
A Tail-Recursive Semantics for Stack Inspections

John Clements, Matthias Felleisen

Northeastern University
Boston, Massachusetts

Abstract. Security folklore holds that a security mechanism based on
stack inspection is incompatible with a global tail call optimization pol-
icy. An implementation of such a language may have to allocate memory
for a source-code tail call, and a program that uses only tail calls (and no
other memory-allocating construct) may nevertheless exhaust the avail-
able memory. In this paper, we prove this widely held belief wrong. We
exhibit an abstract machine for a language with security stack inspection
whose space consumption function is equivalent to that of the canonical
tail call optimizing abstract machine. Our machine is surprisingly simple
and suggests that tail-calls are as easy to implement in a security setting
as they are in a conventional one.

1 Stacks, Security, and Tail Calls

Over the last ten years, programming language implementors have spent signifi-
cant effort on security issues. This effort takes many forms; one is the implemen-
tation of a strategy known as stack inspection [17]. It starts from the premise
that trusted components may authorize potentially insecure actions for the dy-
namic extent of some ‘grant’ expression, provided that all intermediate calls are
made by and to trusted code.

In its conventional implementation, stack inspection is incompatible with
a traditional language semantics, because it clashes with the well-established
idea of modeling function calls with a β or βv reduction [12]. A β reduction
replaces a function’s application with the body of that function, with the func-
tion’s parameters replaced by the application’s arguments. In a language with
stack inspection, a β or βv reduction disposes of information that is necessary
to evaluate the security primitives.

For this reason, Fournet and Gordon [7] model function calls with a non-
standard β-reduction. To be more precise, β does not hold as an equation for
source terms. Abstraction bodies are wrapped with context-building primitives.
Unfortunately, this formalization prohibits a transformation of this semantics
into a tail-call optimizