4 java_start + 0x118

0xff2bfd9c _lwp_start

----------------- t@13 -----------------

0xff2c1500 _door_return + 0xc

----------------- t@14 -----------------

0xff2c1500 _door_return + 0xc

Frames that are prefixed with '*' are Java frames, while frames that are not prefixed with '*' are
native C/C++ frames.

The output of the utility can be piped through c++filt to demangle C++ mangled symbol
names. Because the HotSpot Virtual Machine is developed in the C++ language, the jstack
utility prints C++ mangled symbol names for the HotSpot internal functions. The c++filt
utility is delivered with the native c++ compiler suite: SUNWspro on Solaris OS and gnu on Linux.

2.12 jstatUtility
The jstat utility uses the built-in instrumentation in the HotSpot VM to provide information
on performance and resource consumption of running applications. The tool can be used when
diagnosing performance issues, and in particular issues related to heap sizing and garbage
collection. The jstat utility does not require the VM to be started with any special options. The
built-in instrumentation in the HotSpot VM is enabled by default. The utility is included in the
JDK download for all operating system platforms supported by Sun.

Note – The instrumentation is not accessible on Windows 98 or Windows ME. In addition,
instrumentation is not accessible on Windows NT, 2000, or XP if a FAT32 file system is used.

The following list presents the options for the jstat utility.

2.12 jstatUtility

Troubleshooting Guide for Java SE 6 with HotSpot VM • November 200856

■ class - prints statistics on the behavior of the class loader.
■ compiler - prints statistics of the behavior of the HotSpot compiler.
■ gc - prints statistics of the behavior of the garbage collected heap.
■ gccapacity - prints statistics of the capacities of the generations and their corresponding

spaces.
■ gccause - prints the summary of garbage collection statistics (same as -gcutil), with the

cause of the last and current (if applicable) garbage collection events.
■ gcnew - prints statistics of the behavior of the new generation.
■ gcnewcapacity - prints statistics of the sizes of the new generations and its corresponding

spaces.
■ gcold - prints statistics of the behavior of the old and permanent generations.
■ gcoldcapacity - prints statistics of the sizes of the old generation.
■ gcpermcapacity - prints statistics of the sizes of the permanent generation.
■ gcutil - prints a summary of garbage collection statistics.
■ printcompilation - prints HotSpot compilation method statistics.

For a complete description of the jstat utility, refer to the man page (http://java.sun.com/
javase/6/docs/technotes/tools/share/jstat.html).

The documentation includes a number of examples, and a few of those examples are repeated
here in this document.

The jstat utility uses a vmid to identify the target process. The documentation describes the
syntax of a vmid but in the simplest case a vmid can be a local virtual machine identifier. In the
case of Solaris OS, Linux, and Windows, it can be considered to be the process ID. Note that this
is typical but may not always be the case.

The jstat tool provides data similar to the data provided by the tools vmstat and iostat on
Solaris OS and Linux.

For a graphical representation of the data, you can use the visualgc tool. See “2.14 visualgc

Tool” on page 59.

2.12.1 Example of -gcutilOption
Below is an example of the -gcutil option. The utility attaches to lvmid 2834, takes nine
samples at 250 millisecond intervals, and displays the output.

$ jstat -gcutil 2834 250 9

S0 S1 E O P YGC YGCT FGC FGCT GCT

0.00 0.00 87.14 46.56 96.82 54 1.197 140 86.559 87.757

2.12 jstatUtility

Chapter 2 • Detailed Tool Descriptions 57

http://java.sun.com/javase/6/docs/technotes/tools/share/jstat.html
http://java.sun.com/javase/6/docs/technotes/tools/share/jstat.html

0.00 0.00 91.90 46.56 96.82 54 1.197 140 86.559 87.757

0.00 0.00 100.00 46.56 96.82 54 1.197 140 86.559 87.757

0.00 27.12 5.01 54.60 96.82 55 1.215 140 86.559 87.774

0.00 27.12 11.22 54.60 96.82 55 1.215 140 86.559 87.774

0.00 27.12 13.57 54.60 96.82 55 1.215 140 86.559 87.774

0.00 27.12 18.05 54.60 96.82 55 1.215 140 86.559 87.774

0.00 27.12 23.85 54.60 96.82 55 1.215 140 86.559 87.774

0.00 27.12 27.32 54.60 96.82 55 1.215 140 86.559 87.774

The output of this example shows that a young generation collection occurred between the
third and fourth samples. The collection took 0.017 seconds and promoted objects from the
eden space (E) to the old space (O), resulting in an increase of old space utilization from 46.56%
to 54.60%.

2.12.2 Example of -gcnewOption
The following example illustrates the -gcnew option. The utility attaches to lvmid 2834, takes
samples at 250 millisecond intervals, and displays the output. In addition, it uses the -h3 option
to display the column header after every 3 lines of data.

$ jstat -gcnew -h3 2834 250

S0C S1C S0U S1U TT MTT DSS EC EU YGC YGCT

192.0 192.0 0.0 0.0 15 15 96.0 1984.0 942.0 218 1.999

192.0 192.0 0.0 0.0 15 15 96.0 1984.0 1024.8 218 1.999

192.0 192.0 0.0 0.0 15 15 96.0 1984.0 1068.1 218 1.999

S0C S1C S0U S1U TT MTT DSS EC EU YGC YGCT

192.0 192.0 0.0 0.0 15 15 96.0 1984.0 1109.0 218 1.999

192.0 192.0 0.0 103.2 1 15 96.0 1984.0 0.0 219 2.019

192.0 192.0 0.0 103.2 1 15 96.0 1984.0 71.6 219 2.019

S0C S1C S0U S1U TT MTT DSS EC EU YGC YGCT

192.0 192.0 0.0 103.2 1 15 96.0 1984.0 73.7 219 2.019

192.0 192.0 0.0 103.2 1 15 96.0 1984.0 78.0 219 2.019

192.0 192.0 0.0 103.2 1 15 96.0 1984.0 116.1 219 2.019

In addition to showing the repeating header string, this example shows that between the fourth
and fifth samples, a young generation collection occurred, whose duration was 0.02 seconds.
The collection found enough live data that the survivor space 0 utilization (S1U) would have
exceeded the desired survivor size (DSS). As a result, objects were promoted to the old
generation (not visible in this output), and the tenuring threshold (TT) was lowered from 15 to
1.

2.12.3 Example of -gcoldcapacityOption
The following example illustrates the -gcoldcapacity option. The utility attaches to lvmid

21891 and takes 3 samples at 250 millisecond intervals. The -t option is used to generate a time
stamp for each sample in the first column.

2.12 jstatUtility

Troubleshooting Guide for Java SE 6 with HotSpot VM • November 200858

$ jstat -gcoldcapacity -t 21891 250 3

Timestamp OGCMN OGCMX OGC OC YGC FGC FGCT GCT

150.1 1408.0 60544.0 11696.0 11696.0 194 80 2.874 3.799

150.4 1408.0 60544.0 13820.0 13820.0 194 81 2.938 3.863

150.7 1408.0 60544.0 13820.0 13820.0 194 81 2.938 3.863

The Timestamp column reports the elapsed time in seconds since the start of the target Java
VM. In addition, the -gcoldcapacity output shows the old generation capacity (OGC) and the
old space capacity (OC) increasing as the heap expands to meet allocation or promotion
demands. The old generation capacity (OGC) has grown from 11696 KB to 13820 KB after the
81st Full GC (FGC). The maximum capacity of the generation (and space) is 60544 KB
(OGCMX), so it still has room to expand.

2.13 jstatdDaemon
The jstatd daemon is a Remote Method Invocation (RMI) server application that monitors the
creation and termination of instrumented Java HotSpot virtual machines and provides an
interface to allow remote monitoring tools to attach to Java VMs running on the local host. For
example, this daemon allows the jps utility to list processes on a remote system.

Note – The instrumentation is not accessible on Windows 98 or Windows ME. In addition,
instrumentation is not accessible on Windows NT, 2000, or XP if a FAT32 file system is used.

For more information about the jstatd daemon, including detailed usage examples, refer to
the man page (http://java.sun.com/javase/6/docs/technotes/tools/share/
jstatd.html).

2.14 visualgc Tool
The visualgc tool is related to the jstat tool. (See “2.12 jstat Utility” on page 56.) The
visualgc tool provides a graphical view of the garbage collection (GC) system. As with jstat, it
uses the built-in instrumentation of the HotSpot VM.

The visualgc tool is not included in the JDK release but is available as a separate download
from the jvmstat 3.0 site (http://java.sun.com/performance/jvmstat/).

The following screen output demonstrates how the GC and heap are visualized.

2.14 visualgc Tool

Chapter 2 • Detailed Tool Descriptions 59

http://java.sun.com/javase/6/docs/technotes/tools/share/jstatd.html
http://java.sun.com/javase/6/docs/technotes/tools/share/jstatd.html
http://java.sun.com/performance/jvmstat/

2.15 Ctrl-Break Handler
On Solaris OS or Linux, the combination of pressing the Ctrl key and the backslash (\) key at the
application console (standard input) causes the HotSpot VM to print a thread dump to the
application's standard output. On Windows the equivalent key sequence is the Ctrl and Break
keys. The general term for these key combinations is the Ctrl-Break handler.

On Solaris OS and Linux, a thread dump is printed if the Java SE process receives a QUIT signal.
Therefore, the kill -QUIT pid command causes the process with ID pid to print a thread dump
to the standard output.

FIGURE 2–2 Sample Output from visualgc

2.15 Ctrl-Break Handler

Troubleshooting Guide for Java SE 6 with HotSpot VM • November 200860

The following subsections explain in detail the output from the Ctrl-Break handler:
■ “2.15.1 Thread Dump” on page 61
■ “2.15.2 Deadlock Detection” on page 63
■ “2.15.3 Heap Summary” on page 63

2.15.1 Thread Dump
The thread dump consists of the thread stack, including thread state, for all Java threads in the
virtual machine. The thread dump does not terminate the application: it continues after the
thread information is printed.

The following example illustrates a thread dump.

Full thread dump Java HotSpot(TM) Client VM (1.6.0-rc-b100 mixed mode):

"DestroyJavaVM" prio=10 tid=0x00030400 nid=0x2 waiting on condition [0x00000000..0xfe77fbf0]

java.lang.Thread.State: RUNNABLE

"Thread2" prio=10 tid=0x000d7c00 nid=0xb waiting for monitor entry [0xf36ff000..0xf36ff8c0]

java.lang.Thread.State: BLOCKED (on object monitor)

at Deadlock$DeadlockMakerThread.run(Deadlock.java:32)

- waiting to lock <0xf819a938> (a java.lang.String)

- locked <0xf819a970> (a java.lang.String)

"Thread1" prio=10 tid=0x000d6c00 nid=0xa waiting for monitor entry [0xf37ff000..0xf37ffbc0]

java.lang.Thread.State: BLOCKED (on object monitor)

at Deadlock$DeadlockMakerThread.run(Deadlock.java:32)

- waiting to lock <0xf819a970> (a java.lang.String)

- locked <0xf819a938> (a java.lang.String)

"Low Memory Detector" daemon prio=10 tid=0x000c7800 nid=0x8 runnable [0x00000000..0x00000000]

java.lang.Thread.State: RUNNABLE

"CompilerThread0" daemon prio=10 tid=0x000c5400 nid=0x7 waiting on condition [0x00000000..0x00000000]

java.lang.Thread.State: RUNNABLE

"Signal Dispatcher" daemon prio=10 tid=0x000c4400 nid=0x6 waiting on condition [0x00000000..0x00000000]

java.lang.Thread.State: RUNNABLE

"Finalizer" daemon prio=10 tid=0x000b2800 nid=0x5 in Object.wait() [0xf3f7f000..0xf3f7f9c0]

java.lang.Thread.State: WAITING (on object monitor)

at java.lang.Object.wait(Native Method)

- waiting on <0xf4000b40> (a java.lang.ref.ReferenceQueue$Lock)

at java.lang.ref.ReferenceQueue.remove(ReferenceQueue.java:116)

- locked <0xf4000b40> (a java.lang.ref.ReferenceQueue$Lock)

at java.lang.ref.ReferenceQueue.remove(ReferenceQueue.java:132)

2.15 Ctrl-Break Handler

Chapter 2 • Detailed Tool Descriptions 61

at java.lang.ref.Finalizer$FinalizerThread.run(Finalizer.java:159)

"Reference Handler" daemon prio=10 tid=0x000ae000 nid=0x4 in Object.wait() [0xfe57f000..0xfe57f940]

java.lang.Thread.State: WAITING (on object monitor)

at java.lang.Object.wait(Native Method)

- waiting on <0xf4000a40> (a java.lang.ref.Reference$Lock)

at java.lang.Object.wait(Object.java:485)

at java.lang.ref.Reference$ReferenceHandler.run(Reference.java:116)

- locked <0xf4000a40> (a java.lang.ref.Reference$Lock)

"VM Thread" prio=10 tid=0x000ab000 nid=0x3 runnable

"VM Periodic Task Thread" prio=10 tid=0x000c8c00 nid=0x9 waiting on condition

The output consists of a header and a stack trace for each thread. Each thread is separated by an
empty line. The Java threads (threads that are capable of executing Java language code) are
printed first, and these are followed by information on VM internal threads.

The header line contains the following information about the thread:

■ Thread name
■ Indication if the thread is a daemon thread
■ Thread priority (prio)
■ Thread ID (tid), which is the address of a thread structure in memory
■ ID of the native thread (nid)
■ Thread state, which indicates what the thread was doing at the time of the thread dump
■ Address range, which gives an estimate of the valid stack region for the thread

The following table lists the possible thread states that can be printed.

Thread State Meaning

NEW The thread has not yet started.

RUNNABLE The thread is executing in the Java virtual machine.

BLOCKED The thread is blocked waiting for a monitor lock.

WAITING The thread is waiting indefinitely for another thread to perform a
particular action.

TIMED_WAITING The thread is waiting for another thread to perform an action for
up to a specified waiting time.

TERMINATED The thread has exited.

The thread header is followed by the thread stack.

2.15 Ctrl-Break Handler

Troubleshooting Guide for Java SE 6 with HotSpot VM • November 200862

2.15.2 Deadlock Detection
In addition to the thread stacks, the Ctrl-Break handler executes a deadlock detection
algorithm. If any deadlocks are detected, it prints additional information after the thread dump
on each deadlocked thread.

Found one Java-level deadlock:

=============================

"Thread2":
waiting to lock monitor 0x000af330 (object 0xf819a938, a java.lang.String),

which is held by "Thread1"
"Thread1":
waiting to lock monitor 0x000af398 (object 0xf819a970, a java.lang.String),

which is held by "Thread2"

Java stack information for the threads listed above:

===

"Thread2":
at Deadlock$DeadlockMakerThread.run(Deadlock.java:32)

- waiting to lock <0xf819a938> (a java.lang.String)

- locked <0xf819a970> (a java.lang.String)

"Thread1":
at Deadlock$DeadlockMakerThread.run(Deadlock.java:32)

- waiting to lock <0xf819a970> (a java.lang.String)

- locked <0xf819a938> (a java.lang.String)

Found 1 deadlock.

If the Java VM flag -XX:+PrintConcurrentLocks is set, Ctrl-Break will also print the list of
concurrent locks owned by each thread.

2.15.3 Heap Summary
Starting with Java SE 6, the Ctrl-Break handler also prints a heap summary. This output shows
the different generations (areas of the heap), with the size, the amount used, and the address
range. The address range is especially useful if you are also examining the process with tools
such as pmap.

Heap

def new generation total 1152K, used 435K [0x22960000, 0x22a90000, 0x22e40000

)

eden space 1088K, 40% used [0x22960000, 0x229ccd40, 0x22a70000)

from space 64K, 0% used [0x22a70000, 0x22a70000, 0x22a80000)

to space 64K, 0% used [0x22a80000, 0x22a80000, 0x22a90000)

tenured generation total 13728K, used 6971K [0x22e40000, 0x23ba8000, 0x269600

00)

2.15 Ctrl-Break Handler

Chapter 2 • Detailed Tool Descriptions 63

the space 13728K, 50% used [0x22e40000, 0x2350ecb0, 0x2350ee00, 0x23ba8000)

compacting perm gen total 12288K, used 1417K [0x26960000, 0x27560000, 0x2a9600

00)

the space 12288K, 11% used [0x26960000, 0x26ac24f8, 0x26ac2600, 0x27560000)

ro space 8192K, 62% used [0x2a960000, 0x2ae5ba98, 0x2ae5bc00, 0x2b160000)

rw space 12288K, 52% used [0x2b160000, 0x2b79e410, 0x2b79e600, 0x2bd60000)

If the Java VM flag -XX:+PrintClassHistogram is set, then the Ctrl-Break handler will produce
a heap histogram.

2.16 Operating-System-Specific Tools
This section lists a number of operating-system-specific tools that are useful for
troubleshooting or monitoring purposes. A brief description is provided for each tool. For
further details, refer to the operating system documentation (or man pages in the case of Solaris
OS and Linux).

2.16.1 Solaris Operating System
The following tools are provided by the Solaris Operating System. See also “2.16.4 Tools
Introduced in Solaris 10 OS” on page 67, which gives details for some of the tools that were
introduced in version 10 of Solaris OS.

Tool Description

coreadm Specify name and location of core files produced by the Java VM.

cpustat Monitor system behavior using CPU performance counters.

cputrack Per-process monitor process, LWP behavior using CPU performance
counters.

c++filt Demangle C++ mangled symbol names. This utility is delivered with the
native c++ compiler suite: SUNWspro on Solaris OS.

DTrace tool

dtrace command

Introduced in Solaris 10 OS: Dynamic tracing of kernel functions, system
calls, and user functions. This tool allows arbitrary, safe scripting to be
executed at entry, exit, and other probe points. The script is written in
C-like but safe pointer semantics language called the D programming
language. See also “2.16.4.3 Using the DTrace Tool” on page 68.

gcore Force a core dump of a process. The process continues after the core dump
is written.

intrstat Report statistics on CPU consumed by interrupt threads.

iostat Report I/O statistics.

2.16 Operating-System-Specific Tools

Troubleshooting Guide for Java SE 6 with HotSpot VM • November 200864

Tool Description

libumem Introduced in Solaris 9 OS update 3: User space slab allocator. This tool can
be used to find and fix memory management bugs (see “3.4.5 Using
libumem to Find Leaks” on page 85).

mdb Modular debugger for kernel and user applications and crash dumps

netstat Display the contents of various network-related data structures.

pargs Print process arguments, environment variables, or auxiliary vector. Long
output is not truncated as it would be by other commands, such as ps.

pfiles Print information on process file descriptors. Starting with Solaris 10 OS,
the tool prints the filename also.

pldd Print shared objects loaded by a process.

pmap Print memory layout of a process or core file, including heap, data, text
sections. Starting with Solaris 10 OS, stack segments are clearly identified
with the text [stack] along with the thread ID. See also “2.16.4.1
Improvements in pmap Tool” on page 67.

prstat Report statistics for active Solaris OS processes. (Similar to top.).

prun Set the process to running mode (reverse of pstop).

ps List all processes.

psig List the signal handlers of a process.

pstack Print stack of threads of a given process or core file. Starting with Solaris 10
OS, Java method names can be printed for Java frames. See also “2.16.4.2
Improvements in pstack Tool” on page 68.

pstop Stop the process (suspend).

ptree Print process tree containing the given pid.

sar System activity reporter.

sdtprocess Display most CPU-intensive processes. (Similar to top.).

sdtperfmeter Display graphs showing system performance, for example, CPU, disks,
network, and so forth.

top Display most CPU-intensive processes. This tool is available as freeware for
Solaris OS but is not installed by default.

trapstat Display runtime trap statistics. (SPARC only)

truss Trace entry and exit events for system calls, user-mode functions, and
signals; optionally stop the process at one of these events. This tool also
prints the arguments of system calls and user functions.

2.16 Operating-System-Specific Tools

Chapter 2 • Detailed Tool Descriptions 65

Tool Description

vmstat Report system virtual memory statistics.

watchmalloc Track memory allocations.

2.16.2 Linux Operating System
The following tools are provided by the Linux Operating System.

Tool Description

c++filt Demangle C++ mangled symbol names. This utility is delivered with the
native c++ compiler suite: gnu on Linux OS.

gdb GNU debugger.

libnjamd Memory allocation tracking.

lsstack Print thread stack (similar to pstack in Solaris OS).

Not all distributions provide this tool by default; therefore, you might have
to download it from the sourceforge.net web site.

ltrace Library call tracer (equivalent to truss -u in Solaris OS).

Not all distributions provide this tool by default; therefore, you might have
to download it separately.

mtrace and muntrace GNU malloc tracer.

proc tools such as pmap and
pstack

Some but not all of the proc tools on Solaris OS have equivalent tools on
Linux. In addition, core file support is not as good as for Solaris OS; for
example, pstack does not work for core dumps.

strace System call tracer (equivalent to truss -t in Solaris OS).

top Display most CPU-intensive processes.

vmstat Report information about processes, memory, paging, block I/O, traps, and
CPU activity.

2.16.3 Windows Operating System
The following tools are provided by the Windows Operating System. In addition, you can
access the MSDN Library site (http://msdn.microsoft.com/library/default.asp) and
search for debug support.

2.16 Operating-System-Specific Tools

Troubleshooting Guide for Java SE 6 with HotSpot VM • November 200866

http://msdn.microsoft.com/library/default.asp

Tool Description

dumpchk Command-line utility to verify that a memory dump file has been created
correctly This tool is included in Debugging Tools for Windows download
available from the Microsoft web site (see “7.4.4 Collecting Crash Dumps
on Windows” on page 120).

msdev debugger Command-line utility that can be used to launch Visual C++ and the
Win32 debugger.

userdump User Mode Process Dump utility. This tool is included in the OEM Support
Tools download available from the Microsoft web site (see section “7.4.4
Collecting Crash Dumps on Windows” on page 120).

windbg Windows debugger which can be used to debug Windows applications or
crash dumps. This tool is included in Debugging Tools for Windows
download available from the Microsoft web site (see section “7.4.4
Collecting Crash Dumps on Windows” on page 120).

/Md and /Mdd compiler options Compiler options that automatically include extra support for tracking
memory allocations.

2.16.4 Tools Introduced in Solaris 10 OS
This section provides details for some of the diagnostic tools that were introduced in version 10
of the Solaris Operating System.

2.16.4.1 Improvements in pmap Tool
The pmap utility was improved in Solaris 10 OS to print stack segments with the text [stack].
This text helps you to locate the stack easily.

The following example shows some output from this tool.

19846: /net/myserver/export1/user/j2sdk6/bin/java -Djava.endorsed.d

00010000 72K r-x-- /export/disk09/jdk/6/rc/b63/binaries/solsparc/bin/java

00030000 16K rwx-- /export/disk09/jdk/6/rc/b63/binaries/solsparc/bin/java

00034000 32544K rwx-- [heap]

D1378000 32K rwx-R [stack tid=44]

D1478000 32K rwx-R [stack tid=43]

D1578000 32K rwx-R [stack tid=42]

D1678000 32K rwx-R [stack tid=41]

D1778000 32K rwx-R [stack tid=40]

D1878000 32K rwx-R [stack tid=39]

D1974000 48K rwx-R [stack tid=38]

D1A78000 32K rwx-R [stack tid=37]

D1B78000 32K rwx-R [stack tid=36]

[.. more lines removed here to reduce output ..]

FF370000 8K r-x-- /usr/lib/libsched.so.1

2.16 Operating-System-Specific Tools

Chapter 2 • Detailed Tool Descriptions 67

FF380000 8K r-x-- /platform/sun4u-us3/lib/libc_psr.so.1

FF390000 16K r-x-- /lib/libthread.so.1

FF3A4000 8K rwx-- /lib/libthread.so.1

FF3B0000 8K r-x-- /lib/libdl.so.1

FF3C0000 168K r-x-- /lib/ld.so.1

FF3F8000 8K rwx-- /lib/ld.so.1

FF3FA000 8K rwx-- /lib/ld.so.1

FFB80000 24K ----- [anon]

FFBF0000 64K rwx-- [stack]

total 167224K

2.16.4.2 Improvements in pstack Tool
Prior to the Solaris 10 OS release, the pstack utility did not support the Java language. It printed
hexadecimal addresses for both interpreted and (HotSpot) compiled Java methods.

Starting in Solaris 10 OS, the pstack command-line tool prints mixed mode stack traces (Java
and C/C++ frames) from a core file or a live process. The tool prints Java method names for
interpreted, compiled and inlined Java methods.

2.16.4.3 Using the DTrace Tool
Solaris 10 OS includes the DTrace tool, which allows dynamic tracing of the operating system
kernel and user-level programs. This tool supports scripting at system-call entry and exit, at
user-mode function entry and exit, and at many other probe points. The scripts are written in
the D programming language, which is a C-like language with safe pointer semantics. These
scripts can help you in troubleshooting problems or solving performance issues.

The dtrace command is a generic front-end to the DTrace tool. This command provides a
simple interface to invoke the D language, to retrieve buffered trace data, and to access a set of
basic routines to format and print traced data.

You may write your own customized DTrace scripts, using the D language, or download and
use one or more of the many scripts that are already available on various sites.

The probes are delivered and instrumented by kernel modules called providers. The types of
tracing offered by the probe providers include user instruction tracing, function boundary
tracing, kernel lock instrumentation, profile interrupt, system call tracing, and much more. If
you write your own scripts, you use the D language to enable the probes; this language also
allows conditional tracing and output formatting.

You can use the dtrace -l option to explore the set of providers and probes that are available
on your Solaris OS.

The DTrace Toolkit is a collection of useful documented scripts developed by the OpenSolaris
DTrace community. See http://www.opensolaris.org/os/community/dtrace/
dtracetoolkit/

2.16 Operating-System-Specific Tools

Troubleshooting Guide for Java SE 6 with HotSpot VM • November 200868

http://www.opensolaris.org/os/community/dtrace/dtracetoolkit/
http://www.opensolaris.org/os/community/dtrace/dtracetoolkit/

Details on DTrace are provided at the following locations:

■ Solaris Dynamic Tracing Guide: http://docs.sun.com/app/docs/doc/817-6223/
■ BigAdmin System Administration Portal for DTrace: http://www.sun.com/bigadmin/

content/dtrace/

Probe Providers in Java HotSpot VM

Starting with the Java SE 6 release, the Java HotSpot VM contains two built-in probe providers:
hotspot and hotspot_jni. These providers deliver probes that can be used to monitor the
internal state and activities of the VM, as well as the Java application that is running.

The article Observability Using Java Platform, Standard Edition 6, and Solaris OS
(http://www.sun.com/bigadmin/features/articles/java_se6_observability.html)
describes these two probe providers and provides examples of using them.

The hotspot provider probes can be categorized as follows:

■ VM lifecycle: VM initialization begin and end, and VM shutdown.
■ Thread lifecycle: thread start and stop, thread name, thread ID, and so on.
■ Class-loading: Java class loading and unloading.
■ Garbage collection: start and stop of garbage collection, system-wide or by memory pool.
■ Method compilation: method compilation begin and end, and method loading and

unloading.
■ Monitor probes: wait events, notification events, contended monitor entry and exit.
■ Application tracking: method entry and return, allocation of a Java object.

In order to call from native code to Java code, the native code must make a call through the JNI
interface. The hotspot_jni provider manages DTrace probes at the entry point and return
point for each of the methods that the JNI interface provides for invoking Java code and
examining the state of the VM.

Example of Using DTrace

At probe points, you can print the stack trace current thread using the ustack built-in function.
This function prints Java method names in addition to C/C++ native function names. The
following is a simple D script that prints a full stack trace whenever a thread calls the read
system call.

#!/usr/sbin/dtrace -s

syscall::read:entry

/pid == $1 && tid == 1/ {

ustack(50, 0x2000);

}

2.16 Operating-System-Specific Tools

Chapter 2 • Detailed Tool Descriptions 69

http://docs.sun.com/app/docs/doc/817-6223/
http://www.sun.com/bigadmin/content/dtrace/
http://www.sun.com/bigadmin/content/dtrace/
http://www.sun.com/bigadmin/features/articles/java_se6_observability.html
http://www.sun.com/bigadmin/features/articles/java_se6_observability.html

The above script is stored in a file named read.d and is run with the following command:

read.d pid-of-the-Java-process-that-is-traced

If your Java application generated a lot of I/O or had some unexpected latency, the use of the
DTrace tool and its ustack() action can help you diagnose the problem.

2.17 Developing Diagnostic Tools
The JDK software has extensive Application Programing Interfaces (APIs) which can be used to
develop tools to observe, monitor, profile, debug, and diagnose issues in applications that are
deployed on the Java runtime environment. The development of new tools is beyond the scope
of this document. Instead this section provides a brief overview of the programming interfaces
available. Refer also to example and demonstration code that is included in the JDK download.

2.17.1 java.lang.managementPackage
The java.lang.management package provides the management interface for monitoring and
management of the Java Virtual Machine and the operating system. Specifically it covers
interfaces for the following systems:

■ Class loading
■ Compilation
■ Garbage collection
■ Memory manager
■ Runtime
■ Threads

The java.lang.management package is fully described in the Java SE API documentation
(http://java.sun.com/javase/6/docs/api/index.html).

The JDK release includes example code that demonstrates the usage of the
java.lang.management package. These examples can be found in the
$JAVA_HOME/demo/management directory. Some of these examples are as follows:

■ MemoryMonitor - demonstrates the use of the java.lang.management API to observe the
memory usage of all memory pools consumed by the application.

■ FullThreadDump - demonstrates the use of the java.lang.management API to get a full
thread dump and detect deadlocks programmatically.

■ VerboseGC - demonstrates the use of the java.lang.management API to print the garbage
collection statistics and memory usage of an application.

In addition to the java.lang.management package, the JDK release includes platform
extensions in the com.sun.management package. The platform extensions include a

2.17 Developing Diagnostic Tools

Troubleshooting Guide for Java SE 6 with HotSpot VM • November 200870

http://java.sun.com/javase/6/docs/api/index.html
http://java.sun.com/javase/6/docs/api/index.html

management interface to obtain detailed statistics from garbage collectors that perform
collections in cycles. These extensions also include a management interface to obtain additional
memory statistics from the operating system.

Details on the platform extensions can be found at Java SE API documentation: Monitoring and
Management Interface for the Java Platform (http://java.sun.com/javase/6/docs/
technotes/guides/management/index.html).

2.17.2 java.lang.instrumentPackage
The java.lang.instrument package provides services that allow Java programming language
agents to instrument programs running on the Java VM. Instrumentation is used by tools such
as profilers, tools for tracing method calls, and many others. The package facilitates both
load-time and dynamic instrumentation. It also includes methods to obtain information on the
loaded classes and information about the amount of storage consumed by a given object.

The java.lang.instrument package is fully described in the Java SE API documentation
(http://java.sun.com/javase/6/docs/api/index.html).

2.17.3 java.lang.ThreadClass
The java.lang.Thread class has a static method called getAllStackTraces, which returns a
map of stack traces for all live threads. The Thread class also has a method called getState,
which returns the thread state; states are defined by the java.lang.Thread.State
enumeration. These methods can be useful when adding diagnostic or monitoring capabilities
to an application. These methods are fully described in the API documentation.

2.17.4 Java Virtual Machine Tools Interface
The Java Virtual Machine Tools Interface (JVM TI) is a native (C/C++) programming interface
that can be used to develop a wide range of developing and monitoring tools. JVM TI provides
an interface for the full breadth of tools that need access to VM state, including but not limited
to profiling, debugging, monitoring, thread analysis, and coverage analysis tools.

Some examples of agents that rely on JVM TI are the following:
■ HPROF profiler (see “2.1 HPROF - Heap Profiler” on page 26)
■ Java Debug Wire Protocol (JDWP) agent (see “2.17.5 Java Platform Debugger Architecture”

on page 72)
■ java.lang.instrument implementation (see “2.17.2 java.lang.instrument Package” on

page 71)

The specification for JVM TI can be found in the JVM Tool Interface documentation
(http://java.sun.com/javase/6/docs/platform/jvmti/jvmti.html).

2.17 Developing Diagnostic Tools

Chapter 2 • Detailed Tool Descriptions 71

http://java.sun.com/javase/6/docs/technotes/guides/management/index.html
http://java.sun.com/javase/6/docs/technotes/guides/management/index.html
http://java.sun.com/javase/6/docs/technotes/guides/management/index.html
http://java.sun.com/javase/6/docs/api/index.html
http://java.sun.com/javase/6/docs/api/index.html
http://java.sun.com/javase/6/docs/platform/jvmti/jvmti.html
http://java.sun.com/javase/6/docs/platform/jvmti/jvmti.html

The JDK release includes example code that demonstrates the usage of JVM TI. These examples
can be found in the $JAVA_HOME/demo/jvmti directory. Some of the examples are as follows:
■ mtrace - an agent library that tracks method call and return counts. It uses byte-code

instrumentation to instrument all classes loaded into the virtual machine and prints a sorted
list of the frequently used methods.

■ heapTracker - an agent library that tracks object allocation. It uses byte-code
instrumentation to instrument constructor methods.

■ heapViewer - an agent library that prints heap statistics when Ctrl-\ or Ctrl-Break is pressed.
For each loaded class it prints an instance count of that class and the space used.

2.17.5 Java Platform Debugger Architecture
The Java Platform Debugger Architecture (JPDA) is the architecture designed for use by
debuggers and debugger-like tools. It consists of two programming interfaces and a wire
protocol.
■ The Java Virtual Machine Tools Interface (JVM TI) is the interface to the virtual machine

(as described in “2.17.4 Java Virtual Machine Tools Interface” on page 71).
■ The Java Debug Interface (JDI) defines information and requests at the user code level. It is a

pure Java programming language interface for debugging Java programming language
applications. In JPDA, the JDI is a remote view in the debugger process of a virtual machine
in the debuggee process. It is implemented by the front-end, while a debugger-like
application (for example, IDE, debugger, tracer, monitoring tool, and so forth) is the client.

■ The Java Debug Wire Protocol (JDWP) defines the format of information and requests
transferred between the process being debugged and the debugger front end, which
implements the JDI.

A complete description (including specifications) for JPDA is located in the Java Platform
Debugger Architecture (JPDA) documentation (http://java.sun.com/javase/6/docs/
technotes/guides/jpda/index.html).

A graphic view of the JPDA structure is presented in the Java Platform Debugger Architecture
description (http://java.sun.com/javase/6/docs/technotes/guides/jpda/
architecture.html).

The jdb utility is included in the JDK release as the example command-line debugger. The jdb
utility uses the Java Debug Interface (JDI) to launch or connect to the target VM. See “2.4 jdb

Utility” on page 36.

In addition to traditional debugger-type tools, JDI can also be used to develop tools that help in
post-mortem diagnostics and scenarios where the tool needs to attach to a process in a
non-cooperative manner (a hung process, for example). See “2.4 jdb Utility” on page 36 for a
description of the JDI connectors which can be used to attach a JDI-based tool to a crash dump
or hung process.

2.17 Developing Diagnostic Tools

Troubleshooting Guide for Java SE 6 with HotSpot VM • November 200872

http://java.sun.com/javase/6/docs/technotes/guides/jpda/index.html
http://java.sun.com/javase/6/docs/technotes/guides/jpda/index.html
http://java.sun.com/javase/6/docs/technotes/guides/jpda/index.html
http://java.sun.com/javase/6/docs/technotes/guides/jpda/architecture.html
http://java.sun.com/javase/6/docs/technotes/guides/jpda/architecture.html
http://java.sun.com/javase/6/docs/technotes/guides/jpda/architecture.html

Troubleshooting Memory Leaks

If your application's execution time becomes longer and longer, or if the operating system
seems to be performing slower and slower, this could be an indication of a memory leak. In
other words, virtual memory is being allocated but is not being returned when it is no longer
needed. Eventually the application or the system runs out of memory, and the application
terminates abnormally.

This chapter provides some suggestions on diagnosing problems involving possible memory
leaks.

3.1 Meaning of OutOfMemoryError
One common indication of a memory leak is the java.lang.OutOfMemoryError error. This
error is thrown when there is insufficient space to allocate an object in the Java heap or in a
particular area of the heap. The garbage collector cannot make any further space available to
accommodate a new object, and the heap cannot be expanded further.

When the java.lang.OutOfMemoryError error is thrown, a stack trace is printed also.

A java.lang.OutOfMemoryError can also be thrown by native library code when a native
allocation cannot be satisfied, for example, if swap space is low.

An early step to diagnose an OutOfMemoryError is to determine what the error means. Does it
mean that the Java heap is full, or does it mean that the native heap is full? To help you answer
this question, the following subsections explain some of the possible error messages, with
reference to the detail part of the message:

■ Exception in thread "main": java.lang.OutOfMemoryError: Java heap space

See “3.1.1 Detail Message: Java heap space” on page 74.
■ Exception in thread "main": java.lang.OutOfMemoryError: PermGen space

See “3.1.2 Detail Message: PermGen space” on page 74.

3C H A P T E R 3

73

■ Exception in thread "main": java.lang.OutOfMemoryError: Requested array size

exceeds VM limit

See “3.1.3 Detail Message: Requested array size exceeds VM limit” on page 75.
■ Exception in thread "main": java.lang.OutOfMemoryError: request <size> bytes

for <reason>. Out of swap space?

See “3.1.4 Detail Message: request <size> bytes for <reason>. Out of swap space?”
on page 75.

■ Exception in thread "main": java.lang.OutOfMemoryError: <reason> <stack

trace> (Native method)

See “3.1.5 Detail Message: <reason> <stack trace> (Native method)” on page 76.

3.1.1 Detail Message: Java heap space

The detail message Java heap space indicates that an object could not be allocated in the Java
heap. This error does not necessarily imply a memory leak. The problem can be as simple as a
configuration issue, where the specified heap size (or the default size, if not specified) is
insufficient for the application.

In other cases, and in particular for a long-lived application, the message might be an indication
that the application is unintentionally holding references to objects, and this prevents the
objects from being garbage collected. This is the Java language equivalent of a memory leak.
Note that APIs that are called by an application could also be unintentionally holding object
references.

One other potential source of OutOfMemoryError arises with applications that make excessive
use of finalizers. If a class has a finalize method, then objects of that type do not have their space
reclaimed at garbage collection time. Instead, after garbage collection the objects are queued for
finalization, which occurs at a later time. In the Sun implementation, finalizers are executed by a
daemon thread that services the finalization queue. If the finalizer thread cannot keep up with
the finalization queue, then the Java heap could fill up and OutOfMemoryError would be thrown.
One scenario that can cause this situation is when an application creates high-priority threads
that cause the finalization queue to increase at a rate that is faster than the rate at which the
finalizer thread is servicing that queue. Section “3.3.6 Monitoring the Number of Objects
Pending Finalization” on page 80 discusses how to monitor objects for which finalization is
pending.

3.1.2 Detail Message: PermGen space
The detail message PermGen space indicates that the permanent generation is full. The
permanent generation is the area of the heap where class and method objects are stored. If an
application loads a very large number of classes, then the size of the permanent generation
might need to be increased using the -XX:MaxPermSize option.

3.1 Meaning of OutOfMemoryError

Troubleshooting Guide for Java SE 6 with HotSpot VM • November 200874

Interned java.lang.String objects are also stored in the permanent generation. The
java.lang.String class maintains a pool of strings. When the intern method is invoked, the
method checks the pool to see if an equal string is already in the pool. If there is, then the intern
method returns it; otherwise it adds the string to the pool. In more precise terms, the
java.lang.String.intern method is used to obtain the canonical representation of the string;
the result is a reference to the same class instance that would be returned if that string appeared
as a literal. If an application interns a huge number of strings, the permanent generation might
need to be increased from its default setting.

When this kind of error occurs, the text String.intern or ClassLoader.defineClass might
appear near the top of the stack trace that is printed.

The jmap -permgen command prints statistics for the objects in the permanent generation,
including information about internalized String instances. See “2.7.4 Getting Information on
the Permanent Generation” on page 50.

3.1.3 Detail Message: Requested array size exceeds VM

limit

The detail message Requested array size exceeds VM limit indicates that the application
(or APIs used by that application) attempted to allocate an array that is larger than the heap size.
For example, if an application attempts to allocate an array of 512MB but the maximum heap
size is 256MB then OutOfMemoryError will be thrown with the reason Requested array size

exceeds VM limit. In most cases the problem is either a configuration issue (heap size too
small), or a bug that results in an application attempting to create a huge array, for example,
when the number of elements in the array are computed using an algorithm that computes an
incorrect size.

3.1.4 Detail Message: request <size> bytes for

<reason>. Out of swap space?

The detail message request <size> bytes for <reason>. Out of swap space? appears to be
an OutOfMemoryError. However, the HotSpot VM code reports this apparent exception when
an allocation from the native heap failed and the native heap might be close to exhaustion. The
message indicates the size (in bytes) of the request that failed and the reason for the memory
request. In most cases the <reason> part of the message is the name of a source module
reporting the allocation failure, although in some cases it indicates a reason.

When this error message is thrown, the VM invokes the fatal error handling mechanism, that is,
it generates a fatal error log file, which contains useful information about the thread, process,
and system at the time of the crash. In the case of native heap exhaustion, the heap memory and
memory map information in the log can be useful. See Appendix C, “Fatal Error Log,” for
detailed information about this file.

3.1 Meaning of OutOfMemoryError

Chapter 3 • Troubleshooting Memory Leaks 75

If this type of OutOfMemoryError is thrown, you might need to use troubleshooting utilities on
the operating system to diagnose the issue further. See “2.16 Operating-System-Specific Tools”
on page 64.

The problem might not be related to the application, for example:

■ The operating system is configured with insufficient swap space.
■ Another process on the system is consuming all memory resources.

If neither of the above issues is the cause, then it is possible that the application failed due to a
native leak, for example, if application or library code is continuously allocating memory but is
not releasing it to the operating system.

3.1.5 Detail Message: <reason> <stack trace> (Native

method)

If the detail part of the error message is <reason> <stack trace> (Native method) and a
stack trace is printed in which the top frame is a native method, then this is an indication that a
native method has encountered an allocation failure. The difference between this and the
previous message is that the allocation failure was detected in a JNI or native method rather
than in Java VM code.

If this type of OutOfMemoryError is thrown, you might need to use utilities on the operating
system to further diagnose the issue. See “2.16 Operating-System-Specific Tools” on page 64.

3.2 Crash Instead of OutOfMemoryError
Sometimes an application crashes soon after an allocation from the native heap fails. This
occurs with native code that does not check for errors returned by memory allocation functions.

For example, the malloc system call returns NULL if there is no memory available. If the return
from malloc is not checked, then the application might crash when it attempts to access an
invalid memory location. Depending on the circumstances, this type of issue can be difficult to
locate.

However, in some cases the information from the fatal error log or the crash dump might be
sufficient to diagnose this issue. The fatal error log is covered in detail in Appendix C, “Fatal
Error Log.” If the cause of a crash is determined to be the failure to check an allocation failure,
then the reason for the allocation failure must be examined. As with any other native heap issue,
the system might be configured with insufficient swap space, another process on the system
might be consuming all memory resources, or there might be a leak in the application (or in the
APIs that it calls) that causes the system to run out of memory.

3.2 Crash Instead of OutOfMemoryError

Troubleshooting Guide for Java SE 6 with HotSpot VM • November 200876

3.3 Diagnosing Leaks in Java Language Code
Diagnosing leaks in Java language code can be a difficult task. In most cases it requires very
detailed knowledge of the application. In addition the process is often iterative and lengthy.
This section provides the following subsections:

■ “3.3.1 NetBeans Profiler” on page 77
■ “3.3.2 Using the jhat Utility” on page 77
■ “3.3.3 Creating a Heap Dump” on page 77
■ “3.3.4 Obtaining a Heap Histogram on a Running Process” on page 79
■ “3.3.5 Obtaining a Heap Histogram at OutOfMemoryError” on page 79
■ “3.3.6 Monitoring the Number of Objects Pending Finalization” on page 80
■ “3.3.7 Third Party Memory Debuggers” on page 80

3.3.1 NetBeans Profiler
The NetBeans Profiler (previously known as JFluid) is an excellent profiler, which can locate
memory leaks very quickly. Most commercial memory leak debugging tools can often take a
long time to locate a leak in a large application. The NetBeans Profiler, however, uses the
pattern of memory allocations and reclamations that such objects typically demonstrate. This
process includes also the lack of memory reclamations. The profiler can check where these
objects were allocated, which in many cases is sufficient to identify the root cause of the leak.

More details can be found at http://profiler.netbeans.org.

3.3.2 Using the jhatUtility
The jhat utility (see “2.5 jhat Utility” on page 39) is useful when debugging unintentional
object retention (or memory leaks). It provides a way to browse an object dump, view all
reachable objects in the heap, and understand which references are keeping an object alive.

To use jhat you must obtain one or more heap dumps of the running application, and the
dumps must be in binary format. Once the dump file is created, it can be used as input to jhat,
as described in “2.5 jhat Utility” on page 39.

3.3.3 Creating a Heap Dump
A heap dump provides detailed information on the allocation of heap memory. The following
sections describe several ways to produce a heap dump:

■ “3.3.3.1 HPROF Profiler” on page 78
■ “3.3.3.2 jmap Utility” on page 78
■ “3.3.3.3 JConsole Utility” on page 78

3.3 Diagnosing Leaks in Java Language Code

Chapter 3 • Troubleshooting Memory Leaks 77

http://profiler.netbeans.org

■ “3.3.3.4 -XX:+HeapDumpOnOutOfMemoryError Command-line Option” on page 78

3.3.3.1 HPROF Profiler
The HPROF profiler agent can create a heap dump while the application is executing. The
following is an example of the command line:

$ java -agentlib:hprof=file=snapshot.hprof,format=b application

If the VM is embedded or is not started using a command line launcher that allows additional
options to be provided, then it might be possible to use the JAVA_TOOLS_OPTIONS environment
variable so that the -agentlib option is automatically added to the command line. See “A.2
JAVA_TOOL_OPTIONS Environment Variable” on page 123 for further information on this
environment variable.

Once the application is running with HPROF, a heap dump is created by pressing Ctrl-\ or
Ctrl-Break (depending on the platform) on the application console. An alternative approach on
Solaris OS and Linux is to send a QUIT signal with the kill -QUIT pid command. When the
signal is received, a heap dump is created; in the above example the file snapshot.hprof is
created.

The heap dump file contains all the primitive data and stack traces.

A dump file can contain multiple heap dumps. If Ctrl-\ or Ctrl-Break is pressed a number of
times then the subsequent dumps are appended to the file. The jhat utility uses the #n syntax to
distinguish the dumps, where n is the dump number.

3.3.3.2 jmapUtility
A heap dump can also be obtained using the jmap utility (see “2.7 jmap Utility” on page 46). The
following is an example of the command line:

$ jmap -dump:format=b,file=snapshot.jmap process-pid

Regardless of how the Java VM was started, the jmap tool will produce a head dump snapshot, in
the above example in a file called snapshot.jmap. The jmap output files should contain all the
primitive data, but will not include any stack traces showing where the objects have been
created.

3.3.3.3 JConsole Utility
Another way to obtain a heap dump is with the JConsole utility. In the MBeans tab, select the
HotSpotDiagnostic MBean, then the Operations display, and choose the dumpHeap operation.

3.3.3.4 -XX:+HeapDumpOnOutOfMemoryError Command-line Option
If you specify the -XX:+HeapDumpOnOutOfMemoryError command-line option, and if an
OutOfMemoryError is thrown, the VM generates a heap dump.

3.3 Diagnosing Leaks in Java Language Code

Troubleshooting Guide for Java SE 6 with HotSpot VM • November 200878

3.3.4 Obtaining a Heap Histogram on a Running Process
You can try to quickly narrow down a memory leak by examining a heap histogram. This
information can be obtained in several ways:

■ A heap histogram can be obtained from a running process using the command jmap -histo

pid. The output shows the total size and instance count for each class type in the heap. If a
sequence of histograms is obtained (for example, every 2 minutes), then you might be able
to observe a trend that can lead to further analysis.

■ On Solaris OS and Linux, the jmap utility can also provide a histogram from a core file.
■ If the Java process is started with the -XX:+PrintClassHistogram command-line option,

then the Ctrl-Break handler will produce a heap histogram.

3.3.5 Obtaining a Heap Histogram at OutOfMemoryError
If you specify the -XX:+HeapDumpOnOutOfMemoryError command-line option, and if an
OutOfMemoryError is thrown, the VM generates a heap dump. You can then use the jmap utility
to obtain a histogram from the heap dump.

If a core file is produced when the OutOfMemoryError is thrown, you can execute jmap on the
core file to get a histogram, as in the following example.

$ jmap -histo \

/java/re/javase/6/latest/binaries/solaris-sparc/bin/java core.27421

Attaching to core core.27421 from executable

/java/re/javase/6/latest/binaries/solaris-sparc/bin/java, please wait...

Debugger attached successfully.

Server compiler detected.

JVM version is 1.6.0-beta-b63

Iterating over heap. This may take a while...

Heap traversal took 8.902 seconds.

Object Histogram:

Size Count Class description

86683872 3611828 java.lang.String

20979136 204 java.lang.Object[]

403728 4225 * ConstMethodKlass

306608 4225 * MethodKlass

220032 6094 * SymbolKlass

152960 294 * ConstantPoolKlass

108512 277 * ConstantPoolCacheKlass

104928 294 * InstanceKlassKlass

3.3 Diagnosing Leaks in Java Language Code

Chapter 3 • Troubleshooting Memory Leaks 79

68024 362 byte[]

65600 559 char[]

31592 359 java.lang.Class

27176 462 java.lang.Object[]

25384 423 short[]

17192 307 int[]

:

The example shows that the OutOfMemoryError is caused by the number of java.lang.String
objects (3611828 instances in the heap). Without further analysis it is not clear where the strings
are allocated. However, the information is still useful and the investigation can continue with
tools such as HPROF or jhat to find out where the strings are allocated, as well as what references
are keeping them alive and preventing them from being garbage collected.

3.3.6 Monitoring the Number of Objects Pending
Finalization
As noted in “3.1.1 Detail Message: Java heap space” on page 74, excessive use of finalizers can
be the cause of OutOfMemoryError. You have several options for monitoring the number of
objects that are pending finalization.

■ The JConsole management tool (see “2.3 JConsole Utility” on page 32) can be used to
monitor the number of objects that are pending finalization. This tool reports the pending
finalization count in the memory statistics on the “Summary” tab pane. The count is
approximate but it can be used to characterize an application and understand if it relies a lot
on finalization.

■ On Solaris OS and Linux, the jmap -finalizerinfo option prints information on objects
awaiting finalization.

■ An application can report the approximate number of objects pending finalization using the
getObjectPendingFinalizationCount method in the
java.lang.management.MemoryMXBean class. Links to the API documentation and example
code can be found in “2.17 Developing Diagnostic Tools” on page 70. The example code can
easily be extended to include the reporting of the pending finalization count.

3.3.7 Third Party Memory Debuggers
In addition to the tools mentioned in the previous chapters, there are a large number of
third-party memory debuggers available. JProbe from Quest Software, and OptimizeIt from
Borland are two examples of commercial tools with memory debugging capability. There are
many others and no specific product is recommended.

3.3 Diagnosing Leaks in Java Language Code

Troubleshooting Guide for Java SE 6 with HotSpot VM • November 200880

3.4 Diagnosing Leaks in Native Code
Several techniques can be used to find and isolate native code memory leaks. In general there is
no single ideal solution for all platforms.

3.4.1 Tracking All Memory Allocation and Free Calls
A very common practice is to track all allocation and free calls of the native allocations. This can
be a fairly simple process or a very sophisticated one. Many products over the years have been
built up around the tracking of native heap allocations and the use of that memory.

Tools like Purify and Sun's dbx Run Time Checking (see “3.4.4 Using dbx to Find Leaks” on
page 83) functionality can be used to find these leaks in normal native code situations and also
find any access to native heap memory that represents assignments to uninitialized memory or
accesses to freed memory.

Not all these types of tools will work with Java applications that use native code, and usually
these tools are platform-specific. Since the virtual machine dynamically creates code at runtime,
these tools can wrongly interpret the code and fail to run at all, or give false information. Check
with your tool vendor to make sure the version of the tool works with the version of the virtual
machine you are using.

Many simple and portable native memory leak detecting examples can be found at
http://sourceforge.net/. Most of these libraries and tools assume that you can recompile or
edit the source of the application and place wrapper functions over the allocation functions.
The more powerful of these tools allow you to run your application unchanged by interposing
over these allocation functions dynamically. This is the case with the library libumem.so,
starting with Solaris 9 OS update 3; see “3.4.5 Using libumem to Find Leaks” on page 85.

3.4.2 Tracking Memory Allocation in a JNI Library
If you write a JNI library, it would probably be wise to create some kind of localized way to make
sure your library does not leak memory, using a simple wrapper approach.

The following procedure is an easy localized allocation tracking approach for a JNI library.
First, define the following lines in all source files:

#include <stdlib.h>

#define malloc(n) debug_malloc(n, __FILE__, __LINE__)

#define free(p) debug_free(p, __FILE__, __LINE__)

Then you can use the following functions to watch for leaks.

3.4 Diagnosing Leaks in Native Code

Chapter 3 • Troubleshooting Memory Leaks 81

http://sourceforge.net/

/* Total bytes allocated */

static int total_allocated;

/* Memory alignment is important */

typedef union { double d; struct {size_t n; char *file; int line;} s; } Site;

void *

debug_malloc(size_t n, char *file, int line)

{

char *rp;

rp = (char*)malloc(sizeof(Site)+n);

total_allocated += n;

((Site*)rp)->s.n = n;

((Site*)rp)->s.file = file;

((Site*)rp)->s.line = line;

return (void*)(rp + sizeof(Site));

}

void

debug_free(void *p, char *file, int line)

{

char *rp;

rp = ((char*)p) - sizeof(Site);

total_allocated -= ((Site*)rp)->s.n;

free(rp);

}

The JNI library would then need to periodically (or at shutdown) check the value of the
total_allocated variable to make sure that it made sense. The above code could also be
expanded to save in a linked list the allocations that remained and report where the leaked
memory was allocated. This is a localized and portable way to track memory allocations in a
single set of sources. You would need to make sure that debug_free() was called only with a
pointer that came from debug_malloc(), and you would also need to create similar functions
for realloc(), calloc(), strdup(), and so forth, if they were used.

A more global way to look for native heap memory leaks would involve interposition of the
library calls for the entire process.

3.4.3 Tracking Memory Allocation With OS Support
Most operating systems include some form of global allocation tracking support.
■ On Windows, go to http://msdn.microsoft.com/library/default.asp and search for

debug support. The Microsoft C++ compiler has the /Md and /Mdd compiler options that
will automatically include extra support for tracking memory allocations.

■ Linux systems have tools such as mtrace and libnjamd to help in dealing with allocation
tracking.

■ Solaris Operating Systems provide the watchmalloc tool. Solaris 9 OS update 3 started
providing the libumem tool (see “3.4.5 Using libumem to Find Leaks” on page 85).

3.4 Diagnosing Leaks in Native Code

Troubleshooting Guide for Java SE 6 with HotSpot VM • November 200882

http://msdn.microsoft.com/library/default.asp

3.4.4 Using dbx to Find Leaks
The Sun debugger dbx includes the Run Time Checking (RTC) functionality, which can find
leaks. The dbx debugger is also available on Linux.

Below is a sample dbx session.

$ dbx ${java_home}/bin/java

Reading java

Reading ld.so.1

Reading libthread.so.1

Reading libdl.so.1

Reading libc.so.1

(dbx) dbxenv rtc_inherit on

(dbx) check -leaks

leaks checking - ON

(dbx) run HelloWorld

Running: java HelloWorld

(process id 15426)

Reading rtcapihook.so

Reading rtcaudit.so

Reading libmapmalloc.so.1

Reading libgen.so.1

Reading libm.so.2

Reading rtcboot.so

Reading librtc.so

RTC: Enabling Error Checking...

RTC: Running program...

dbx: process 15426 about to exec("/net/bonsai.sfbay/export/home2/user/ws/j2se/build/solaris-i586/bin/java")
dbx: program "/net/bonsai.sfbay/export/home2/user/ws/j2se/build/solaris-i586/bin/java"
just exec’ed

dbx: to go back to the original program use "debug $oprog"
RTC: Enabling Error Checking...

RTC: Running program...

t@1 (l@1) stopped in main at 0x0805136d

0x0805136d: main : pushl %ebp

(dbx) when dlopen libjvm { suppress all in libjvm.so; }

(2) when dlopen libjvm { suppress all in libjvm.so; }

(dbx) when dlopen libjava { suppress all in libjava.so; }

(3) when dlopen libjava { suppress all in libjava.so; }

(dbx) cont

Reading libjvm.so

Reading libsocket.so.1

Reading libsched.so.1

Reading libCrun.so.1

Reading libm.so.1

Reading libnsl.so.1

Reading libmd5.so.1

3.4 Diagnosing Leaks in Native Code

Chapter 3 • Troubleshooting Memory Leaks 83

Reading libmp.so.2

Reading libhpi.so

Reading libverify.so

Reading libjava.so

Reading libzip.so

Reading en_US.ISO8859-1.so.3

hello world

hello world

Checking for memory leaks...

Actual leaks report (actual leaks: 27 total size: 46851 bytes)

Total Num of Leaked Allocation call stack

Size Blocks Block

Address

========== ====== =========== =======================================

44376 4 - calloc < zcalloc

1072 1 0x8151c70 _nss_XbyY_buf_alloc < get_pwbuf < _getpwuid <

GetJavaProperties < Java_java_lang_System_initProperties <

0xa740a89a< 0xa7402a14< 0xa74001fc

814 1 0x8072518 MemAlloc < CreateExecutionEnvironment < main

280 10 - operator new < Thread::Thread

102 1 0x8072498 _strdup < CreateExecutionEnvironment < main

56 1 0x81697f0 calloc < Java_java_util_zip_Inflater_init < 0xa740a89a<

0xa7402a6a< 0xa7402aeb< 0xa7402a14< 0xa7402a14< 0xa7402a14

41 1 0x8072bd8 main

30 1 0x8072c58 SetJavaCommandLineProp < main

16 1 0x806f180 _setlocale < GetJavaProperties <

Java_java_lang_System_initProperties < 0xa740a89a< 0xa7402a14<

0xa74001fc< JavaCalls::call_helper < os::os_exception_wrapper

12 1 0x806f2e8 operator new < instanceKlass::add_dependent_nmethod <

nmethod::new_nmethod < ciEnv::register_method <

Compile::Compile #Nvariant 1 < C2Compiler::compile_method <

CompileBroker::invoke_compiler_on_method <

CompileBroker::compiler_thread_loop

12 1 0x806ee60 CheckJvmType < CreateExecutionEnvironment < main

12 1 0x806ede8 MemAlloc < CreateExecutionEnvironment < main

12 1 0x806edc0 main

8 1 0x8071cb8 _strdup < ReadKnownVMs < CreateExecutionEnvironment < main

8 1 0x8071cf8 _strdup < ReadKnownVMs < CreateExecutionEnvironment < main

The output shows that the dbx debugger reports memory leaks if memory is not freed at the
time the process is about to exit. However, memory that is allocated at initialization time and
needed for the life of the process is often never freed in native code. Therefore, in such cases the
dbx debugger can report memory leaks that are not leaks in reality.

Note that the example used two suppress commands to suppress the leaks reported in the
virtual machine (libjvm.so) and the Java support library (libjava.so).

3.4 Diagnosing Leaks in Native Code

Troubleshooting Guide for Java SE 6 with HotSpot VM • November 200884

3.4.5 Using libumem to Find Leaks
Starting with Solaris 9 OS update 3, the libumem.so library and the modular debugger (mdb) can
be used to debug memory leaks. Before using libumem, you must preload the libumem library
and set an environment variable as follows:

$ LD_PRELOAD=libumem.so

$ export LD_PRELOAD

$ UMEM_DEBUG=default

$ export UMEM_DEBUG

Now, run the Java application but stop it before it exits. The following example uses truss to
stop the process when it calls the _exit system call:

$ truss -f -T _exit java MainClass arguments

At this point you can attach the mdb debugger, as follows:

$ mdb -p pid
>::findleaks

The ::findleaks command is the mdb command to find memory leaks. If a leak is found, the
findleaks command prints the address of the allocation call, buffer address, and nearest
symbol.

It is also possible to get the stack trace for the allocation which resulted in the memory leak by
dumping the bufctl structure. The address of this structure can be obtained from the output of
the ::findleaks command. The description of the commands to perform these functions, as
well as more information on using libumem to identify memory managements bugs, is located
at the following address: http://access1.sun.com/techarticles/libumem.html.

3.4 Diagnosing Leaks in Native Code

Chapter 3 • Troubleshooting Memory Leaks 85

http://access1.sun.com/techarticles/libumem.html

86

Troubleshooting System Crashes

This chapter provides information and guidance on some specific procedures for
troubleshooting system crashes.

A crash, or fatal error, causes a process to terminate abnormally. There are various possible
reasons for a crash. For example, a crash can occur due to a bug in the HotSpot VM, in a system
library, in a Java SE library or API, in application native code, or even in the operating system.
External factors, such as resource exhaustion in the operating system can also cause a crash.

Crashes caused by bugs in the HotSpot VM or in the Java SE library code are rare. This chapter
provides suggestions on how to examine a crash. In some cases it is possible work around a
crash until the cause of the bug is diagnosed and fixed.

In general the first step with any crash is to locate the fatal error log. This is a text file that the
HotSpot VM generates in the event of a crash. See Appendix C, “Fatal Error Log,” for an
explanation of how to locate this file, as well as a detailed description of the file.

4.1 Sample Crashes
This section presents a number of examples which demonstrate how the error log can be used to
suggest the cause of a crash.

4.1.1 Determining Where the Crash Occurred
The error log header indicates the problematic frame. See “C.3 Header Format” on page 136.

If the top frame type is a native frame and not one of the operating system native frames, then
this indicates that the problem is likely in that native library and not in the Java virtual machine.
The first step to solving this crash is to investigate the source of the native library where the
crash occurred. There are three options, depending on the source of the native library.

4C H A P T E R 4

87

1. If the native library is provided by your application, then investigate the source code of your
native library. The option -Xcheck:jni can help find many native bugs. See “B.2.1
-Xcheck:jni Option” on page 132.

2. If the native library has been provided by another vendor and is used by your application,
then file a bug report against this third-party application and provide the fatal error log
information.

3. Determine if the native library is part of the Java runtime environment (JRE) by looking in
the jre/lib or jre/bin directories in the JRE distribution. If so, file a bug report, and
ensure that this library name is prominently indicated so that the bug report can be routed
to the appropriate developers.

If the top frame indicated in the error log is another type of frame, file a bug report and include
the fatal error log as well as any information on how to reproduce the problem.

See also the remaining sections in this chapter.

4.1.2 Crash in Native Code
If the fatal error log indicates that the crash was in a native library, there might be a bug in native
code or JNI library code. The crash could of course be caused by something else, but analysis of
the library and any core file or crash dump is a good starting place. For example, consider the
following extract from the header of a fatal error log:

An unexpected error has been detected by HotSpot Virtual Machine:

#

SIGSEGV (0xb) at pc=0x417789d7, pid=21139, tid=1024

#

Java VM: Java HotSpot(TM) Server VM (6-beta2-b63 mixed mode)

Problematic frame:

C [libApplication.so+0x9d7]

In this case a SIGSEGV occurred with a thread executing in the library libApplication.so.

In some cases a bug in a native library manifests itself as a crash in Java VM code. Consider the
following crash where a JavaThread fails while in the _thread_in_vm state (meaning that it is
executing in Java VM code) :

An unexpected error has been detected by HotSpot Virtual Machine:

#

EXCEPTION_ACCESS_VIOLATION (0xc0000005) at pc=0x08083d77, pid=3700, tid=2896

#

Java VM: Java HotSpot(TM) Client VM (1.5-internal mixed mode)

Problematic frame:

V [jvm.dll+0x83d77]

4.1 Sample Crashes

Troubleshooting Guide for Java SE 6 with HotSpot VM • November 200888

--------------- T H R E A D ---------------

Current thread (0x00036960): JavaThread "main" [_thread_in_vm, id=2896]

:

Stack: [0x00040000,0x00080000), sp=0x0007f9f8, free space=254k

Native frames: (J=compiled Java code, j=interpreted, Vv=VM code, C=native code)

V [jvm.dll+0x83d77]

C [App.dll+0x1047] <========= C/native frame
j Test.foo()V+0

j Test.main([Ljava/lang/String;)V+0

v ~StubRoutines::call_stub

V [jvm.dll+0x80f13]

V [jvm.dll+0xd3842]

V [jvm.dll+0x80de4]

V [jvm.dll+0x87cd2]

C [java.exe+0x14c0]

C [java.exe+0x64cd]

C [kernel32.dll+0x214c7]

:

In this case the stack trace shows that a native routine in App.dll has called into the VM
(probably with JNI).

If you get a crash in a native application library (as in the above examples), then you might be
able to attach the native debugger to the core file or crash dump, if it is available. Depending on
the operating system, the native debugger is dbx, gdb, or windbg.

Another approach is to run with the -Xcheck:jni option added to the command line (see
“B.2.1 -Xcheck:jni Option” on page 132). This option is not guaranteed to find all issues with
JNI code, but it can help identify a significant number of issues.

If the native library where the crash occurred is part of the Java runtime environment (for
example awt.dll, net.dll, and so forth), then it is possible that you have encountered a library
or API bug. If after further analysis you conclude this is a library or API bug, then gather a much
data as possible and submit a bug or support call. See Chapter 7, “Submitting Bug Reports.”

4.1.3 Crash due to Stack Overflow
A stack overflow in Java language code will normally result in the offending thread throwing
java.lang.StackOverflowError. On the other hand, C and C++ write past the end of the stack
and provoke a stack overflow. This is a fatal error which causes the process to terminate.

In the HotSpot implementation, Java methods share stack frames with C/C++ native code,
namely user native code and the virtual machine itself. Java methods generate code that checks
that stack space is available a fixed distance towards the end of the stack so that the native code
can be called without exceeding the stack space. This distance towards the end of the stack is

4.1 Sample Crashes

Chapter 4 • Troubleshooting System Crashes 89

called “Shadow Pages.” The size of the shadow pages is between 3 and 20 pages, depending on
the platform. This distance is tunable, so that applications with native code needing more than
the default distance can increase the shadow page size. The option to increase shadow pages is
-XX:StackShadowPages=n, where n is greater than the default stack shadow pages for the
platform.

If your application gets a segmentation fault without a core file or fatal error log file (see
Appendix C, “Fatal Error Log”) or a STACK_OVERFLOW_ERROR on Windows or the message “An
irrecoverable stack overflow has occurred,” this indicates that the value of StackShadowPages
was exceeded and more space is needed.

If you increase the value of StackShadowPages, you might also need to increase the default
thread stack size using the -Xssparameter. Increasing the default thread stack size might
decrease the number of threads that can be created, so be careful in choosing a value for the
thread stack size. The thread stack size varies by platform from 256k to 1024k.

The following is a fragment from a fatal error log, on a Windows system, where a thread has
provoked a stack overflow in native code.

An unexpected error has been detected by HotSpot Virtual Machine:

#

EXCEPTION_STACK_OVERFLOW (0xc00000fd) at pc=0x10001011, pid=296, tid=2940

#

Java VM: Java HotSpot(TM) Client VM (1.6-internal mixed mode, sharing)

Problematic frame:

C [App.dll+0x1011]

#

--------------- T H R E A D ---------------

Current thread (0x000367c0): JavaThread "main" [_thread_in_native, id=2940]

:

Stack: [0x00040000,0x00080000), sp=0x00041000, free space=4k

Native frames: (J=compiled Java code, j=interpreted, Vv=VM code, C=native code)

C [App.dll+0x1011]

C [App.dll+0x1020]

C [App.dll+0x1020]

:

C [App.dll+0x1020]

C [App.dll+0x1020]

...<more frames>...

Java frames: (J=compiled Java code, j=interpreted, Vv=VM code)

j Test.foo()V+0

j Test.main([Ljava/lang/String;)V+0

v ~StubRoutines::call_stub

Note the following information in the above output:

4.1 Sample Crashes

Troubleshooting Guide for Java SE 6 with HotSpot VM • November 200890

■ The exception is EXCEPTION_STACK_OVERFLOW.
■ The thread state is _thread_in_native, which means that the thread is executing native or

JNI code.
■ In the stack information the free space is only 4k (a single page on a Windows system). In

addition, the stack pointer (sp) is at 0x00041000, which is close to the end of the stack
(0x00040000).

■ The printout of the native frames shows that a recursive native function is the issue in this
case.

■ The output notation ...<more frames>... indicates that additional frames exist but were
not printed. The output is limited to 100 frames.

4.1.4 Crash in the HotSpot Compiler Thread
If the fatal error log output shows that the Current thread is a JavaThread named
CompilerThread0, CompilerThread1, or AdapterCompiler, then it is possible that you have
encountered a compiler bug. In this case it might be necessary to temporarily work around the
issue by switching the compiler (for example, by using the HotSpot Client VM instead of the
HotSpot Server VM, or visa versa), or by excluding from compilation the method that provoked
the crash. This is discussed in “4.2.1 Crash in HotSpot Compiler Thread or Compiled Code” on
page 93.

4.1.5 Crash in Compiled Code
If the crash occurred in compiled code, then it is possible that you have encountered a compiler
bug that has resulted in incorrect code generation. You can recognize a crash in compiled code
if the problematic frame is marked with the code J (meaning a compiled Java frame). Below is
an example of a such a crash:

An unexpected error has been detected by HotSpot Virtual Machine:

#

SIGSEGV (0xb) at pc=0x0000002a99eb0c10, pid=6106, tid=278546

#

Java VM: Java HotSpot(TM) 64-Bit Server VM (1.6.0-beta-b51 mixed mode)

Problematic frame:

J org.foobar.Scanner.body()V

#

:

Stack: [0x0000002aea560000,0x0000002aea660000), sp=0x0000002aea65ddf0,

free space=1015k

Native frames: (J=compiled Java code, j=interpreted, Vv=VM code, C=native code)

J org.foobar.Scanner.body()V

[error occurred during error reporting, step 120, id 0xb]

4.1 Sample Crashes

Chapter 4 • Troubleshooting System Crashes 91

Note that a complete thread stack is not available. The output line “error occurred during
error reporting” means that a problem arose trying to obtain the stack trace (perhaps stack
corruption in this example).

It might be possible to temporarily work around the issue by switching the compiler (for
example, by using the HotSpot Client VM instead of the HotSpot Server VM, or visa versa) or
by excluding from compilation the method that provoked the crash. In this specific example it
might not be possible to switch the compiler as it was taken from the 64-bit Server VM and
hence it might not be feasible to switch to the 32-bit Client VM.

4.1.6 Crash in VMThread

If the fatal log output shows that the Current thread is the VMThread, then look for the line
containing VM_Operation in the THREAD section. The VMThread is a special thread in the
HotSpot VM. It performs special tasks in the VM such as garbage collection (GC). If the
VM_Operation suggests that the operation is a garbage collection, then it is possible that you
have encountered an issue such as heap corruption.

The crash might also be a GC issue, but it could equally be something else (such as a compiler or
runtime bug) that leaves object references in the heap in an inconsistent or incorrect state. In
this case, collect as much information as possible about the environment and try possible
workarounds. If the issue is GC-related you might be able to temporarily work around the issue
by changing the GC configuration. This is discussed in “4.2.2 Crash During Garbage
Collection” on page 94.

4.2 Finding a Workaround
If a crash occurs with a critical application, and the crash appears to be caused by a bug in the
HotSpot VM, then it might be desirable to quickly find a temporary workaround. The purpose
of this section is to suggest some possible workarounds. If the crash occurs with an application
that is deployed with the most recent release of Java SE, then the crash should always be
reported to Sun Microsystems either by logging a support call (for customers with support
contracts), by reporting a one–time–incident (see “Commercial Support” on page 12 for links
to support options), or by submitting a bug to the bug database (see “Other Resources” on
page 11 for the link to the bug database).

Note – Even if a workaround in this section successfully eliminates a crash, the workaround is
not a fix for the problem, but merely a temporary solution. Submit a support call or bug report
with the original configuration that demonstrated the issue.

4.2 Finding a Workaround

Troubleshooting Guide for Java SE 6 with HotSpot VM • November 200892

4.2.1 Crash in HotSpot Compiler Thread or Compiled Code
If the fatal error log indicates that the crash occurred in a compiler thread, then it is possible
(but not always the case) that you have encountered a compiler bug. Similarly, if the crash is in
compiled code then it is possible that the compiler has generated incorrect code.

In the case of the HotSpot Client VM (-client option), the compiler thread appears in the
error log as CompilerThread0. With the HotSpot Server VM there are multiple compiler
threads and these appear in the error log file as CompilerThread0, CompilerThread1, and
AdapterThread.

Below is a fragment of an error log for a compiler bug that was encountered and fixed during
the development of J2SE 5.0. The log file shows that the HotSpot Server VM is used and the
crash occurred in CompilerThread1. In addition, the log file shows that the Current
CompileTask was the compilation of the java.lang.Thread.setPriority method.

An unexpected error has been detected by HotSpot Virtual Machine:

#

:

Java VM: Java HotSpot(TM) Server VM (1.5-internal-debug mixed mode)

:

--------------- T H R E A D ---------------

Current thread (0x001e9350): JavaThread "CompilerThread1" daemon [_thread_in_vm, id=20]

Stack: [0xb2500000,0xb2580000), sp=0xb257e500, free space=505k

Native frames: (J=compiled Java code, j=interpreted, Vv=VM code, C=native code)

V [libjvm.so+0xc3b13c]

:

Current CompileTask:

opto: 11 java.lang.Thread.setPriority(I)V (53 bytes)

--------------- P R O C E S S ---------------

Java Threads: (=> current thread)

0x00229930 JavaThread "Low Memory Detector" daemon [_thread_blocked, id=21]

=>0x001e9350 JavaThread "CompilerThread1" daemon [_thread_in_vm, id=20]

:

In this case there are two potential workarounds:

■ The brute force approach: change the configuration so that the application is run with the
-client option to specify the HotSpot Client VM.

■ Assume that the bug only occurs during the compilation of the setPriority method and
exclude this method from compilation.

4.2 Finding a Workaround

Chapter 4 • Troubleshooting System Crashes 93

The first approach (to use the -client option) might be trivial to configure in some
environments. In others, it might be more difficult if the configuration is complex or if the
command line to configure the VM is not readily accessible. In general, switching from the
HotSpot Server VM to the HotSpot Client VM also reduces the peak performance of an
application. Depending on the environment, this might be acceptable until the actual issue is
diagnosed and fixed.

The second approach (exclude the method from compilation) requires creating the file
.hotspot_compiler in the working directory of the application. Below is an example of this file:

exclude java/lang/Thread setPriority

In general the format of this file is exclude CLASS METHOD, where CLASS is the class (fully
qualified with the package name) and METHOD is the name of the method. Constructor methods
are specified as <init> and static initializers are specified as <clinit>.

Note – The .hotspot_compiler file is an unsupported interface. It is documented here solely for
the purposes of troubleshooting and finding a temporary workaround.

Once the application is restarted, the compiler will not attempt to compile any of the methods
listed as excluded in the .hotspot_compiler file. In some cases this can provide temporary
relief until the root cause of the crash is diagnosed and the bug is fixed.

In order to verify that the HotSpot VM correctly located and processed the .hotspot_compiler
file that is shown in the example above, look for the following log information at runtime. Note
that the file name separator is a dot, not a slash.

Excluding compile: java.lang.Thread::setPriority

4.2.2 Crash During Garbage Collection
If a crash occurs during garbage collection (GC), then the fatal error log reports that a
VM_Operation is in progress. For the purposes of this discussion, assume that the mostly
concurrent GC (-XX:+UseConcMarkSweep) is not in use. The VM_Operation is shown in the
THREAD section of the log and indicates one of the following situations:

■ Generation collection for allocation
■ Full generation collection
■ Parallel gc failed allocation
■ Parallel gc failed permanent allocation
■ Parallel gc system gc

Most likely the current thread reported in the log is the VMThread. This is the special thread used
to execute special tasks in the HotSpot VM. The following fragment of the fatal error log shows
an example of a crash in the serial garbage collector:

4.2 Finding a Workaround

Troubleshooting Guide for Java SE 6 with HotSpot VM • November 200894

--------------- T H R E A D ---------------

Current thread (0x002cb720): VMThread [id=3252]

siginfo: ExceptionCode=0xc0000005, reading address 0x00000000

Registers:

EAX=0x0000000a, EBX=0x00000001, ECX=0x00289530, EDX=0x00000000

ESP=0x02aefc2c, EBP=0x02aefc44, ESI=0x00289530, EDI=0x00289530

EIP=0x0806d17a, EFLAGS=0x00010246

Top of Stack: (sp=0x02aefc2c)

0x02aefc2c: 00289530 081641e8 00000001 0806e4b8

0x02aefc3c: 00000001 00000000 02aefc9c 0806e4c5

0x02aefc4c: 081641e8 081641c8 00000001 00289530

0x02aefc5c: 00000000 00000000 00000001 00000001

0x02aefc6c: 00000000 00000000 00000000 08072a9e

0x02aefc7c: 00000000 00000000 00000000 00035378

0x02aefc8c: 00035378 00280d88 00280d88 147fee00

0x02aefc9c: 02aefce8 0806e0f5 00000001 00289530

Instructions: (pc=0x0806d17a)

0x0806d16a: 15 08 83 3d c0 be 15 08 05 53 56 57 8b f1 75 0f

0x0806d17a: 0f be 05 00 00 00 00 83 c0 05 a3 c0 be 15 08 8b

Stack: [0x02ab0000,0x02af0000), sp=0x02aefc2c, free space=255k

Native frames: (J=compiled Java code, j=interpreted, Vv=VM code, C=native code)

V [jvm.dll+0x6d17a]

V [jvm.dll+0x6e4c5]

V [jvm.dll+0x6e0f5]

V [jvm.dll+0x71771]

V [jvm.dll+0xfd1d3]

V [jvm.dll+0x6cd99]

V [jvm.dll+0x504bf]

V [jvm.dll+0x6cf4b]

V [jvm.dll+0x1175d5]

V [jvm.dll+0x1170a0]

V [jvm.dll+0x11728f]

V [jvm.dll+0x116fd5]

C [MSVCRT.dll+0x27fb8]

C [kernel32.dll+0x1d33b]

VM_Operation (0x0373f71c): generation collection for allocation, mode:

safepoint, requested by thread 0x02db7108

Note – A crash during garbage collection does not imply a bug in the garbage collection
implementation. It could also indicate a compiler or runtime bug or some other issue.

4.2 Finding a Workaround

Chapter 4 • Troubleshooting System Crashes 95

You can try the following workarounds if you get a repeated crash during garbage collection:

■ Switch GC configuration. For example, if you are using the serial collector, try the
throughput collector, or visa versa.

■ If you are using the HotSpot Server VM, try the HotSpot Client VM.

If you are not sure which garbage collector is in use, you can use the jmap utility on Solaris OS
and Linux (see “2.7 jmap Utility” on page 46) to obtain the heap information from the core file,
if the core file is available. In general if the GC configuration is not specified on the command
line, then the serial collector will be used on Windows. On Solaris OS and Linux it depends on
the machine configuration. If the machine has at least 2GB of memory and has at least 2
processors, then the throughput collector (Parallel GC) will be used. For smaller machines the
serial collector is the default. The option to select the serial collector is -XX:+UseSerialGC and
the option to select the throughput collector is -XX:+UseParallelGC. If, as a workaround, you
switch from the throughput collector to the serial collector, then you might experience some
performance degradation on multi-processor systems. This might be acceptable until the root
issue is diagnosed and resolved.

4.2.3 Class Data Sharing
Class data sharing was a new feature in J2SE 5.0. When the JRE is installed on 32-bit platforms
using the Sun-provided installer, the installer loads a set of classes from the system JAR file into
a private internal representation and dumps that representation to a file called a shared archive.
When the VM is started, the shared archive is memory-mapped in. This saves on class loading
and allows much of the metadata associated with the classes to be shared across multiple VM
instances. In J2SE 5.0, class data sharing is enabled only when the HotSpot Client VM is used. In
addition, sharing is supported only with the serial garbage collector.

The fatal error log prints the version string in the header of the log. If sharing is enabled, it is
indicated by the text sharing, as shown in the following example:

An unexpected error has been detected by HotSpot Virtual Machine:

#

EXCEPTION_ACCESS_VIOLATION (0xc0000005) at pc=0x08083d77, pid=3572, tid=784

#

Java VM: Java HotSpot(TM) Client VM (1.5-internal mixed mode, sharing)

Problematic frame:

V [jvm.dll+0x83d77]

Sharing can be disabled by providing the -Xshare:off option on the command line. If the crash
cannot be duplicated with sharing disabled but can be duplicated with sharing enabled, then it
is possible that you have encountered a bug in this feature. In that case gather as much
information as possible and submit a bug report.

4.2 Finding a Workaround

Troubleshooting Guide for Java SE 6 with HotSpot VM • November 200896

4.3 Microsoft Visual C++ Version Considerations
The JDK 6 software is compiled on Windows using Microsoft Visual Studio .NET 2003
(Professional) for 32–bit platforms and Windows Server 2003 SP1 Platform SDK - April 2005
Edition for 64-bit platforms. If you experience a crash with a Java SE application and if you have
native or JNI libraries that are compiled with a different release of the compiler, then you must
consider compatibility issues between the runtimes. Specifically, your environment is
supported only if you follow the Microsoft guidelines when dealing with multiple runtimes. For
example, if you allocate memory using one runtime, then you must release it using the same
runtime. Unpredictable behavior or crashes can arise if you release a resource using a different
library than the one that allocated the resource.

4.3 Microsoft Visual C++ Version Considerations

Chapter 4 • Troubleshooting System Crashes 97

98

Troubleshooting Hanging or Looping Processes

This chapter provides information and guidance on some specific procedures for
troubleshooting hanging or looping processes.

Problems can occur that involve hanging or looping processes. A hang can occur for many
reasons but often stems from a deadlock in application code, API code, or library code. A hang
can even be due to a bug in the HotSpot virtual machine.

Sometimes an apparent hang turns out to be, in fact, a loop. For example, a bug in a VM process
that causes one or more threads to go into an infinite loop can consume all available CPU cycles.

An initial step when diagnosing a hang is to find out if the VM process is idle or consuming all
available CPU cycles. To do this requires using an operating system utility. If the process
appears to be busy and is consuming all available CPU cycles then it is likely that the issue is a
looping thread rather than a deadlock. On Solaris OS, for example, the command prstat -L -p

<pid> can be used to report the statistics for all LWPs in the target process and thus will identify
the threads that are consuming a lot of CPU cycles.

5.1 Diagnosing a Looping Process
If a VM process appears to be looping, the first step is to try to get a thread dump. If a thread
dump can be obtained, it will often be clear which thread is looping. If the looping thread can be
identified, then the trace stack in the thread dump can provide direction on where (and maybe
why) the thread is looping.

If the application console (standard input/output) is available, then press the Ctrl-\ key
combination (on Solaris OS or Linux) or the Ctrl-Break key combination (on Windows) to
cause the HotSpot VM to print a thread dump, including thread state. On Solaris OS and Linux
the thread dump can also be obtained by sending a SIGQUIT to the process (command kill

-QUIT <pid>). In this case the thread dump is printed to the standard output of the target
process. The output might be directed to a file, depending on how the process was started.

5C H A P T E R 5

99

If the Java process is started with the -XX:+PrintClassHistogram command-line option, then
the Ctrl-Break handler will produce a heap histogram.

If a thread dump can be obtained, then a good place to start is the thread stacks of the threads
that are in the runnable state. See “2.15.1 Thread Dump” on page 61 for information on the
format of the thread dump, as well as a table of the possible thread states in the thread dump. In
some cases it might be necessary to get a sequence of thread dumps in order to determine which
threads appear to be continuously busy.

If the application console is not available (process is running as a background process, or the
VM output is directed to an unknown location), then the jstack utility can be used to obtain
the stack thread. Use the jstack -F pid option to force a stack dump of the looping process. See
“2.11 jstack Utility” on page 53 for information on the output of this utility. The jstack utility
should also be used if the thread dump does not provide any evidence that a Java thread is
looping.

When reviewing the output of the jstack utility, focus initially on the threads that are in the
RUNNABLE state. This is the most likely state for threads that are busy and possibly looping. It
might be necessary to execute jstack a number of times to get a more complete picture of
which threads are looping. If a thread appears to be always in the RUNNABLE state, then the -m
option can be used to print the native frames and can provide a further hint on what the thread
is doing. If a thread appears to be looping continuously while in the RUNNABLE state, this
situation can indicate a potential HotSpot VM bug that needs further investigation.

If the VM does not respond to a Ctrl-\ this could indicate a VM bug rather than an issue with
application or library code. In this case use jstack with the -m option (in addition to the -F
option) to get a thread stack for all threads. The output will include the thread stacks for VM
internal threads. In this stack trace, identify threads that do not appear to be waiting. For
example, on Solaris OS you identify the threads that are not in functions such as
__lwp_cond_wait, __lwp_park, ___pollsys, or other blocking functions. If it appears that the
looping is caused by a VM bug, then collect as much data as possible and submit a bug report.
See Chapter 7, “Submitting Bug Reports,” for more details on data collection.

5.2 Diagnosing a Hung Process
If the application appears to be hung and the process appears to be idle, then the first step is to
try to obtain a thread dump. If the application console is available, then press the Ctrl-\ keys (on
Solaris OS or Linux) or the Ctrl-Break keys (on Windows) to cause the HotSpot VM to print a
thread dump. On Solaris OS and Linux the thread dump can also be obtained by sending a
SIGQUIT to the process (command kill -QUIT <pid>).

5.2 Diagnosing a Hung Process

Troubleshooting Guide for Java SE 6 with HotSpot VM • November 2008100

5.2.1 Deadlock Detected
If the hung process is capable of generating a thread dump, then the output is printed to the
standard output of the target process. After printing the thread dump, the HotSpot VM
executes a deadlock detection algorithm. If a deadlock is detected it will be printed along with
the stack trace of the threads involved in the deadlock. Below is an example of this output.

Found one Java-level deadlock:

=============================

"AWT-EventQueue-0":
waiting to lock monitor 0x000ffbf8 (object 0xf0c30560, a java.awt.Component$AWTTreeLock),

which is held by "main"
"main":
waiting to lock monitor 0x000ffe38 (object 0xf0c41ec8, a java.util.Vector),

which is held by "AWT-EventQueue-0"

Java stack information for the threads listed above:

===

"AWT-EventQueue-0":
at java.awt.Container.removeNotify(Container.java:2503)

- waiting to lock <0xf0c30560> (a java.awt.Component$AWTTreeLock)

at java.awt.Window$1DisposeAction.run(Window.java:604)

at java.awt.Window.doDispose(Window.java:617)

at java.awt.Dialog.doDispose(Dialog.java:625)

at java.awt.Window.dispose(Window.java:574)

at java.awt.Window.disposeImpl(Window.java:584)

at java.awt.Window$1DisposeAction.run(Window.java:598)

- locked <0xf0c41ec8> (a java.util.Vector)

at java.awt.Window.doDispose(Window.java:617)

at java.awt.Window.dispose(Window.java:574)

at javax.swing.SwingUtilities$SharedOwnerFrame.dispose(SwingUtilities.java:1743)

at javax.swing.SwingUtilities$SharedOwnerFrame.windowClosed(SwingUtilities.java:1722)

at java.awt.Window.processWindowEvent(Window.java:1173)

at javax.swing.JDialog.processWindowEvent(JDialog.java:407)

at java.awt.Window.processEvent(Window.java:1128)

at java.awt.Component.dispatchEventImpl(Component.java:3922)

at java.awt.Container.dispatchEventImpl(Container.java:2009)

at java.awt.Window.dispatchEventImpl(Window.java:1746)

at java.awt.Component.dispatchEvent(Component.java:3770)

at java.awt.EventQueue.dispatchEvent(EventQueue.java:463)

at java.awt.EventDispatchThread.pumpOneEventForHierarchy(EventDispatchThread.java:214)

at java.awt.EventDispatchThread.pumpEventsForHierarchy(EventDispatchThread.java:163)

at java.awt.EventDispatchThread.pumpEvents(EventDispatchThread.java:157)

at java.awt.EventDispatchThread.pumpEvents(EventDispatchThread.java:149)

at java.awt.EventDispatchThread.run(EventDispatchThread.java:110)

"main":
at java.awt.Window.getOwnedWindows(Window.java:844)

- waiting to lock <0xf0c41ec8> (a java.util.Vector)

5.2 Diagnosing a Hung Process

Chapter 5 • Troubleshooting Hanging or Looping Processes 101

at javax.swing.SwingUtilities$SharedOwnerFrame.installListeners(SwingUtilities.java:1697)

at javax.swing.SwingUtilities$SharedOwnerFrame.addNotify(SwingUtilities.java:1690)

at java.awt.Dialog.addNotify(Dialog.java:370)

- locked <0xf0c30560> (a java.awt.Component$AWTTreeLock)

at java.awt.Dialog.conditionalShow(Dialog.java:441)

- locked <0xf0c30560> (a java.awt.Component$AWTTreeLock)

at java.awt.Dialog.show(Dialog.java:499)

at java.awt.Component.show(Component.java:1287)

at java.awt.Component.setVisible(Component.java:1242)

at test01.main(test01.java:10)

Found 1 deadlock.

The default deadlock detection works with locks that are obtained using the synchronized
keyword, as well as with locks that are obtained using the java.util.concurrent package. If
the Java VM flag -XX:+PrintConcurrentLocks is set, then the stack trace also shows a list of
lock owners.

If deadlock is detected, then you must examine the output in more detail in order to understand
the deadlock. In the above example the thread main is locking object <0xf0c30560> and is
waiting to enter 0xf0c41ec8, which is locked by thread AWT-EventQueue-0. However, thread
AWT-EventQueue-0 is waiting to enter 0xf0c30560, which is locked by main.

The detail in the stack traces provides information to help find the deadlock.

5.2.2 Deadlock Not Detected
If the thread dump is printed and no deadlocks are found, then the issue might be a bug in
which a thread waiting on a monitor that is never notified. This could be a timing issue or a
general logic bug.

To find out more about the issue, examine each of the threads in the thread dump and each
thread that is blocked in Object.wait(). The caller frame in the stack trace indicates the class
and method that is invoking the wait() method. If the code was compiled with line number
information (the default), then this provides direction as to the code to examine. In most cases
you must have some knowledge of the application logic or library in order to diagnose this issue
further. In general you must understand how the synchronization works in the application and
in particular the details and conditions for when and where monitors are notified.

5.2.3 No Thread Dump
If the VM does not respond to a Ctrl-\ or Ctrl-Break, then it is possible that the VM is
deadlocked or hung for some other reason. In that case use the jstack utility (see “2.11 jstack

Utility” on page 53) to obtain a thread dump. Use the jstack -F pid option to force a stack
dump of the hung process. This also applies in the case where the application is not accessible or
the output is directed to an unknown location.

5.2 Diagnosing a Hung Process

Troubleshooting Guide for Java SE 6 with HotSpot VM • November 2008102

In the jstack output, examine each of the threads in the BLOCKED state. The top frame can
sometimes indicate why the thread is blocked, for example, Object.wait or Thread.sleep. The
rest of the stack will give an indication of what the thread is doing. This is particularly true when
the source has been compiled with line number information (the default) and you can cross
reference the source code.

If a thread is in the BLOCKED state and the reason is not clear, then use the -m option to get a
mixed stack. With the mixed stack output, it should be possible to identify why the thread is
blocked. If a thread is blocked trying to enter a synchronized method or block, then you will see
frames such as ObjectMonitor::enter near the top of the stack. Below is an example.

----------------- t@13 -----------------

0xff31e8b8 ___lwp_cond_wait + 0x4

0xfea8c810 void ObjectMonitor::EnterI(Thread*) + 0x2b8

0xfeac86b8 void ObjectMonitor::enter2(Thread*) + 0x250

:

Threads in the RUNNABLE state might also be blocked. The top frames in the mixed stack should
indicate what the thread is doing.

One specific thread to check is VMThread. This is the special thread used to execute operations
like garbage collection. It can be identified as the thread that is executing VMThread::run() in
its initial frames. On Solaris OS it is typically t@4. On Linux it should be identifiable using the
C++ mangled name _ZN8VMThread4loopEv.

In general the VM thread is in one of three states: waiting to execute a VM operation,
synchronizing all threads in preparation for a VM operation, or executing a VM operation. If
you suspect that a hang is a HotSpot VM bug rather than an application or class library
deadlock, then pay special attention to the VM thread.

If the VM thread appears to be stuck in SafepointSynchronize::begin, then this could
indicate an issue bringing the VM to a safepoint. A safepoint indicates that all threads executing
in the VM are blocked and waiting for a special operation, such as garbage collection, to
complete.

If the VM thread appears to be stuck in function, where function ends in doit, then this could
also indicate a VM problem.

In general, if you can execute the application from the command line, and you get to a state
where the VM does not respond to a Ctrl-\ or Ctrl-Break, it is more likely that you have
uncovered a VM bug, a thread library issue, or a bug in another library. If this occurs, obtain a
crash dump (see “7.4 Collecting Core Dumps” on page 116 for instructions on how to do this),
gather as much information as possible, and submit a bug report or support call.

One other tool to mention in the context of hung processes is the pstack utility on Solaris OS.
On Solaris 8 and 9 OS, this utility prints the thread stacks for LWPs in the target process. On
Solaris 10 OS and starting with the JDK 5.0 release, the output of pstack is similar, though not

5.2 Diagnosing a Hung Process

Chapter 5 • Troubleshooting Hanging or Looping Processes 103

identical, to the output from jstack -m. As with jstack, the Solaris 10 OS implementation of
pstack prints the fully qualified class name, method name, and bci. It will also print line
numbers for the cases where the source was compiled with line number information (the
default). This is useful for developers and administrators who are familiar with the other
utilities on Solaris OS that exercise features of the /proc file system.

The equivalent tool of pstack on Linux is lsstack. This utility is included in some distributions
and otherwise obtained from the sourceforge.net web site. At the time of this writing,
lsstack reported native frames only.

5.3 Solaris 8 OS Thread Library
The default thread library on Solaris 8 OS is often referred to as the T1 library. This thread
library implemented the m:n threading model, where m user threads are mapped to n
kernel-level threads (LWPs). Solaris 8 OS also shipped with an alternative and newer thread
library in /usr/lib/lwp. The alternative thread library is often referred to as the T2 library, and
it became the default thread library in Solaris 9 and 10 OS. In older releases of J2SE (pre-1.4.0 in
particular) there were a number of issues with the default thread library, for example, bugs in
the thread library, LWP synchronization problems, or LWP starvation. LWP starvation is a
scenario in which there are user threads in the runnable state but there are no kernel level
threads available.

Although the issues cited are historical, it should be noted that when the JDK software is
deployed on Solaris 8 OS, it still uses the T1 library by default. LWP starvation type issues do not
arise because the JDK release uses “bound threads” so that each user thread is bound to a kernel
thread. However in the event that you encounter an issue, such as a hang, which you believe is a
thread library issue, then you can instruct the HotSpot VM to use the T2 library by adding
/usr/lib/lwp to the LD_LIBRARY_PATH. To check if the T2 library is in use, issue the command
pldd <pid> to list the libraries loaded by the specified process.

5.3 Solaris 8 OS Thread Library

Troubleshooting Guide for Java SE 6 with HotSpot VM • November 2008104

Integrating Signal and Exception Handling

Sometimes developers have to integrate Java SE applications with code that uses signal or
exception handlers. This chapter provides information on how signals are handled in the
HotSpot Virtual Machine. It also describes the signal chaining facility that facilitates writing
applications that need to install their own signal handlers. The signal chaining facility is
available on Solaris OS and Linux.

6.1 Signal Handling on Solaris OS and Linux
The HotSpot Virtual Machine installs signal handlers to implement various features and to
handle fatal error conditions. For example, in an optimization to avoid explicit null checks in
cases where java.lang.NullPointerException will be thrown rarely, the SIGSEGV signal is
caught and handled, and the NullPointerException is thrown.

In general there are two categories of situations where signal/traps arise.

■ Situations in which signals are expected and handled. Examples include the implicit null
handling cited above. Another example is the safepoint polling mechanism, which protects a
page in memory when a safepoint is required. Any thread that accesses that page causes a
SIGSEGV, which results in the execution of a stub that brings the thread to a safepoint.

■ Unexpected signals. This includes a SIGSEGV when executing in VM code, JNI code, or
native code. In these cases the signal is unexpected, so fatal error handling is invoked to
create the error log and terminate the process.

The following table lists the signals that are currently used on Solaris OS and Linux. The
mention “optional” means that the signal is not necessary when the -Xrs option is specified, as
explained in “6.1.1 Reducing Signal Usage” on page 106. The mention “configurable” means
that alternative signals may be specified, as explained in “6.1.2 Alternative Signals” on page 106.
See “6.1.3 Signal Chaining” on page 107 for detailed information about signal chaining.

6C H A P T E R 6

105

Signal Description

SIGSEGV, SIGBUS, SIGFPE, SIGPIPE,
SIGILL

Used in the implementation for implicit null check, and so forth.

SIGQUIT Thread dump support: To dump Java stack traces at the standard error
stream. (Optional.)

SIGTERM, SIGINT, SIGHUP Used to support the shutdown hook mechanism
(java.lang.Runtime.addShutdownHook) when the VM is terminated
abnormally. (Optional.)

SIGUSR1 Used in the implementation of the java.lang.Thread.interrupt
method. (Configurable.) Not used starting with Solaris 10 OS. Reserved
on Linux.

SIGUSR2 Used internally. (Configurable.) Not used starting with Solaris 10 OS.

SIGABRT The HotSpot VM does not handle this signal. Instead it calls the abort
function after fatal error handling. If an application uses this signal then
it should terminate the process to preserve the expected semantics.

6.1.1 Reducing Signal Usage
The -Xrs option instructs the HotSpot VM to reduce its signal usage. With this option fewer
signals are used, although the VM installs its own signal handler for essential signals such as
SIGSEGV. In the above table the signals tagged as optional are not used when the -Xrs option is
specified. Specifying this option means that the shutdown hook mechanism will not execute if
the process receives a SIGQUIT, SIGTERM, SIGINT, or SIGHUP. Shutdown hooks will execute, as
expected, if the VM terminates normally (last non-daemon thread completes or the
System.exit method is used).

6.1.2 Alternative Signals
On Solaris 8 and 9 OS, the -XX:+UseAltSigs option can be used to instruct the HotSpot VM to
use alternative signals to SIGUSR1 and SIGUSR2. Starting with Solaris 10 OS, this option is
ignored, as the operating system reserves two additional signals (called SIGJVM1 and SIGJVM2).

On Linux, the handler for SIGUSR1 cannot be overridden. SIGUSR2 is used to implement
suspend and resume. However it is possible to specify an alternative signal to be used instead of
SIGUSR2. This is done by specifying the _JAVA_SR_SIGNUM environment variable. If this
environment variable is set, it must be set to a value larger than the maximum of SIGSEGV and
SIGBUS.

6.1 Signal Handling on Solaris OS and Linux

Troubleshooting Guide for Java SE 6 with HotSpot VM • November 2008106

6.1.3 Signal Chaining
If an application with native code requires its own signal handlers, then it might need to be used
with the signal chaining facility. The signal chaining facility offers the following features:

■ Support for pre-installed signal handlers when the HotSpot VM is created.
When the VM is first created, existing signal handlers, that is, handlers for signals that are
used by the VM, are saved. During execution, when any of these signals are raised and found
not to be targeted at the Java HotSpot VM, the pre-installed handlers are invoked. In other
words, pre-installed handlers are chained behind the VM handlers for these signals.

■ Support for signal handler installation after the HotSpot VM is created, either inside JNI
code or from another native thread.
An application can link and load the libjsig.so shared library before
libc/libthread/libpthread. This library ensures that calls such as signal(), sigset(),
and sigaction() are intercepted so that they do not actually replace the Java HotSpot VM's
signal handlers if the handlers conflict with those already installed by the Java HotSpot VM.
Instead, these calls save the new signal handlers, or chain them behind the VM-installed
handlers. During execution, when any of these signals are raised and found not to be
targeted at the Java HotSpot VM, the pre-installed handlers are invoked.
If support for signal handler installation after the creation of the VM is not required, then
the libjsig.so shared library is not needed.
Perform one of these two procedures to use the libjsig.so shared library.
■ Link it with the application that creates/embeds a HotSpot VM, for example:

cc -L libjvm.so-directory -ljsig -ljvm java_application.c

■ Use the LD_PRELOAD environment variable, for example:
export LD_PRELOAD=libjvm.so-directory/libjsig.so; java_application(ksh)

setenv LD_PRELOAD libjvm.so-directory/libjsig.so; java_application(csh)

The interposed signal(), sigset(), and sigaction() return the saved signal handlers, not
the signal handlers installed by the Java HotSpot VM and which are seen by the operating
system.

Note that SIGUSR1 cannot be chained. If an application attempts to chain this signal on Solaris
OS, then the HotSpot VM terminates with the following fatal error:

Signal chaining detected for VM interrupt signal, try -XX:+UseAltSigs

In addition, the SIGQUIT, SIGTERM, SIGINT, and SIGHUP signals cannot be chained. If the
application needs to handle these signals, consider using the -Xrs option.

On Solaris OS, the SIGUSR2 signal can be chained, but only for non-Java and non-VM threads;
that is, it can only be used for native threads created by the application that do not attach to the
VM.

6.1 Signal Handling on Solaris OS and Linux

Chapter 6 • Integrating Signal and Exception Handling 107

6.2 Exception Handling on Windows
On Windows, an exception is an event that occurs during the execution of a program. There are
two kinds of exceptions: hardware exceptions and software exceptions. Hardware exceptions
are comparable to signals such as SIGSEGV and SIGKILL on Solaris OS and Linux. Software
exceptions are initiated explicitly by applications or the operating system using the
RaiseException() API.

On Windows, the mechanism for handling both hardware and software exceptions is called
structured exception handling (SEH). This is stack frame-based exception handling similar to
the C++ and Java exception handling mechanism. In C++ the __try and __except keywords
are used to guard a section of code that might result in an exception, as in the following
example:

__try {

// guarded body of code

} __except (filter-expression) {

// exception-handler block

}

The __except block is filtered by a filter expression that uses an exception code (integer code
returned by the GetExceptionCode() API), or exception information
(GetExceptionInformation() API), or both.

The filter expression should evaluate to one of the following values:
■ EXCEPTION_CONTINUE_EXECUTION = -1

The filter expression has repaired the situation, and execution continues where the
exception occurred. Unlike some exception schemes, SEH supports the resumption model as
well. This is much like Unix signal handling in the sense that after the signal handler
finishes, the execution continues where the program was interrupted. The difference is that
the handler in this case is just the filter expression itself and not the __except block.
However, the filter expression might also involve a function call.

■ EXCEPTION_CONTINUE_SEARCH = 0
The current handler cannot handle this exception. Continue the handler search for the next
handler. This is similar to the catch block not matching an exception type in C++ and Java.

■ EXCEPTION_EXECUTE_HANDLER = 1
The current handler matches and can handle the exception. The __except block is executed.

The __try and __finally keywords are used to construct a termination handler as shown
below.

__try {

// guarded body of code

} __finally {

6.2 Exception Handling on Windows

Troubleshooting Guide for Java SE 6 with HotSpot VM • November 2008108

// __finally block

}

When control leaves the __try block (after exception or without exception), the __finally
block is executed. Inside the __finally block, the AbnormalTermination() API can be called
to test whether control continued after the exception or not.

Windows programs can also install a top-level unhandled exception filter function to catch
exceptions that are not handled in a __try/__except block. This function is installed on a
process-wide basis using the SetUnhandledExceptionFilter() API. If there is no handler for
an exception, then UnhandledExceptionFilter() is called, and this will call the top-level
unhandled exception filter function, if any, to catch that exception. This function also shows a
message box to notify the user about the unhandled exception.

Windows exceptions are comparable to Unix synchronous signals that are attributable to the
current execution stream. In Windows, asynchronous events such as console events (for
example, the user pressing Ctrl-C at the console) are handled by the console control handler
registered using the SetConsoleCtlHandler() API.

If an application uses the signal() API on Windows, then the C runtime library (CRT) maps
both Windows exceptions and console events to appropriate signals or C runtime errors. For
example, CRT maps Ctrl-C to SIGINT and all other console events to SIGBREAK. Similarly, if you
register the SIGSEGV handler, the C runtime library translates the corresponding exception to a
signal. The CRT library startup code implements a __try/__except block around the main()
function. The CRT's exception filter function (named _XcptFilter) maps the Win32
exceptions to signals and dispatches signals to their appropriate handlers. If a signal's handler is
set to SIG_DFL (default handling), then _XcptFilter calls UnhandledExceptionFilter.

With Windows XP or Windows 2003, the vectored exception handling mechanism can also be
used. Vectored handlers are not frame-based handlers. A program can register zero or more
vectored exception handlers using the AddVectoredExceptionHandler API. Vectored handlers
are invoked before structured exception handlers, if any, are invoked, regardless of where the
exception occurred.

Vectored exception handler returns one of the following values:

■ EXCEPTION_CONTINUE_EXECUTION: Skip next vectored and SEH handlers.
■ EXCEPTION_CONTINUE_SEARCH: Continue next vectored or SEH handler.

Refer to the Microsoft web site at http://www.microsoft.com for further information on
Windows exception handling.

6.2.1 Signal Handling in the HotSpot Virtual Machine
The HotSpot VM installs a top-level exception handler using the
SetUnhandledExceptionFilter API (or the AddVectoredExceptionHandler API for 64-bit)
during VM initialization.

6.2 Exception Handling on Windows

Chapter 6 • Integrating Signal and Exception Handling 109

http://www.microsoft.com

It also installs win32 SEH using a __try /__except block in C++ around the thread (internal)
start function call for each thread created.

Finally, it installs an exception handler around JNI functions.

If an application must handle structured exceptions in JNI code, it can use __try /__except
statements in C++. However, if it must use the vectored exception handler in JNI code then the
handler must return EXCEPTION_CONTINUE_SEARCH to continue to the VMs exception handler.

In general, there are two categories of situations in which exceptions arise:

■ Situations where signals are expected and handled. Examples include the implict null
handling cited above where accessing a null causes an EXCEPTION_ACCESS_VIOLATION,
which is handled.

■ Unexpected exceptions. An example is EXCEPTION_ACCESS_VIOLATION when executing in
VM code or in JNI or native code. In these cases the signal is unexpected, and fatal error
handling is invoked to create the error log and terminate the process.

6.2.2 Console Handlers
The HotSpot Virtual Machine registers console events as shown in the following table.

Console Event Signal Usage

CTRL_C_EVENT SIGINT Terminate process. (optional)

CTRL_CLOSE_EVENT

CTRL_LOGOFF_EVENT

CTRL_SHUTDOWN_EVENT

SIGTERM Used by the shutdown hook mechanism when the
VM is terminated abnormally. (optional)

CTRL_BREAK_EVENT SIGBREAK Thread dump support. To dump Java stack traces at
the standard error stream. (optional)

If an application must register its own console handler, then the -Xrs option can be used. With
this option, shutdown hooks are not run on SIGTERM (with above mapping of events) and
thread dump support is not available on SIGBREAK (with above mapping Ctrl-Break event).

6.2 Exception Handling on Windows

Troubleshooting Guide for Java SE 6 with HotSpot VM • November 2008110

Submitting Bug Reports

This chapter provides guidance on how to submit a bug report. It includes suggestions about
what to try before submitting a report and what data to collect for the report.

7.1 Checking for Existing Fixes in Update Releases
The current platform is Java SE 6. Regularly scheduled updates to this release contain fixes for a
set of critical bugs identified since the initial release of the platform. When an update release
becomes available, it becomes the default download at the Java SE Downloads site
(http://java.sun.com/javase/downloads).

The download site includes release notes that list the bug fixes in the release. Each bug in the list
is linked to the bug description in the bug database. The release notes also include the list of
fixes in previous update releases. If you encounter an issue, or suspect a bug, then, as an early
step in the diagnosis, check the list of fixes that are available in the most recent update release.

Sometimes it is not obvious if an issue is a duplicate of a bug that is already fixed. Therefore,
where possible, test with the latest update release to see if the problem persists.

7.2 Preparing to Submit a Bug Report
Before submitting a big report, consider the following recommendations:

■ Collect as much relevant data as possible. For example, generate a thread-dump in the case
of a deadlock, or locate the core file (where applicable) and hs_err file in the case of a crash.
In all cases it is important to document the environment and the actions performed just
before the problem is encountered.

■ Where applicable, try to restore the original state and reproduce the problem using the
documented steps. This helps to determine if the problem is reproducible or an intermittent
issue.

7C H A P T E R 7

111

http://java.sun.com/javase/downloads
http://java.sun.com/javase/downloads

■ If the issue is reproducible, try to narrow down the problem. In some cases, a bug can be
demonstrated with a small standalone test case. Bugs that are demonstrated by small test
cases will typically be easy to diagnose when compared to test cases that consist of a large
complex application.

■ Search the bug database to see if this bug or a similar bug has been reported. If the bug has
already been reported, the bug report might have further information, such as the following:
■ If the bug has already been fixed, the release in which it was fixed.
■ A workaround for the problem.
■ Comments in the evaluation that explain, in further detail, the circumstances that cause

the bug to arise.

The bug database is located at http://bugs.sun.com/bugdatabase/index.jsp.
■ If you conclude that the bug has not already been reported, submit a new bug.

Before submitting a bug, verify that the environment where the problem arises is a supported
configuration. See the Supported System Configurations site (http://java.sun.com/javase/
6/webnotes/install/system-configurations.html).

In addition to the system configurations, check the list of supported locales. See the Supported
Locales web page (http://java.sun.com/javase/6/docs/technotes/guides/intl/
locale.doc.html).

In the case of the Solaris Operating System, check the recommended patch cluster for the
operating system release to ensure that the recommended patches are installed. The
recommended patch list can be obtained at thePatches & Updates from the Sun Update
Connection (http://sunsolve.sun.com/pub-cgi/show.pl?target=patches/JavaSE)

7.3 Collecting Data for a Bug Report
In general it is recommended to collect as much relevant data as possible when you create a bug
report or submit a support call. This section suggests the data to collect and, where applicable, it
provides recommendations for the commands or general procedure for obtaining the data.

The following data can be collected prior to submitting a bug report:

■ Hardware details
■ Operating system details
■ Java SE version information
■ Command-line options
■ Environment variables
■ Fatal error log (in the case of a crash)
■ Core or crash dump (in the case of a crash and possibly a hang)
■ Detailed description of the problem, including test case (where possible)

7.3 Collecting Data for a Bug Report

Troubleshooting Guide for Java SE 6 with HotSpot VM • November 2008112

http://bugs.sun.com/bugdatabase/index.jsp
http://java.sun.com/javase/6/webnotes/install/system-configurations.html
http://java.sun.com/javase/6/webnotes/install/system-configurations.html
http://java.sun.com/javase/6/docs/technotes/guides/intl/locale.doc.html
http://java.sun.com/javase/6/docs/technotes/guides/intl/locale.doc.html
http://java.sun.com/javase/6/docs/technotes/guides/intl/locale.doc.html
http://sunsolve.sun.com/pub-cgi/show.pl?target=patches/JavaSE
http://sunsolve.sun.com/pub-cgi/show.pl?target=patches/JavaSE

■ Logs or trace information (where applicable)
■ Results from troubleshooting steps

The following sections present more detail for each type of data.

7.3.1 Hardware Details
Sometimes a bug arises or can be reproduced only on certain hardware configurations. If a fatal
error occurs, the error log might contain the hardware details. If an error log is not available,
document in the bug report the number and the type of processors in the machine, the clock
speed, and, where applicable and if known, some details on the features of that processor. For
example, in the case of Intel processors, it might be relevant that hyper-threading is available.

7.3.2 Operating System
On the Solaris Operating System, the showrev -a command prints the operating system
version and patch information.

On Linux, it is important to know which distribution and version is used. Sometimes the
/etc/*release file indicates the release information, but as components and packages can be
upgraded independently, it is not always a reliable indication of the configuration. Therefore, in
addition to the information from the *release file, collect the following information:

■ The kernel version. This can be obtained using the uname -a command.
■ The glibc version. The rpm -q glibc command indicates the patch level of glibc.
■ The thread library. There are two thread libraries for Linux, namely LinuxThreads and

NPTL. The LinuxThreads library is used on 2.4 and older kernels and has “fixed stack” and
“floating stack” variants. The Native POSIX Thread Library (NTPL) is used on the 2.6 kernel.
Some Linux releases (such as RHEL3) include backports of NPTLto the 2.4 kernel. Use the
command getconf GNU_LIBPTHREAD_VERSION to determine which thread library is used. If
the getconf command returns an error to say that the variable does not exist, then it is likely
that you are using an old kernel with the LinuxThreads library.

7.3.3 Java SE Version
The Java SE version string can be obtained using the java -version command.

Multiple versions of Java SE may be installed on the same machine. Therefore, ensure that you
use the appropriate version of the java command by verifying that the installation bin

directory appears in your PATH environment variable before other installations.

7.3 Collecting Data for a Bug Report

Chapter 7 • Submitting Bug Reports 113

7.3.4 Command-Line Options
If the bug report does not include a fatal error log, it is important to document the full
command line and all its options. This includes any options that specify heap settings (for
example, the -mx option) or any -XX options that specify HotSpot specific options.

One of the features in Java SE is garbage collector ergonomics. On server-class machines the
java command launches the HotSpot Server VM and a parallel garbage collector. A machine is
considered to be a server machine if it has at least two processors and 2GB or more of memory.

The -XX:+PrintCommandLineFlags option can be used to verify the command-line options.
This option prints all command-line flags to the VM. The command-line options can also be
obtained for a running VM or core file using the jmap utility.

7.3.5 Environment Variables
Sometimes problems arise due to environment variable settings. When creating the bug report,
indicate the values of the following Java environment variables (if set).
■ JAVA_HOME

■ JRE_HOME

■ JAVA_TOOL_OPTIONS

■ _JAVA_OPTIONS

■ CLASSPATH

■ JAVA_COMPILER

■ PATH

■ USERNAME

In addition, collect the following operating-system-specific environment variables.
■ On Solaris OS and Linux, collect the values of the following environment variables.

■ LD_LIBRARY_PATH

■ LD_PRELOAD

■ SHELL

■ DISPLAY

■ HOSTTYPE

■ OSTYPE

■ ARCH

■ MACHTYPE

■ On the Linux operating system, collect the values of the following environment variables.
■ LD_ASSUME_KERNEL

■ _JAVA_SR_SIGNUM

■ On the Windows operating system, collect the values of the following environment
variables.

7.3 Collecting Data for a Bug Report

Troubleshooting Guide for Java SE 6 with HotSpot VM • November 2008114

■ OS

■ PROCESSOR_IDENTIFIER

■ _ALT_JAVA_HOME_DIR

7.3.6 Fatal Error Log
When a fatal error occurs, an error log is created. See Appendix C, “Fatal Error Log,” for detailed
information about this file.

The error log contains much information obtained at the time of the fatal error, such as version
and environment information, details on the threads that provoked the crash, and so forth.

If the fatal error log is generated, be sure to include it in the bug report or support call.

7.3.7 Core or Crash Dump
Core and crash dumps can be very useful when trying to diagnose a system crash or hung
process. The procedure for generating a dump is described in “7.4 Collecting Core Dumps” on
page 116.

7.3.8 Detailed Description of the Problem
When creating a problem description, try to include as much relevant information as possible.
Describe the application, the environment, and most importantly the events leading up to the
time when the problem was encountered.

■ If the problem is reproducible, list the stepsthat are required to demonstrate the problem.
■ If the problem can be demonstrated with a small test case, include the test case and the

commands to compile and execute the test case.
■ If the test case or problem requires third-party code (for example, a commercial or open

source library or package), provide details on where and how to obtain the library.

Sometimes the problem can be reproduced only in a complex application environment. In this
case, the description, coupled with logs, core file, and other relevant information, might be the
sole means to diagnose the issue. In these situations the description should indicate if the
submitter is willing to run further diagnosis or run test binaries on the system where the issue
arises.

7.3.9 Logs and Traces
In some cases, log or trace output can help to quickly determine the cause of a problem.

7.3 Collecting Data for a Bug Report

Chapter 7 • Submitting Bug Reports 115

For example, in the case of a performance issue the output of the -verbose:gc option can help
in to diagnosing the problem. (This is the option to enable output from the garbage collector.)

In other cases the output from the jstat command can be used to capture statistical
information over the time period leading up to the problem.

In the case of a deadlock or a hung VM (for example, due to a loop) the thread stacks can help
diagnose the problem. The thread stacks are obtained using Ctrl-\ on Solaris OS and Linux and
Ctrl-Break on the Windows operating system.

In general, include all relevant logs, traces and other output in the bug report or support call.

7.3.10 Results from Troubleshooting Steps
Before submitting the bug report, be sure to document any troubleshooting steps that were
performed.

For example, if the problem is a crash and the application has native libraries, you might have
already run the application with the -Xcheck:jni option to reduce the likelihood that the bug is
in the native code. Another case could be a crash that occurs with the HotSpot Server VM
(-server option). If you have also tested with the HotSpot Client VM (-client option) and the
problem does not occur, this gives an indication that the bug might be specific to the HotSpot
Server VM.

In general, include in the bug report all troubleshooting steps and results that have already
occurred. This type of information can often reduce the time that is required to diagnose an
issue.

7.4 Collecting Core Dumps
This section explains how to generate and collect core dumps (also known as crash dumps). A
core dump or a crash dump is a memory snapshot of a running process. A core dump can be
automatically created by the operating system when a fatal or unhandled error (for example,
signal or system exception) occurs. Alternatively, a core dump can be forced by means of
system-provided command-line utilities. Sometimes a core dump is useful when diagnosing a
process that appears to be hung; the core dump may reveal information about the cause of the
hang.

When collecting a core dump, be sure to gather other information about the environment so
that the core file can be analyzed (for example, OS version, patch information, and the fatal
error log).

Core dumps do not usually contain all the memory pages of the crashed or hung process. With
each of the operating systems discussed here, the text (or code) pages of the process are not

7.4 Collecting Core Dumps

Troubleshooting Guide for Java SE 6 with HotSpot VM • November 2008116

included in core dumps. But to be useful, a core dump must consist of pages of heap and stack as
a minimum. Collecting non-truncated good core dump files is essential for postmortem
analysis of the crash.

7.4.1 Collecting Core Dumps on Solaris OS
With the Solaris Operating System, unhandled signals such as a segmentation violation, illegal
instruction, and so forth, result in a core dump. By default, the core dump is created in the
current working directory of the process and the name of the core dump file is core. The user
can configure the location and name of the core dump using the core file administration utility,
coreadm. This procedure is fully described in the man page for the coreadm utility.

The ulimit utility is used to get or set the limitations on the system resources available to the
current shell and its descendants. Use the ulimit -c command to check or set the core file size
limit. Make sure that the limit is set to unlimited; otherwise the core file could be truncated.
Note that ulimit is a Bash shell built-in command; on a C shell, use the limit command.

Ensure that any scripts that are used to launch the VM or your application do not disable core
dump creation.

The gcore utility can be used to get a core image of running processes. This utility accepts a
process id (pid) of the process for which you want to force core dump.

To get the list of Java processes running on the machine, you can use any of the following
commands:
■ ps -ef | grep java

■ pgrep java

■ jps command. The jps command-line utility does not perform name matching (that is,
looking for “java” in the process command name) and so it can list Java VM embedded
processes as well as the Java processes.

7.4.1.1 Using the ShowMessageBoxOnErrorOption on Solaris OS
A Java process can be started with the -XX:+ShowMessageBoxOnError command-line option.
When a fatal error is encountered, the process prints a message to standard error and waits for a
yes or no response from standard input. Below is an example of output when an unexpected
signal occurs.

===

Unexpected Error

SIGSEGV (0xb) at pc=0xfeba31ac, pid=8677, tid=2

Do you want to debug the problem?

To debug, run ’dbx - 8677’; then switch to thread 2

7.4 Collecting Core Dumps

Chapter 7 • Submitting Bug Reports 117

Enter ’yes’ to launch dbx automatically (PATH must include dbx)

Otherwise, press RETURN to abort...

===

Before answering yes or pressing RETURN, use the gcore utility to force a core dump. Then
you can type yes to launch the dbx debugger.

7.4.1.2 Suspending a Process using truss

In situations where it is not possible to specify the -XX:+ShowMessageBoxOnError option, you
might be able to use the truss utility. This Solaris OS utility is used to trace system calls and
signals. You can use this utility to suspend the process when it reaches a specific function or
system call.

The following command shows how to use the truss utility to suspend a process when the exit
system call is executed (in other words, the process is about to exit).

$ truss -t \!all -s \!all -T exit -p pid

When the process calls exit, it will be suspended. At this point, you can attach the debugger to
the process or call gcore to force a core dump.

7.4.2 Collecting Core Dumps on Linux
On the Linux operating system, unhandled signals such as segmentation violation, illegal
instruction, and so forth, result in a core dump. By default, the core dump is created in the
current working directory of the process and the name of the core dump file is core.pid, where
pid is the process id of the crashed Java process.

The ulimit utility is used to get or set the limitations on the system resources available to the
current shell and its descendants. Use the ulimit -c command to check or set the core file size
limit. Make sure that the limit is set to unlimited; otherwise the core file could be truncated.
Note that ulimit is a Bash shell built-in command; on a C shell, use the limit command.

Ensure that any scripts that are used to launch the VM or your application do not disable core
dump creation.

You can use the gcore command in the gdb (GNU Debugger) interface to get a core image of a
running process. This utility accepts the pid of the process for which you want to force the core
dump.

To get the list of Java processes running on the machine, you can use any of the following
commands:

■ ps -ef | grep java

■ pgrep java

7.4 Collecting Core Dumps

Troubleshooting Guide for Java SE 6 with HotSpot VM • November 2008118

■ jps command. The jps command-line utility does not perform name matching (that is,
looking for “java” in the process command name) and so it can list Java VM embedded
processes as well as the Java processes.

7.4.2.1 Using the ShowMessageBoxOnErrorOption on Linux
A Java process can be started with the -XX:+ShowMessageBoxOnError command-line option.
When a fatal error is encountered, the process prints a message to standard error and waits for a
yes or no response from standard input. Below is an example of output when an unexpected
signal occurs.

===

Unexpected Error

SIGSEGV (0xb) at pc=0x06232e5f, pid=11185, tid=8194

Do you want to debug the problem?

To debug, run ’gdb /proc/11185/exe 11185’; then switch to thread 8194

Enter ’yes’ to launch gdb automatically (PATH must include gdb)

Otherwise, press RETURN to abort...

===

Type yes to launch the gdb (GNU Debugger) interface, as suggested by the error report shown
above. In the gdb prompt, you can give the gcore command. This command creates a core
dump of the debugged process with the name core.pid, where pid is the process ID of the
crashed process. Make sure that the gdb gcore command is supported in your versions of gdb.
Look for help gcore in the gdb command prompt.

7.4.3 Reasons for Not Getting a Core File
The following list explains the major reasons that a core file might not be generated. This list
pertains to both Solaris OS and Linux, unless specified otherwise.

■ The current user does not have permission to write in the current working directory of the
process.

■ The current user has write permission on the current working directory, but there is already
a file named core that has read-only permission.

■ The current directory does not have enough space or there is no space left.
■ The current directory has a subdirectory named core.
■ The current working directory is remote. It might be mapped by NFS (Network File

System), and NFS failed just at the time the core dump was about to be created.
■ Solaris OS only: The coreadm tool has been used to configure the directory and name of the

core file, but any of the above reasons apply for the configured directory or filename.

7.4 Collecting Core Dumps

Chapter 7 • Submitting Bug Reports 119

■ The core file size limit is too low. Check your core file limit using the ulimit -c command
(Bash shell) or the limit -c command (C shell). If the output from this command is not
unlimited, the core dump file size might not be large enough. If this is the case, you will get
truncated core dumps or no core dump at all. In addition, ensure that any scripts that are
used to launch the VM or your application do not disable core dump creation.

■ The process is running a setuid program and therefore the operating system will not dump
core unless it is configured explicitly.

■ Java specific: If the process received SIGSEGV or SIGILL but no core dump, it is possible that
the process handled it. For example, HotSpot VM uses the SIGSEGV signal for legitimate
purposes, such as throwing NullPointerException, deoptimization, and so forth. The
signal is unhandled by the Java VM only if the current instruction (PC) falls outside Java VM
generated code. These are the only cases in which HotSpot dumps core.

■ Java specific: The JNI Invocation API was used to create the VM. The standard Java launcher
was not used. The custom Java launcher program handled the signal by just consuming it
and produced the log entry silently. This situation has occurred with certain Application
Servers and Web Servers. These Java VM embedding programs transparently attempt to
restart (fail over) the system after an abnormal termination. In this case, the fact that a core
dump is not produced is a feature and not a bug.

7.4.4 Collecting Crash Dumps on Windows
On the Windows operating system there are three types of crash dumps.

■ Dr. Watson logfile, which is a text error log file that includes faulting stack trace and a few
other details.

■ User minidump, which can be considered a “partial” core dump. It is not a complete core
dump, because it does not contain all the useful memory pages of the process.

■ Dr. Watson full-dump, which is equivalent to a Unix core dump. This dump contains most
memory pages of the process (except for code pages).

When an unexpected exception occurs on Windows, the action taken depends on two values in
the following registry key.

\\HKEY_LOCAL_MACHINE\Software\Microsoft\Windows NT\CurrentVersion\AeDebug

The two values are named Debugger and Auto. The Auto value indicates if the debugger
specified in the value of the Debugger entry starts automatically when an application error
occurs.

■ A value of 0 for Auto means that the system displays a message box notifying the user when
an application error occurs.

■ A value of 1 for Auto means that the debugger starts automatically.

The value of Debugger is the debugger command that is to be used to debug program errors.

7.4 Collecting Core Dumps

Troubleshooting Guide for Java SE 6 with HotSpot VM • November 2008120

When a program error occurs, Windows examines the Auto value and if the value is 0 it
executes the command in the Debugger value. If the value for Debugger is a valid command, a
message box is created with two buttons: OK and Cancel. If the user clicks OK, the program is
terminated. If the user clicks Cancel, the specified debugger is started. If the value for the Auto
entry is set to 1 and the value for the Debugger entry specifies the command for a valid
debugger, the system automatically starts the debugger and does not generate a message box.

7.4.4.1 Configuring Dr. Watson
The Dr. Watson debugger is used to create crash dump files. By default, the Dr. Watson
debugger (drwtsn32.exe) is installed into the Windows system folder
(%SystemRoot%\System32).

To install Dr. Watson as the postmortem debugger, run the following command.

drwtsn32 -i

To configure name and location of crash dump files, run drwtsn32 without any options.

drwtsn32

In the Dr. Watson GUI window, make sure that the Create Crash Dump File checkbox is set and
that the crash dump file path and log file path are configured in their respective text fields.

Dr. Watson may be configured to create a full dump using the registry. The registry key is as
follows.

System Key: [HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\DrWatson]

Entry Name: CreateCrashDump

Value: (0 = disabled, 1 = enabled)

Note that if the application handles the exception, then the registry-configured debugger is not
invoked. In that case it might be appropriate to use the -XX:+ShowMessageBoxOnError
command-line option to force the process to wait for user intervention on fatal error
conditions.

7.4.4.2 Forcing a Crash Dump
On the Windows operating system, the userdump command-line utility can be used to force a
Dr. Watson dump of a running process. The userdump utility does not ship with Windows but
instead is released as a component of the OEM Support Tools package.

An alternative way to force a crash dump is to use the windbg debugger. The main advantage of
using windbg is that it can attach to process in a non-invasive manner (that is, read-only).
Normally Windows terminates a process after a crash dump is obtained but with the
non-invasive attach it is possible to obtain a crash dump and let the process continue. To attach
the debugger non-invasively requires selecting the Attach to Process option and clicking the
Noninvasive checkbox.

7.4 Collecting Core Dumps

Chapter 7 • Submitting Bug Reports 121

When the debugger is attached, a crash dump can be obtained using the following command.

.dump /f crash.dmp

The windbg debugger is included in the “Debugging Tools for Windows” download.

An additional utility in this download is the dumpchk.exe utility, which can verify that a
memory dump file has been created correctly.

Both userdump.exe and windbg require the process id (pid) of the process. The userdump -p
command lists the process and program for all processes. This is useful if you know that the
application is started with the java.exe launcher. However, if a custom launcher is used
(embedded VM), it might be difficult to recognize the process. In that case you can use thejps
command line utility as it lists the pids of the Java processes only.

As with Solaris OS and Linux, you can also use the -XX:+ShowMessageBoxOnError
command-line option on Windows. When a fatal error is encountered, the process shows a
message box and waits for a yes or no response from the user.

Before clicking Yes or No, you can use the userdump.exe utility to generate the Dr. Watson
dump for the Java process. This utility can also be used for the case where the process appears to
be hung.

7.4 Collecting Core Dumps

Troubleshooting Guide for Java SE 6 with HotSpot VM • November 2008122

Environment Variables and System Properties

This section describes environment variables and system properties that can be useful in
troubleshooting situations.

■ “A.1 JAVA_HOME Environment Variable” on page 123
■ “A.2 JAVA_TOOL_OPTIONS Environment Variable” on page 123
■ “A.3 java.security.debug System Property” on page 124

See also “7.3.5 Environment Variables” on page 114 in “7.3 Collecting Data for a Bug Report”
on page 112.

A.1 JAVA_HOME Environment Variable
The JAVA_HOME environment variable indicates the directory where the JDK software is
installed.

A.2 JAVA_TOOL_OPTIONS Environment Variable
In many environments the command line to start the application is not readily accessible. This
often arises with applications that use embedded VMs (meaning they use the JNI Invocation
API to start the VM), or where the startup is deeply nested in scripts. In these environments the
JAVA_TOOL_OPTIONS environment variable can be useful to augment a command line.

When this environment variable is set, the JNI_CreateJavaVM function (in the JNI Invocation
API) prepends the value of the environment variable to the options supplied in its
JavaVMInitArgs argument. In some cases this option is disabled for security reasons, for
example, on Solaris OS the option is disabled when the effective user or group ID differs from
the real ID.

AA P P E N D I X A

123

This environment variable allows you to specify the initialization of tools, specifically the
launching of native or Java programming language agents using the -agentlib or -javaagent
options. In the following example the environment variable is set so that the HPROF profiler is
launched when the application is started.

$ export JAVA_TOOL_OPTIONS="-agentlib:hprof"

This variable can also be used to augment the command line with other options for diagnostic
purposes. For example, you can supply the -XX:OnError option to specify a script or command
to be executed when a fatal error occurs.

Since this environment variable is examined at the time that JNI_CreateJavaVM is called, it
cannot be used to augment the command line with options that would normally be handled by
the launcher, for example, VM selection using the -client or the -server option.

The JAVA_TOOL_OPTIONS environment variable is fully described in the
JAVA_TOOL_OPTIONS section of the JVM Tool Interface documentation
(http://java.sun.com/javase/6/docs/platform/jvmti/jvmti.html#tooloptions).

A.3 java.security.debug System Property
The java.security.debug system property controls whether the security system of the JRE
prints trace messages during execution. This option can be useful when diagnosing an issue
involving a security manager when a SecurityException is thrown.

The property can have the following values:

■ access - print all checkPermission results
■ jar - print jar verification information
■ policy - print policy information
■ scl - print permissions that SecureClassLoader assigns

The following sub-options can be used with the access option:

■ stack - include stack trace
■ domain - dump all domains in context
■ failure - before throwing exception, dump the stack and domain that did not have

permission

For example, to print all checkPermission results and trace all domains in context, set the
java.security.debug property to access,stack. To trace access failures, set the property to
access,failure.

The following example shows the output of a checkPermission failure.

A.3 java.security.debug System Property

Troubleshooting Guide for Java SE 6 with HotSpot VM • November 2008124

http://java.sun.com/javase/6/docs/platform/jvmti/jvmti.html#tooloptions
http://java.sun.com/javase/6/docs/platform/jvmti/jvmti.html#tooloptions

$ java -Djava.security.debug="access,failure" Application

access denied (java.net.SocketPermission server.foobar.com resolve

)

java.lang.Exception: Stack trace

at java.lang.Thread.dumpStack(Thread.java:1158)

at java.security.AccessControlContext.checkPermission

(AccessControlContext.java:253)

at java.security.AccessController.checkPermission(AccessController.java:427)

at java.lang.SecurityManager.checkPermission(SecurityManager.java:532)

at java.lang.SecurityManager.checkConnect(SecurityManager.java:1031)

at java.net.InetAddress.getAllByName0(InetAddress.java:1117)

at java.net.InetAddress.getAllByName0(InetAddress.java:1098)

at java.net.InetAddress.getAllByName(InetAddress.java:1061)

at java.net.InetAddress.getByName(InetAddress.java:958)

at java.net.InetSocketAddress.<init>(InetSocketAddress.java:124)

at java.net.Socket.<init>(Socket.java:178)

at Test.main(Test.java:7)

For more information on the java.security.debug system property, refer to the Security
Tutorial (http://java.sun.com/
developer/onlineTraining/Security/Fundamentals/Security.html).

A.3 java.security.debug System Property

Appendix A • Environment Variables and System Properties 125

http://java.sun.com/developer/onlineTraining/Security/Fundamentals/Security.html
http://java.sun.com/developer/onlineTraining/Security/Fundamentals/Security.html
http://java.sun.com/developer/onlineTraining/Security/Fundamentals/Security.html

126

Command-Line Options

This section describes some command line options that can be useful in diagnosing problems.

B.1 HotSpot VM Command-Line Options
Command-line options that are prefixed with -XX are specific to the Java HotSpot Virtual
Machine. Many of these options are important for performance tuning and diagnostic
purposes, and are therefore described in this appendix. All the -XX options are described at
http://java.sun.com/docs/hotspot/VMOptions.html.

B.1.1 Dynamic Changing of Flag Values
With the jinfo -flag command (“2.6 jinfo Utility” on page 44) and with the JConsole utility
(“2.3 JConsole Utility” on page 32), you can dynamically set, unset, or change the value of
certain Java VM flags for a specified Java process.

For the complete list of these flags, use the MBeans tab of the JConsole utility. See the list of
values for the DiagnosticOptions attribute of the HotSpotDiagnostic MBean, which is in the
com.sun.management domain. These flags are the following:

■ HeapDumpOnOutOfMemoryError

■ HeapDumpPath

■ PrintGC

■ PrintGCDetails

■ PrintGCTimeStamps

■ PrintClassHistogram

■ PrintConcurrentLocks

BA P P E N D I X B

127

http://java.sun.com/docs/hotspot/VMOptions.html

B.1.2 -XX:+HeapDumpOnOutOfMemoryErrorOption
The -XX:+HeapDumpOnOutOfMemoryError command-line option tells the HotSpot VM to
generate a heap dump when an allocation from the Java heap or the permanent generation
cannot be satisfied. There is no overhead in running with this option, and so it can be useful for
production systems where OutOfMemoryError takes a long time to surface.

You can also specify this option at runtime with the MBeans tab in the jconsole utility.

The heap dump is in HPROF binary format, and so it can be analyzed using any tools that can
import this format. For example, the jhat tool can be used to do rudimentary analysis of the
dump. See “2.5 jhat Utility” on page 39.

The following example shows the result of running out of memory with this flag set.

$ java -XX:+HeapDumpOnOutOfMemoryError -mn256m -mx512m ConsumeHeap

java.lang.OutOfMemoryError: Java heap space

Dumping heap to java_pid2262.hprof ...

Heap dump file created [531535128 bytes in 14.691 secs]

Exception in thread "main" java.lang.OutOfMemoryError: Java heap space

at ConsumeHeap$BigObject.(ConsumeHeap.java:22)

at ConsumeHeap.main(ConsumeHeap.java:32)

The ConsumeHeap fills up the Java heap and runs out of memory. When
java.lang.OutOfMemoryError is thrown, a heap dump file is created. In this case the file is
507MB and is created as java_pid2262.hprof in the current directory.

By default the heap dump is created in a file called java_pidpid.hprof in the working directory
of the VM, as in the example above. You can specify an alternative file name or directory with
the -XX:HeapDumpPath= option. For example -XX:HeapDumpPath=/disk2/dumps will cause the
heap dump to be generated in the /disk2/dumps directory.

B.1.3 -XX:OnError=Option
When a fatal error occurs, the HotSpot Virtual Machine can optionally execute a user-supplied
script or command. The script or command is specified using the -XX:OnError=string
command line option, where string is a single command, or a list of commands separated by a
semicolon. Within string, all occurrences of %p are replaced with the current process ID (pid),
and all occurrences of %% are replaced by a single %. The following examples demonstrate how
this option can be used.

On Solaris OS the pmap command displays information about the address space of a process. In
the following example, if a fatal error occurs, the pmap command is executed to display the
address space of the process.

java -XX:OnError="pmap %p" MyApplication

B.1 HotSpot VM Command-Line Options

Troubleshooting Guide for Java SE 6 with HotSpot VM • November 2008128

The following example shows how the fatal error report can be mailed to a support alias when a
fatal error is encountered

java -XX:OnError="cat hs_err_pid%p.log|mail support@acme.com" \

MyApplication

On Solaris OS the gcore command creates a core image of the specified process, and the dbx
command launches the debugger. In the following example, the gcore command is executed to
create the core image, and the debugger is started to attach to the process.

java -XX:OnError="gcore %p;dbx - %p" MyApplication

In the following Linux example, the gdb debugger is launched when an unexpected error is
encountered. Once launched, gdb will attach to the VM process

java -XX:OnError="gdb - %p" MyApplication

On Windows the Dr. Watson debugger can be configured as the post-mortem debugger so that
a crash dump is created when an unexpected error is encountered. See “7.4.4 Collecting Crash
Dumps on Windows” on page 120 for other details.

An alternate approach to obtaining a crash dump on Windows it to use the -XX:OnError option
to execute the userdump.exe utility, as follows.

java -XX:OnError="userdump.exe %p" MyApplication

The userdump utility is part of the Microsoft OEM Support Tools package, which can be
downloaded from the Microsoft site. See “7.4.4 Collecting Crash Dumps on Windows” on
page 120 for further details.

The above example assumes that the path to the userdump.exe utility is defined in the PATH
variable.

B.1.4 -XX:+ShowMessageBoxOnErrorOption
When the option -XX:+ShowMessageBoxOnError is set and a fatal error is encountered, the
HotSpot VM will display information about the fatal error and prompt the user to specify
whether the native debugger is to be launched. In the case of Solaris OS and Linux, the output
and prompt are sent to the application console (standard input and standard output). In the
case of Windows, a Windows message box pops up.

Below is an example from a fatal error encountered on a Linux system.

==

Unexpected Error

--

B.1 HotSpot VM Command-Line Options

Appendix B • Command-Line Options 129

SIGSEGV (0xb) at pc=0x2000000001164db1, pid=10791, tid=1026

Do you want to debug the problem?

To debug, run ’gdb /proc/10791/exe 10791’; then switch to thread 1026

Enter ’yes’ to launch gdb automatically (PATH must include gdb)

Otherwise, press RETURN to abort...

==

In this case a SIGSEGV error has occurred and the user is prompted to specify whether the gdb
debugger is to be launched to attach to the process. If the user enters y or yes, gdb will be
launched (assuming it is on the PATH variable).

On Solaris OS the message is similar to the above except that the user is prompted to start the
dbx debugger. On Windows a message box is displayed. If the user presses the YES button, the
VM will attempt to start the default debugger. This debugger is configured by a registry setting;
see “7.4.4 Collecting Crash Dumps on Windows” on page 120 for further details. If Microsoft
Visual Studio is installed, the default debugger is typically configured to be msdev.exe.

In the above example the output includes the process ID (10791 in this case) and also the thread
ID (1026 in this case). If the debugger is launched, one of the initial steps in the debugger might
be to select the thread and obtain its stack trace.

As the process is waiting for a response it is possible to use other tools to obtain a crash dump or
query the state of the process. On Solaris OS, for example, a core dump can be obtained using
the gcore utility.

On Windows a Dr. Watson crash dump can be obtained using the userdump or windbg
programs. The windbg program is included in Microsoft's Debugging Tools for Windows. See
“7.4.4 Collecting Crash Dumps on Windows” on page 120 for further information on windbg

and the link to the download location. In windbg select the Attach to a Process menu option,
which displays the list of processes and prompts for the process ID. The HotSpot VM displays a
message box, which includes the process ID. Once selected the .dump /f command can be used
to force a crash dump. In the following example a crash dump is created in file crash.dump.

B.1 HotSpot VM Command-Line Options

Troubleshooting Guide for Java SE 6 with HotSpot VM • November 2008130

In general the -XX:+ShowMessageBoxOnError option is more useful in a development
environment where debugger tools are available. The -XX:OnError option is more suitable for
production environments where a fixed sequence of commands or scripts are executed when a
fatal error is encountered.

B.1.5 Other -XXOptions
Several other -XX command-line options can be useful in troubleshooting.

■ -XX:OnOutOfMemoryError=string is used to specify a command or script to execute when an
OutOfMemoryError is first thrown.

■ -XX:ErrorFile=filename is used to specify a location for the fatal error log file. See “C.1
Location of Fatal Error Log” on page 135.

■ -XX:HeapDumpPath=path is used to specify a location for a heap dump. See “B.1.2
-XX:+HeapDumpOnOutOfMemoryError Option” on page 128.

■ -XX:MaxPermSize=size is used to specify the size of the permanent generation memory. See
“3.1.2 Detail Message: PermGen space” on page 74.

FIGURE B–1 Creating Crash Dump with windbg

B.1 HotSpot VM Command-Line Options

Appendix B • Command-Line Options 131

■ -XX:+PrintCommandLineFlags is used to print all the VM command-line flags. See “7.3
Collecting Data for a Bug Report” on page 112.

■ -XX:+PrintConcurrentLocks will cause the Ctrl-Break handler to print a list of concurrent
locks owned by each thread.

■ -XX:+PrintClassHistogram will cause the Ctrl-Break handler to print a heap histogram.
■ -XX:+PrintGCDetails and -XX:+PrintGCTimeStamps are used to print detailed

information about garbage collection. See “B.2.3 -verbose:gc Option” on page 134.
■ -XX:+UseAltSigs is used (on Solaris 8 and 9 OS) to instruct the HotSpot VM to use

alternate signals to SIGUSR1 and SIGUSR2. See “6.1 Signal Handling on Solaris OS and
Linux” on page 105.

■ -XX:+UseConcMarkSweepGC, -XX:+UseSerialGC, and -XX:+UseParallelGC specify the
garbage collection policy to be used. See “4.2.2 Crash During Garbage Collection” on
page 94.

B.2 Other Command-Line Options
In addition to the -XX options, many other command-line options can provide troubleshooting
information. This section describes a few of these options.

B.2.1 -Xcheck:jniOption
The -Xcheck:jni option is useful in diagnosing problems with applications that use the Java
Native Interface (JNI). Sometimes bugs in the native code can cause the HotSpot VM to crash or
behave incorrectly.

The -Xcheck:jni option is added to the command line that starts the application, as in the
following example.

java -Xcheck:jni MyApplication

The -Xcheck:jni option causes the VM to do additional validation on the arguments passed to
JNI functions. Note that the option is not guaranteed to find all invalid arguments or diagnose
logic bugs in the application code, but it can help diagnose a large number of such problems.

When an invalid argument is detected, the VM prints a message to the application console or to
standard output, prints the stack trace of the offending thread, and aborts the VM.

In the following example, a NULL value was incorrectly passed to a JNI function that does not
allow a NULL value.

FATAL ERROR in native method: Null object passed to JNI

at java.net.PlainSocketImpl.socketAccept(Native Method)

at java.net.PlainSocketImpl.accept(PlainSocketImpl.java:343)

B.2 Other Command-Line Options

Troubleshooting Guide for Java SE 6 with HotSpot VM • November 2008132

- locked <0x450b9f70> (a java.net.PlainSocketImpl)

at java.net.ServerSocket.implAccept(ServerSocket.java:439)

at java.net.ServerSocket.accept(ServerSocket.java:410)

at org.apache.tomcat.service.PoolTcpEndpoint.acceptSocket

(PoolTcpEndpoint.java:286)

at org.apache.tomcat.service.TcpWorkerThread.runIt

(PoolTcpEndpoint.java:402)

at org.apache.tomcat.util.ThreadPool$ControlRunnable.run

(ThreadPool.java:498)

at java.lang.Thread.run(Thread.java:536)

In the following example, an incorrect argument was provided to a JNI function that expects a
jfieldID argument.

FATAL ERROR in native method: Instance field not found in JNI get/set

field operations

at java.net.PlainSocketImpl.socketBind(Native Method)

at java.net.PlainSocketImpl.bind(PlainSocketImpl.java:359)

- locked <0xf082f290> (a java.net.PlainSocketImpl)

at java.net.ServerSocket.bind(ServerSocket.java:318)

at java.net.ServerSocket.<init>(ServerSocket.java:185)

at jvm003a.<init>(jvm003.java:190)

at jvm003a.<init>(jvm003.java:151)

at jvm003.run(jvm003.java:51)

at jvm003.main(jvm003.java:30)

The following list presents examples of other problems that the -Xcheck:jni option can help
diagnose.

■ Cases where the JNI environment for the wrong thread is used
■ Cases where an invalid JNI reference is used
■ Cases where a reference to a non-array type is provided to a function that requires an array

type
■ Cases where a non-static field ID is provided to a function that expects a static field ID
■ Cases where a JNI call is made with an exception pending

In general, all errors detected by the -Xcheck:jni option are fatal errors, that is, the error is
printed and the VM is aborted. There is one exception to this behavior. When a JNI call is made
within a JNI critical region, the following non-fatal warning message is printed.

Warning: Calling other JNI functions in the scope of

Get/ReleasePrimitiveArrayCritical or Get/ReleaseStringCritical

A JNI critical region is created when native code uses the JNI functions
GetPrimitiveArrayCritical or GetStringCritical to obtain a reference to an array or string
in the Java heap. The reference is held until the native code calls the corresponding release
function. The code between the get and release is called a JNI critical section and during that

B.2 Other Command-Line Options

Appendix B • Command-Line Options 133

time the HotSpot VM cannot bring the VM to a state that allows garbage collection to occur.
The general recommendation is not to use other JNI functions within a JNI critical section, and
in particular any JNI function that could potentially cause a deadlock. The warning printed
above by the -Xcheck:jni option is thus an indication of a potential issue; it does not always
indicate an application bug.

For more information on JNI, refer to the Java Native Interface documentation web site
(http://java.sun.com/javase/6/docs/technotes/guides/jni/index.html).

B.2.2 -verbose:classOption
The -verbose:class option enables logging of class loading and unloading.

B.2.3 -verbose:gcOption
The -verbose:gc option enables logging of garbage collection (GC) information. It can be
combined with other HotSpot VM specific options such as -XX:+PrintGCDetails and
-XX:+PrintGCTimeStamps to get further information about the GC. The information output
includes the size of the generations before and after each GC, total size of the heap, the size of
objects promoted, and the time taken.

These options, together with detailed information about GC analysis and tuning, are described
at the GC Portal site (http://java.sun.com/developer/technicalArticles/Programming/
GCPortal).

The -verbose:gc option can be dynamically enabled at runtime using the management API or
JVM TI. See section “2.17 Developing Diagnostic Tools” on page 70 for further information on
these APIs.

The jconsole monitoring and management tool can also enable or disable the option when the
tool is attached to a management VM. See “2.3 JConsole Utility” on page 32.

B.2.4 -verbose:jniOption
The -verbose:jni option enables logging of JNI. When a JNI or native method is resolved, the
HotSpot VM prints a trace message to the application console (standard output). It also prints a
trace message when a native method is registered using the JNI RegisterNative function. The
-verbose:jni option can be useful in diagnosing issues with applications that use native
libraries.

B.2 Other Command-Line Options

Troubleshooting Guide for Java SE 6 with HotSpot VM • November 2008134

http://java.sun.com/javase/6/docs/technotes/guides/jni/index.html
http://java.sun.com/javase/6/docs/technotes/guides/jni/index.html
http://java.sun.com/developer/technicalArticles/Programming/GCPortal
http://java.sun.com/developer/technicalArticles/Programming/GCPortal

Fatal Error Log

When a fatal error occurs, an error log is created with information and the state obtained at the
time of the fatal error.

Note that the format of this file can change slightly in update releases.

This appendix contains the following sections.

■ “C.1 Location of Fatal Error Log” on page 135
■ “C.2 Description of Fatal Error Log” on page 136
■ “C.3 Header Format” on page 136
■ “C.4 Thread Section Format” on page 139
■ “C.5 Process Section Format” on page 142
■ “C.6 System Section Format” on page 147

C.1 Location of Fatal Error Log
The product flag -XX:ErrorFile=file can be used to specify where the file will be created, where
file represents the full path for the file location. The substring %% in the file variable is converted
to %, and the substring %p is converted to the process ID of the process.

In the following example, the error log file will be written to the directory /var/log/java and
will be named java_errorpid.log.

java -XX:ErrorFile=/var/log/java/java_error%p.log

If the -XX:ErrorFile=file flag is not specified, by default the file name is hs_err_pidpid.log,
where pid is the process ID of the process.

In addition, if the -XX:ErrorFile=file flag is not specified, the system attempts to create the file
in the working directory of the process. In the event that the file cannot be created in the
working directory (insufficient space, permission problem, or other issue), the file is created in

CA P P E N D I X C

135

the temporary directory for the operating system. On Solaris OS and Linux the temporary
directory is /tmp. On Windows the temporary directory is specified by the value of the TMP
environment variable; if that environment variable is not defined, the value of the TEMP
environment variable is used.

C.2 Description of Fatal Error Log
The error log contains information obtained at the time of the fatal error, including the
following information, where possible.
■ The operating exception or signal that provoked the fatal error
■ Version and configuration information
■ Details on the thread that provoked the fatal error and thread's stack trace
■ The list of running threads and their state
■ Summary information about the heap
■ The list of native libraries loaded
■ Command line arguments
■ Environment variables
■ Details about the operating system and CPU

Note – In some cases only a subset of this information is output to the error log. This can happen
when a fatal error is of such severity that the error handler is unable to recover and report all
details.

The error log is a text file consisting of the following sections:
■ A header that provides a brief description of the crash. See “C.3 Header Format” on page 136.
■ A section with thread information. See “C.4 Thread Section Format” on page 139.
■ A section with process information. See “C.5 Process Section Format” on page 142.
■ A section with system information. See “C.6 System Section Format” on page 147.

Note – Note that the format of the fatal error log described here is based on Java SE 6. The format
might be different with other releases.

C.3 Header Format
The header section at the beginning of every fatal error log file contains a brief description of the
problem. The header is also printed to standard output and may show up in the application's
output log.

The header includes a link to the HotSpot Virtual Machine Error Reporting Page, where the
user can submit a bug report.

C.2 Description of Fatal Error Log

Troubleshooting Guide for Java SE 6 with HotSpot VM • November 2008136

The following is a sample header from a crash.

#

An unexpected error has been detected by Java Runtime Environment:

#

SIGSEGV (0xb) at pc=0x417789d7, pid=21139, tid=1024

#

Java VM: Java HotSpot(TM) Client VM (1.6.0-rc-b63 mixed mode, sharing)

Problematic frame:

C [libNativeSEGV.so+0x9d7]

#

If you would like to submit a bug report, please visit:

http://java.sun.com/webapps/bugreport/crash.jsp

#

This example shows that the VM crashed on an unexpected signal. The next line describes the
signal type, program counter (pc) that caused the signal, process ID and thread ID, as follows.

SIGSEGV (0xb) at pc=0x417789d7, pid=21139, tid=1024

| | | | +--- thread id

| | | +------------- process id

| | +--------------------------- program counter

| | (instruction pointer)

| +--------------------------------------- signal number

+-- signal name

The next line contains the VM version (Client VM or Server VM), an indication whether the
application was run in mixed or interpreted mode, and an indication whether class file sharing
was enabled.

Java VM: Java HotSpot(TM) Client VM (1.6.0-rc-b63 mixed mode, sharing)

The next information is the function frame that caused the crash, as follows.

Problematic frame:

C [libNativeSEGV.so+0x9d7]

| +-- Same as pc, but represented as library name and offset.

| For position-independent libraries (JVM and most shared

| libraries), it is possible to inspect the instructions

| that caused the crash without a debugger or core file

| by using a disassembler to dump instructions near the

| offset.

+----------------- Frame type

In this example, the “C” frame type indicates a native C frame. The following table shows the
possible frame types.

C.3 Header Format

Appendix C • Fatal Error Log 137

TABLE C–1 Thread Types

Frame Type Description

C Native C frame

j Interpreted Java frame

V VM frame

v VM generated stub frame

J Other frame types, including compiled Java frames

Internal errors will cause the VM error handler to generate a similar error dump. However, the
header format is different. Examples of internal errors are guarantee() failure, assertion
failure, ShouldNotReachHere(), and so forth. Here is an example of how the header looks for an
internal error.

#

An unexpected error has been detected by HotSpot Virtual Machine:

#

Internal Error (4F533F4C494E55583F491418160E43505000F5), pid=10226, tid=16384

#

Java VM: Java HotSpot(TM) Client VM (1.6.0-rc-b63 mixed mode)

In the above header, there is no signal name or signal number. Instead the second line now
contains the text “Internal Error” and a long hexadecimal string. This hexadecimal string
encodes the source module and line number where the error was detected. In general this “error
string” is useful only to engineers working on the HotSpot Virtual Machine.

The error string encodes a line number and therefore it changes with each code change and
release. A crash with a given error string in one release (for example 1.6.0) might not
correspond to the same crash in an update release (for example 1.6.0_01), even if the strings
match.

Note – Do not assume that a workaround or solution that worked in one situation associated
with a given error string will work in another situation associated with that same error string.
Note the following facts:

■ Errors with the same root cause might have different error strings.
■ Errors with the same error string might have completely different root causes.

Therefore, the error string should not be used as the sole criterion when troubleshooting bugs.

C.3 Header Format

Troubleshooting Guide for Java SE 6 with HotSpot VM • November 2008138

C.4 Thread Section Format
This section contains information about the thread that just crashed. If multiple threads crash
at the same time, only one thread is printed.

C.4.1 Thread Information
The first part of the thread section shows the thread that provoked the fatal error, as follows.

Current thread (0x0805ac88): JavaThread "main" [_thread_in_native, id=21139]

| | | | +-- ID

| | | +------------- state

| | +-------------------------- name

| +------------------------------------ type

+-- pointer

The thread pointer is the pointer to the Java VM internal thread structure. It is generally of no
interest unless you are debugging a live Java VM or core file.

The following list shows possible thread types.

■ JavaThread

■ VMThread

■ CompilerThread

■ GCTaskThread

■ WatcherThread

■ ConcurrentMarkSweepThread

The following table shows the important thread states.

TABLE C–2 Thread States

Thread State Description

_thread_uninitialized Thread is not created. This occurs only in the case of memory
corruption.

_thread_new Thread has been created but it has not yet started.

_thread_in_native Thread is running native code. The error is probably a bug in native
code.

_thread_in_vm Thread is running VM code.

_thread_in_Java Thread is running either interpreted or compiled Java code.

_thread_blocked Thread is blocked.

C.4 Thread Section Format

Appendix C • Fatal Error Log 139

TABLE C–2 Thread States (Continued)
Thread State Description

..._trans If any of the above states is followed by the string _trans, that means
that the thread is changing to a different state.

The thread ID in the output is the native thread identifier.

If a Java thread is a daemon thread, then the string daemon is printed before the thread state.

C.4.2 Signal Information
The next information in the error log describes the unexpected signal that caused the VM to
terminate. On a Windows system the output appears as follows.

siginfo: ExceptionCode=0xc0000005, reading address 0xd8ffecf1

In the above example, the exception code is 0xc0000005 (ACCESS_VIOLATION), and the
exception occurred when the thread attempted to read address 0xd8ffecf1.

On Solaris OS and Linux systems the signal number (si_signo) and signal code (si_code) are
used to identify the exception, as follows.

siginfo:si_signo=11, si_errno=0, si_code=1, si_addr=0x00004321

C.4.3 Register Context
The next information in the error log shows the register context at the time of the fatal error.
The exact format of this output is processor-dependent. The following example shows output
for the Intel (IA32) processor.

Registers:

EAX=0x00004321, EBX=0x41779dc0, ECX=0x080b8d28, EDX=0x00000000

ESP=0xbfffc1e0, EBP=0xbfffc1f8, ESI=0x4a6b9278, EDI=0x0805ac88

EIP=0x417789d7, CR2=0x00004321, EFLAGS=0x00010216

The register values might be useful when combined with instructions, as described below.

C.4.4 Machine Instructions
After the register values, the error log contains the top of stack followed by 32 bytes of
instructions (opcodes) near the program counter (PC) when the system crashed. These opcodes
can be decoded with a disassembler to produce the instructions around the location of the
crash. Note that IA32 and AMD64 instructions are variable in length, and so it is not always
possible to reliably decode instructions before the crash PC.

C.4 Thread Section Format

Troubleshooting Guide for Java SE 6 with HotSpot VM • November 2008140

Top of Stack: (sp=0xbfffc1e0)

0xbfffc1e0: 00000000 00000000 0818d068 00000000

0xbfffc1f0: 00000044 4a6b9278 bfffd208 41778a10

0xbfffc200: 00004321 00000000 00000cd8 0818d328

0xbfffc210: 00000000 00000000 00000004 00000003

0xbfffc220: 00000000 4000c78c 00000004 00000000

0xbfffc230: 00000000 00000000 00180003 00000000

0xbfffc240: 42010322 417786ec 00000000 00000000

0xbfffc250: 4177864c 40045250 400131e8 00000000

Instructions: (pc=0x417789d7)

0x417789c7: ec 14 e8 72 ff ff ff 81 c3 f2 13 00 00 8b 45 08

0x417789d7: 0f b6 00 88 45 fb 8d 83 6f ee ff ff 89 04 24 e8

C.4.5 Thread Stack
Where possible, the next output in the error log is the thread stack. This includes the addresses
of the base and the top of the stack, the current stack pointer, and the amount of unused stack
available to the thread. This is followed, where possible, by the stack frames, and up to 100
frames are printed. For C/C++ frames the library name may also be printed. It is important to
note that in some fatal error conditions the stack may be corrupt, and in this case this detail may
not be available.

Stack: [0x00040000,0x00080000), sp=0x0007f9f8, free space=254k

Native frames: (J=compiled Java code, j=interpreted, Vv=VM code, C=native code)

V [jvm.dll+0x83d77]

C [App.dll+0x1047]

j Test.foo()V+0

j Test.main([Ljava/lang/String;)V+0

v ~StubRoutines::call_stub

V [jvm.dll+0x80f13]

V [jvm.dll+0xd3842]

V [jvm.dll+0x80de4]

C [java.exe+0x14c0]

C [java.exe+0x64cd]

C [kernel32.dll+0x214c7]

Java frames: (J=compiled Java code, j=interpreted, Vv=VM code)

j Test.foo()V+0

j Test.main([Ljava/lang/String;)V+0

v ~StubRoutines::call_stub

The log contains two thread stacks.

■ The first thread stack is Native frames, which prints the native thread showing all function
calls. However this thread stack does not take into account the Java methods that are inlined
by the runtime compiler; if methods are inlined they appear to be part of the parent's stack
frame.

C.4 Thread Section Format

Appendix C • Fatal Error Log 141

The information in the thread stack for native frames provides important information about
the cause of the crash. By analyzing the libraries in the list from the top down, you can
generally determine which library might have caused the problem and report it to the
appropriate organization responsible for that library.

■ The second thread stack is Java frames, which prints the Java frames including the inlined
methods, skipping the native frames. Depending on the crash it might not be possible to
print the native thread stack but it might be possible to print the Java frames.

C.4.6 Further Details
If the error occurred in the VM thread or in a compiler thread, then further details may be
printed. For example, in the case of the VM thread, the VM operation is printed if the VM
thread is executing a VM operation at the time of the fatal error. In the following output
example, the compiler thread provoked the fatal error. The task is a compiler task and the
HotSpot Client VM is compiling method hs101t004Thread.ackermann.

Current CompileTask:

HotSpot Client Compiler:754 b

nsk.jvmti.scenarios.hotswap.HS101.hs101t004Thread.ackermann(IJ)J (42 bytes)

For the HotSpot Server VM the output for the compiler task is slightly different but will also
include the full class name and method.

C.5 Process Section Format
The process section is printed after the thread section. It contains information about the whole
process, including thread list and memory usage of the process.

C.5.1 Thread List
The thread list includes the threads that the VM is aware of. This includes all Java threads and
some VM internal threads, but does not include any native threads created by the user
application that have not attached to the VM. The output format follows.

=>0x0805ac88 JavaThread "main" [_thread_in_native, id=21139]

| | | | | +----- ID

| | | | +------------------- state

| | | | (JavaThread only)

| | | +--------------------------------- name

| | +-- type

| +-- pointer

+-- "=>" current thread

C.5 Process Section Format

Troubleshooting Guide for Java SE 6 with HotSpot VM • November 2008142

An example of this output follows.

Java Threads: (=> current thread)

0x080c8da0 JavaThread "Low Memory Detector" daemon [_thread_blocked, id=21147]

0x080c7988 JavaThread "CompilerThread0" daemon [_thread_blocked, id=21146]

0x080c6a48 JavaThread "Signal Dispatcher" daemon [_thread_blocked, id=21145]

0x080bb5f8 JavaThread "Finalizer" daemon [_thread_blocked, id=21144]

0x080ba940 JavaThread "Reference Handler" daemon [_thread_blocked, id=21143]

=>0x0805ac88 JavaThread "main" [_thread_in_native, id=21139]

Other Threads:

0x080b6070 VMThread [id=21142]

0x080ca088 WatcherThread [id=21148]

The thread type and thread state are described in “C.4 Thread Section Format” on page 139.

C.5.2 VM State
The next information is the VM state, which indicates the overall state of the virtual machine.
The following table describes the general states.

TABLE C–3 VM States

General VM State Description

not at a safepoint Normal execution.

at safepoint All threads are blocked in the VM waiting for a special VM operation to
complete.

synchronizing A special VM operation is required and the VM is waiting for all threads
in the VM to block.

The VM state output is a single line in the error log, as follows.

VM state:not at safepoint (normal execution)

C.5.3 Mutexes and Monitors
The next information in the error log is a list of mutexes and monitors that are currently owned
by a thread. These mutexes are VM internal locks rather than monitors associated with Java
objects. Below is an example to show how the output might look when a crash happens when
VM locks are held. For each lock the log contains the name of the lock, its owner, and the
addresses of a VM internal mutex structure and its OS lock. In general this information is useful
only to those who are very familiar with the HotSpot VM. The owner thread can be
cross-referenced to the thread list.

C.5 Process Section Format

Appendix C • Fatal Error Log 143

VM Mutex/Monitor currently owned by a thread:

([mutex/lock_event])[0x007357b0/0x0000031c] Threads_lock - owner thread: 0x00996318

[0x00735978/0x000002e0] Heap_lock - owner thread: 0x00736218

C.5.4 Heap Summary
The next information is a summary of the heap. The output depends on the garbage collection
(GC) configuration. In this example the serial collector is used, class data sharing is disabled,
and the tenured generation is empty. This probably indicates that the fatal error occurred early
or during start-up and a GC has not yet promoted any objects into the tenured generation. An
example of this output follows.

Heap

def new generation total 576K, used 161K [0x46570000, 0x46610000, 0x46a50000)

eden space 512K, 31% used [0x46570000, 0x46598768, 0x465f0000)

from space 64K, 0% used [0x465f0000, 0x465f0000, 0x46600000)

to space 64K, 0% used [0x46600000, 0x46600000, 0x46610000)

tenured generation total 1408K, used 0K [0x46a50000, 0x46bb0000, 0x4a570000)

the space 1408K, 0% used [0x46a50000, 0x46a50000, 0x46a50200, 0x46bb0000)

compacting perm gen total 8192K, used 1319K [0x4a570000, 0x4ad70000, 0x4e570000)

the space 8192K, 16% used [0x4a570000, 0x4a6b9d48, 0x4a6b9e00, 0x4ad70000)

No shared spaces configured.

C.5.5 Memory Map
The next information in the log is a list of virtual memory regions at the time of the crash. This
list can be long in the case of large applications. The memory map can be very useful when
debugging some crashes, as it can tell you what libraries are actually being used, their location in
memory, as well as the location of heap, stack, and guard pages.

The format of the memory map is operating-system-specific. On the Solaris Operating System,
the base address and library name are printed. On the Linux system the process memory map
(/proc/pid/maps) is printed. On the Windows system, the base and end addresses of each
library are printed. The following example output was generated on Linux/x86. Note that most
of the lines have been omitted from the example for the sake of brevity.

Dynamic libraries:

08048000-08056000 r-xp 00000000 03:05 259171 /h/jdk6/bin/java

08056000-08058000 rw-p 0000d000 03:05 259171 /h/jdk6/bin/java

08058000-0818e000 rwxp 00000000 00:00 0

40000000-40013000 r-xp 00000000 03:0a 400046 /lib/ld-2.2.5.so

40013000-40014000 rw-p 00013000 03:0a 400046 /lib/ld-2.2.5.so

40014000-40015000 r--p 00000000 00:00 0

Lines omitted.

C.5 Process Section Format

Troubleshooting Guide for Java SE 6 with HotSpot VM • November 2008144

4123d000-4125a000 rwxp 00001000 00:00 0

4125a000-4125f000 rwxp 00000000 00:00 0

4125f000-4127b000 rwxp 00023000 00:00 0

4127b000-4127e000 ---p 00003000 00:00 0

4127e000-412fb000 rwxp 00006000 00:00 0

412fb000-412fe000 ---p 00083000 00:00 0

412fe000-4137b000 rwxp 00086000 00:00 0

Lines omitted.
44600000-46570000 rwxp 00090000 00:00 0

46570000-46610000 rwxp 00000000 00:00 0

46610000-46a50000 rwxp 020a0000 00:00 0

46a50000-46bb0000 rwxp 00000000 00:00 0

46bb0000-4a570000 rwxp 02640000 00:00 0

Lines omitted.

The format of a line in the above memory map is as follows.

40049000-4035c000 r-xp 00000000 03:05 824473 /jdk1.5/jre/lib/i386/client/libjvm.so

|<------------->| ^ ^ ^ ^ |<----------------------------------->|

Memory region | | | | |

| | | | |

Permission --- + | | | |

r: read | | | |

w: write | | | |

x: execute | | | |

p: private | | | |

s: share | | | |

| | | |

File offset ----------+ | | |

| | |

Major ID and minor ID of -------+ | |

the device where the file | |

is located (i.e. /dev/hda5) | |

| |

inode number ------------------------+ |

|

File name ---+

In the memory map output, each library has two virtual memory regions: one for code and one
for data. The permission for the code segment is marked with r-xp (readable, executable,
private), and the permission for the data segment is rw-p (readable, writable, private).

The Java heap is already included in the heap summary earlier in the output, but it can be useful
to verify that the actual memory regions reserved for heap match the values in the heap
summary and that the attributes are set to rwxp.

C.5 Process Section Format

Appendix C • Fatal Error Log 145

Thread stacks usually show up in the memory map as two back-to-back regions, one with
permission ---p (guard page) and one with permission rwxp (actual stack space). In addition, it
is useful to know the guard page size or stack size. For example, in this memory map, the stack is
located from 4127b000 to 412fb000.

On a Windows system, the memory map output is the load and end address of each loaded
module, as in the example below.

Dynamic libraries:

0x00400000 - 0x0040c000 c:\jdk6\bin\java.exe

0x77f50000 - 0x77ff7000 C:\WINDOWS\System32\ntdll.dll

0x77e60000 - 0x77f46000 C:\WINDOWS\system32\kernel32.dll

0x77dd0000 - 0x77e5d000 C:\WINDOWS\system32\ADVAPI32.dll

0x78000000 - 0x78087000 C:\WINDOWS\system32\RPCRT4.dll

0x77c10000 - 0x77c63000 C:\WINDOWS\system32\MSVCRT.dll

0x08000000 - 0x08183000 c:\jdk6\jre\bin\client\jvm.dll

0x77d40000 - 0x77dcc000 C:\WINDOWS\system32\USER32.dll

0x7e090000 - 0x7e0d1000 C:\WINDOWS\system32\GDI32.dll

0x76b40000 - 0x76b6c000 C:\WINDOWS\System32\WINMM.dll

0x6d2f0000 - 0x6d2f8000 c:\jdk6\jre\bin\hpi.dll

0x76bf0000 - 0x76bfb000 C:\WINDOWS\System32\PSAPI.DLL

0x6d680000 - 0x6d68c000 c:\jdk6\jre\bin\verify.dll

0x6d370000 - 0x6d38d000 c:\jdk6\jre\bin\java.dll

0x6d6a0000 - 0x6d6af000 c:\jdk6\jre\bin\zip.dll

0x10000000 - 0x10032000 C:\bugs\crash2\App.dll

C.5.6 VM Arguments and Environment Variables
The next information in the error log is a list of VM arguments, followed by a list of
environment variables. An example follows.

VM Arguments:

java_command: NativeSEGV 2

Environment Variables:

JAVA_HOME=/h/jdk

PATH=/h/jdk/bin:.:/h/bin:/usr/bin:/usr/X11R6/bin:/usr/local/bin:

/usr/dist/local/exe:/usr/dist/exe:/bin:/usr/sbin:/usr/ccs/bin:

/usr/ucb:/usr/bsd:/usr/etc:/etc:/usr/dt/bin:/usr/openwin/bin:

/usr/sbin:/sbin:/h:/net/prt-web/prt/bin

USERNAME=user

LD_LIBRARY_PATH=/h/jdk6/jre/lib/i386/client:/h/jdk6/jre/lib/i386:

/h/jdk6/jre/../lib/i386:/h/bugs/NativeSEGV

SHELL=/bin/tcsh

DISPLAY=:0.0

HOSTTYPE=i386-linux

C.5 Process Section Format

Troubleshooting Guide for Java SE 6 with HotSpot VM • November 2008146

OSTYPE=linux

ARCH=Linux

MACHTYPE=i386

Note that the list of environment variables is not the full list but rather a subset of the
environment variables that are applicable to the Java VM.

C.5.7 Signal Handlers
On Solaris OS and Linux, the next information in the error log is the list of signal handlers.

Signal Handlers:

SIGSEGV: [libjvm.so+0x3aea90], sa_mask[0]=0xfffbfeff, sa_flags=0x10000004

SIGBUS: [libjvm.so+0x3aea90], sa_mask[0]=0xfffbfeff, sa_flags=0x10000004

SIGFPE: [libjvm.so+0x304e70], sa_mask[0]=0xfffbfeff, sa_flags=0x10000004

SIGPIPE: [libjvm.so+0x304e70], sa_mask[0]=0xfffbfeff, sa_flags=0x10000004

SIGILL: [libjvm.so+0x304e70], sa_mask[0]=0xfffbfeff, sa_flags=0x10000004

SIGUSR1: SIG_DFL, sa_mask[0]=0x00000000, sa_flags=0x00000000

SIGUSR2: [libjvm.so+0x306e80], sa_mask[0]=0x80000000, sa_flags=0x10000004

SIGHUP: [libjvm.so+0x3068a0], sa_mask[0]=0xfffbfeff, sa_flags=0x10000004

SIGINT: [libjvm.so+0x3068a0], sa_mask[0]=0xfffbfeff, sa_flags=0x10000004

SIGQUIT: [libjvm.so+0x3068a0], sa_mask[0]=0xfffbfeff, sa_flags=0x10000004

SIGTERM: [libjvm.so+0x3068a0], sa_mask[0]=0xfffbfeff, sa_flags=0x10000004

SIGUSR2: [libjvm.so+0x306e80], sa_mask[0]=0x80000000, sa_flags=0x10000004

C.6 System Section Format
The final section in the error log is the system information. The output is
operating-system-specific but in general includes the operating system version, CPU
information, and summary information about the memory configuration.

The following example shows output on a Solaris 9 OS system.

--------------- S Y S T E M ---------------

OS: Solaris 9 12/05 s9s_u5wos_08b SPARC

Copyright 2005 Sun Microsystems, Inc. All Rights Reserved.

Use is subject to license terms.

Assembled 21 November 2005

uname:SunOS 5.9 Generic_112233-10 sun4u (T2 libthread)

rlimit: STACK 8192k, CORE infinity, NOFILE 65536, AS infinity

load average:0.41 0.14 0.09

CPU:total 2 has_v8, has_v9, has_vis1, has_vis2, is_ultra3

C.6 System Section Format

Appendix C • Fatal Error Log 147

Memory: 8k page, physical 2097152k(1394472k free)

vm_info: Java HotSpot(TM) Client VM (1.5-internal) for solaris-sparc,

built on Aug 12 2005 10:22:32 by unknown with unknown Workshop:0x550

On Solaris OS and Linux, the operating system information is contained in the file
/etc/*release. This file describes the kind of system the application is running on, and in
some cases the information string might include the patch level. Some system upgrades are not
reflected in the /etc/*release file. This is especially true on the Linux system, where the user
can rebuild any part of the system.

On Solaris OS the uname system call is used to get the name for the kernel. The thread library
(T1 or T2) is also printed.

On the Linux system the uname system call is also used to get the kernel name. The libc version
and the thread library type are also printed. An example follows.

uname:Linux 2.4.18-3smp #1 SMP Thu Apr 18 07:27:31 EDT 2002 i686

libc:glibc 2.2.5 stable linuxthreads (floating stack)

|<- glibc version ->|<-- pthread type -->|

On Linux there are three possible thread types, namely linuxthreads (fixed stack),
linuxthreads (floating stack), and NPTL. They are normally installed in /lib, /lib/i686,
and /lib/tls.

It is useful to know the thread type. For example, if the crash appears to be related to pthread,
then you might be able to work around an issue by selecting a different pthread library. A
different pthread library (and libc) can be selected by setting LD_LIBRARY_PATH or
LD_ASSUME_KERNEL.

The glibc version usually does not include the patch level. The command rpm -q glibc might
provide more detailed version information.

On Solaris OS and Linux, the next information is the rlimit information. Note that the default
stack size of the VM is usually smaller than the system limit. An example follows.

rlimit: STACK 8192k, CORE 0k, NPROC 4092, NOFILE 1024, AS infinity

| | | | virtual memory (-v)

| | | +--- max open files (ulimit -n)

| | +----------- max user processes (ulimit -u)

| +------------------------- core dump size (ulimit -c)

+-- stack size (ulimit -s)

load average:0.04 0.05 0.02

The next information specifies the CPU architecture and capabilities identified by the VM at
start-up, as in the following example.

C.6 System Section Format

Troubleshooting Guide for Java SE 6 with HotSpot VM • November 2008148

CPU:total 2 family 6, cmov, cx8, fxsr, mmx, sse
| | |<----- CPU features ---->|
| |
| +--- processor family (IA32 only):
| 3 - i386
| 4 - i486
| 5 - Pentium
| 6 - PentiumPro, PII, PIII
| 15 - Pentium 4
+------------ Total number of CPUs

The following table shows the possible CPU features on a SPARC system.

TABLE C–4 SPARC Features

SPARC Feature Description

has_v8 Supports v8 instructions.

has_v9 Supports v9 instructions.

has_vis1 Supports visualization instructions.

has_vis2 Supports visualization instructions.

is_ultra3 UltraSparc III.

no-muldiv No hardware integer multiply and divide.

no-fsmuld No multiply-add and multiply-subtract instructions.

The following table shows the possible CPU features on an Intel/IA32 system.

TABLE C–5 Intel/IA32 Features

Intel/IA32 Feature Description

cmov Supports cmov instruction.

cx8 Supports cmpxchg8b instruction.

fxsr Supports fxsave and fxrstor.

mmx Supports MMX.

sse Supports SSE extensions.

sse2 Supports SSE2 extensions.

ht Supports Hyper-Threading Technology.

The following table shows the possible CPU features on an AMD64/EM64T system.

C.6 System Section Format

Appendix C • Fatal Error Log 149

TABLE C–6 AMD64/EM64T Features

AMD64/EM64T Feature Description

amd64 AMD Opteron, Athlon64, and so forth.

em64t Intel EM64T processor.

3dnow Supports 3DNow extension.

ht Supports Hyper-Threading Technology.

The next information in the error log is memory information, as follows.

unused swap space

total amount of swap space |

unused physical memory | |

total amount of physical memory | | |

page size | | | |

v v v v v

Memory: 4k page, physical 513604k(11228k free), swap 530104k(497504k free)

Some systems require swap space to be at lease twice the size of real physical memory, whereas
other systems do not have any such requirements. As a general rule, if both physical memory
and swap space are almost full, there is good reason to suspect that the crash was due to
insufficient memory.

On Linux systems the kernel may convert most of unused physical memory to file cache. When
there is a need for more memory, the Linux kernel will give the cache memory back to the
application. This is handled transparently by the kernel, but it does mean the amount of unused
physical memory reported by fatal error handler could be close to zero when there is still
sufficient physical memory available.

The final information in the SYSTEM section of the error log is vm_info, which is a version
string embedded in libjvm.so/jvm.dll. Every Java VM has its own unique vm_info string. If
you are in doubt about whether the fatal error log was generated by a particular Java VM, check
the version string.

C.6 System Section Format

Troubleshooting Guide for Java SE 6 with HotSpot VM • November 2008150

Summary of Tools in This Release

This appendix presents a summary of tools available in the current release of Java SE, as well as
the changes since the previous release.

D.1 Troubleshooting Tools Available in Java SE 6
This section lists the troubleshooting tools available by platform: Unix (Solaris OS and Linux)
and Windows.

D.1.1 Solaris OS and Linux
All the JDK troubleshooting tools that are described in this document are available in Java SE 6
on both Solaris OS and Linux.

D.1.2 Windows Operating System
The following JDK troubleshooting tools are also available in Java SE 6 on the Windows
operating system.

■ HPROF profiler
■ JConsole utility
■ jdb utility
■ jhat utility
■ jinfo utility - only the option jinfo -flag pid
■ jmap utility - only the following options:

■ jmap -dump:format=b,file=file pid
■ jmap -histo[:live] pid

DA P P E N D I X D

151

■ jps utility (not currently available on Windows 98 or Windows ME)
■ jrunscript utility
■ jstack utility - only the option jstack [-l] pid
■ jstat utility (not currently available on Windows 98 or Windows ME)
■ jstatd daemon (not currently available on Windows 98 or Windows ME)
■ visualgc tool (not currently available on Windows 98 or Windows ME)

D.2 Changes to Troubleshooting Tools in Java SE 6
This is a list of changes to the JDK troubleshooting tools and options from J2SE 1.5 to Java SE 6.
■ The JavaTM VisualVM tool is included in Java SE releases starting with release 6 update 7.
■ The Heap Analysis Tool (HAT) has been replaced by the new jhat command–line tool. This

new tool has the same functionality as HAT, with the following additional enhancements:
■ jhat can parse incomplete and truncated heap dumps.
■ jhat can read heap dumps generated on 64–bit systems.
■ jhat supports Object Query Language (OQL), with which you can create your own

queries on the heap dump.

For information about HAT, see Java 2 Platform, Standard Edition 5.0, Troubleshooting and
Diagnostic Guide, which is located at http://java.sun.com/j2se/1.5/pdf/
jdk50_ts_guide.pdf.

■ The JConsole tool has the following changes.
■ A new user interface (button) is provided for deadlock detection, including

java.util.concurrent locks.
■ The Connection dialog is new.
■ The Overview tab is new.
■ You no longer need to specify the -Dcom.sun.management.jmxremote command-line

option when starting the application to be monitored.
■ You can connect to a VM using the attach mechanism.
■ You can pass a flag on the command line to the VM that is running JConsole.
■ The com.sun.management.HotSpotDiagnostic MBean property is new. In the MBean

tab, you can use this property to dump heap, get and set VM options, and change
management options dynamically.

■ The jdb tool has the following changes:
■ Shows return values in method and exit traces.
■ Trace method entry/exit without stopping.
■ The JPDA ProcessAttachingConnector is new.

D.2 Changes to Troubleshooting Tools in Java SE 6

Troubleshooting Guide for Java SE 6 with HotSpot VM • November 2008152

http://java.sun.com/j2se/1.5/pdf/jdk50_ts_guide.pdf
http://java.sun.com/j2se/1.5/pdf/jdk50_ts_guide.pdf

■ The jinfo tool has the following changes:
■ The new jinfo -flag option allows you to dynamically set, unset, and change the values

of certain Java VM flags for a specified Java process.
■ The jinfo command is new to Windows, but only the option jinfo -flag pid.

■ The jmap command has the following changes:
■ The jmap -finalizerinfo option is new. With this option, the command prints

information on objects awaiting finalization.
■ The jmap -permstat option has been updated to print also the number and size of

internalized String instances.
■ The jmap -dump:format=b,file=filename option is new. With this option, jmap

obtains a heap dump from a running process or from a core file and writes it in binary
HPROF format to a specified file. This file can then be analyzed with the jhat tool.

■ The jmap -F option is new and is for Solaris OS and Linux only. This option forces the
use of the Serviceability Agent in case the process does not respond.

■ The jmap -J option is new and is for Solaris OS and Linux only. This option passes flags
to the VM on which jmap is running.

■ The live suboption is new for the histo option. With this suboption only live objects
are counted.

■ The jmap command is new to Windows, but only the jmap -dump:dump-options pid
option and the jmap -histo[:live] pid option.

■ The jrunscript tool is new.
■ The jstack command has the following changes:

■ The jstack pid option has been changed to work like remote Ctrl-Break, that is, the
output of the thread dump is slightly different, and there is more information on
deadlocks and JNI Global References.

■ The jstack -F option is new and is for Solaris OS and Linux only. This option forces a
thread dump in case the VM is hung.

■ The jstack -l option is new. This option prints information about ownable
synchronizers (locks) in the heap.

■ The jstack command is new to Windows, but only the jstack pid option and the
jstack -l pid option.

■ The -XX:OnOutOfMemoryError=string option allows you to specify a command or script to
be run when an OutOfMemoryError is first thrown. This is useful for data capture, for
example, with jmap.

■ The -XX:+HeapDumpOnOutOfMemoryError command-line option is new as of Java SE release
5 update 7. If this option is set and the VM detects a native out–of–memory error, a heap
dump is generated. See “B.1.2 -XX:+HeapDumpOnOutOfMemoryError Option” on page 128.

D.2 Changes to Troubleshooting Tools in Java SE 6

Appendix D • Summary of Tools in This Release 153

■ Other new environment variables to help in troubleshooting out-of-memory errors are the
following:
■ -XX:HeapDumpPath=pathname
■ -XX:SegmentedHeapDumpThreshold=threshold
■ -XX:HeapDumpSegmentSize=size

■ The fatal error log has the following changes:
■ You now have the ability to specify a location for the fatal error log. See “C.1 Location of

Fatal Error Log” on page 135.
■ There is now a URL at the beginning of fatal error log for reporting incidents. See “C.3

Header Format” on page 136.
■ The VM now contains two built-in DTrace probe providers: hotspot and hotspot_jni.

(Solaris 10 OS only)
■ The fastdebug builds can be useful for testing, diagnosing, and isolating problems.

However, they should not be used in production environments.
■ The Ctrl-Break handler has the following changes:

■ Ctrl-Break now shows the thread state.
■ Ctrl-Break now shows the sizes of the heap areas.
■ With -XX:+PrintConcurrentLocks, Ctrl-Break will also print the list of concurrent

locks owned by each thread, as well as detect deadlocks involving both monitor locks
and concurrent locks.

■ The HPROF format=b option now includes primitive type instance fields and primitive array
content in heap dumps.

■ When the java.lang.OutOfMemoryError error is thrown, a stack trace is now printed also.
In addition, when the specific message indicates that the system is almost out of swap space
(Out of swap space?), a fatal error log is now generated.

D.2 Changes to Troubleshooting Tools in Java SE 6

Troubleshooting Guide for Java SE 6 with HotSpot VM • November 2008154

	Troubleshooting Guide for Java SE 6 with HotSpot VM
	Preface
	Java HotSpot Virtual Machine
	Who Should Use This Guide
	How This Guide Is Organized
	Feedback and Suggestions
	Other Resources
	Commercial Support
	Developer Technical Support
	Java Multiplatform Support

	Community Support
	Typographic Conventions
	Shell Prompts in Command Examples
	Related Third-Party Web Site References
	Acknowledgments
	Document History

	Diagnostic Tools and Options
	1.1 Introduction
	1.1.1 Command-Line Options With -XX
	1.1.2 Limitations
	1.1.3 Developing New Tools

	1.2 Summary of Tools, Options, and Commands
	1.2.1 Tools and Options for Post-mortem Diagnostics
	1.2.2 Tools and Options for Hung Processes
	1.2.3 Tools and Options for Monitoring
	1.2.4 Other Tools, Options, Variables, and Properties

	Detailed Tool Descriptions
	2.1 HPROF - Heap Profiler
	2.1.1 Heap Allocation Profiles (heap=sites)
	2.1.2 Heap Dump (heap=dump)
	2.1.3 CPU Usage Sampling Profiles (cpu=samples)
	2.1.4 CPU Usage Times Profile (cpu=times)

	2.2 Java VisualVM
	2.3 JConsole Utility
	2.4 jdb Utility
	2.4.1 Attaching to a Process
	2.4.2 Attaching to a Core File on the Same Machine
	2.4.3 Attaching to a Core File or a Hung Process from a Different Machine

	2.5 jhat Utility
	2.5.1 Standard Queries
	2.5.1.1 All Classes Query
	2.5.1.2 Class Query
	2.5.1.3 Object Query
	2.5.1.4 Instances Query
	2.5.1.5 Roots Query
	2.5.1.6 Reachable Objects Query
	2.5.1.7 Instance Counts for All Classes Query
	2.5.1.8 All Roots Query
	2.5.1.9 New Instances Query
	2.5.1.10 Histogram Queries

	2.5.2 Custom Queries
	2.5.3 Heap Analysis Hints
	2.5.3.1 What is keeping an object alive?
	2.5.3.2 Where was this object allocated?

	2.6 jinfo Utility
	2.7 jmap Utility
	2.7.1 Heap Configuration and Usage
	2.7.2 Heap Histogram of Running Process
	2.7.3 Heap Histogram of Core File
	2.7.4 Getting Information on the Permanent Generation

	2.8 jps Utility
	2.9 jrunscript Utility
	2.10 jsadebugd Daemon
	2.11 jstack Utility
	2.11.1 Forcing a Stack Dump
	2.11.2 Printing Stack Trace From Core Dump
	2.11.3 Printing a Mixed Stack

	2.12 jstat Utility
	2.12.1 Example of -gcutil Option
	2.12.2 Example of -gcnew Option
	2.12.3 Example of -gcoldcapacity Option

	2.13 jstatd Daemon
	2.14 visualgc Tool
	2.15 Ctrl-Break Handler
	2.15.1 Thread Dump
	2.15.2 Deadlock Detection
	2.15.3 Heap Summary

	2.16 Operating-System-Specific Tools
	2.16.1 Solaris Operating System
	2.16.2 Linux Operating System
	2.16.3 Windows Operating System
	2.16.4 Tools Introduced in Solaris 10 OS
	2.16.4.1 Improvements in pmap Tool
	2.16.4.2 Improvements in pstack Tool
	2.16.4.3 Using the DTrace Tool
	Probe Providers in Java HotSpot VM
	Example of Using DTrace

	2.17 Developing Diagnostic Tools
	2.17.1 java.lang.management Package
	2.17.2 java.lang.instrument Package
	2.17.3 java.lang.Thread Class
	2.17.4 Java Virtual Machine Tools Interface
	2.17.5 Java Platform Debugger Architecture

	Troubleshooting Memory Leaks
	3.1 Meaning of OutOfMemoryError
	3.1.1 Detail Message: Java heap space
	3.1.2 Detail Message: PermGen space
	3.1.3 Detail Message: Requested array size exceeds VM limit
	3.1.4 Detail Message: request <size> bytes for <reason>. Out of swap space?
	3.1.5 Detail Message: <reason> <stack trace> (Native method)

	3.2 Crash Instead of OutOfMemoryError
	3.3 Diagnosing Leaks in Java Language Code
	3.3.1 NetBeans Profiler
	3.3.2 Using the jhat Utility
	3.3.3 Creating a Heap Dump
	3.3.3.1 HPROF Profiler
	3.3.3.2 jmap Utility
	3.3.3.3 JConsole Utility
	3.3.3.4 -XX:+HeapDumpOnOutOfMemoryError Command-line Option

	3.3.4 Obtaining a Heap Histogram on a Running Process
	3.3.5 Obtaining a Heap Histogram at OutOfMemoryError
	3.3.6 Monitoring the Number of Objects Pending Finalization
	3.3.7 Third Party Memory Debuggers

	3.4 Diagnosing Leaks in Native Code
	3.4.1 Tracking All Memory Allocation and Free Calls
	3.4.2 Tracking Memory Allocation in a JNI Library
	3.4.3 Tracking Memory Allocation With OS Support
	3.4.4 Using dbx to Find Leaks
	3.4.5 Using libumem to Find Leaks

	Troubleshooting System Crashes
	4.1 Sample Crashes
	4.1.1 Determining Where the Crash Occurred
	4.1.2 Crash in Native Code
	4.1.3 Crash due to Stack Overflow
	4.1.4 Crash in the HotSpot Compiler Thread
	4.1.5 Crash in Compiled Code
	4.1.6 Crash in VMThread

	4.2 Finding a Workaround
	4.2.1 Crash in HotSpot Compiler Thread or Compiled Code
	4.2.2 Crash During Garbage Collection
	4.2.3 Class Data Sharing

	4.3 Microsoft Visual C++ Version Considerations

	Troubleshooting Hanging or Looping Processes
	5.1 Diagnosing a Looping Process
	5.2 Diagnosing a Hung Process
	5.2.1 Deadlock Detected
	5.2.2 Deadlock Not Detected
	5.2.3 No Thread Dump

	5.3 Solaris 8 OS Thread Library

	Integrating Signal and Exception Handling
	6.1 Signal Handling on Solaris OS and Linux
	6.1.1 Reducing Signal Usage
	6.1.2 Alternative Signals
	6.1.3 Signal Chaining

	6.2 Exception Handling on Windows
	6.2.1 Signal Handling in the HotSpot Virtual Machine
	6.2.2 Console Handlers

	Submitting Bug Reports
	7.1 Checking for Existing Fixes in Update Releases
	7.2 Preparing to Submit a Bug Report
	7.3 Collecting Data for a Bug Report
	7.3.1 Hardware Details
	7.3.2 Operating System
	7.3.3 Java SE Version
	7.3.4 Command-Line Options
	7.3.5 Environment Variables
	7.3.6 Fatal Error Log
	7.3.7 Core or Crash Dump
	7.3.8 Detailed Description of the Problem
	7.3.9 Logs and Traces
	7.3.10 Results from Troubleshooting Steps

	7.4 Collecting Core Dumps
	7.4.1 Collecting Core Dumps on Solaris OS
	7.4.1.1 Using the ShowMessageBoxOnError Option on Solaris OS
	7.4.1.2 Suspending a Process using truss

	7.4.2 Collecting Core Dumps on Linux
	7.4.2.1 Using the ShowMessageBoxOnError Option on Linux

	7.4.3 Reasons for Not Getting a Core File
	7.4.4 Collecting Crash Dumps on Windows
	7.4.4.1 Configuring Dr. Watson
	7.4.4.2 Forcing a Crash Dump

	Environment Variables and System Properties
	A.1 JAVA_HOME Environment Variable
	A.2 JAVA_TOOL_OPTIONS Environment Variable
	A.3 java.security.debug System Property

	Command-Line Options
	B.1 HotSpot VM Command-Line Options
	B.1.1 Dynamic Changing of Flag Values
	B.1.2 -XX:+HeapDumpOnOutOfMemoryError Option
	B.1.3 -XX:OnError= Option
	B.1.4 -XX:+ShowMessageBoxOnError Option
	B.1.5 Other -XX Options

	B.2 Other Command-Line Options
	B.2.1 -Xcheck:jni Option
	B.2.2 -verbose:class Option
	B.2.3 -verbose:gc Option
	B.2.4 -verbose:jni Option

	Fatal Error Log
	C.1 Location of Fatal Error Log
	C.2 Description of Fatal Error Log
	C.3 Header Format
	C.4 Thread Section Format
	C.4.1 Thread Information
	C.4.2 Signal Information
	C.4.3 Register Context
	C.4.4 Machine Instructions
	C.4.5 Thread Stack
	C.4.6 Further Details

	C.5 Process Section Format
	C.5.1 Thread List
	C.5.2 VM State
	C.5.3 Mutexes and Monitors
	C.5.4 Heap Summary
	C.5.5 Memory Map
	C.5.6 VM Arguments and Environment Variables
	C.5.7 Signal Handlers

	C.6 System Section Format

	Summary of Tools in This Release
	D.1 Troubleshooting Tools Available in Java SE 6
	D.1.1 Solaris OS and Linux
	D.1.2 Windows Operating System

	D.2 Changes to Troubleshooting Tools in Java SE 6

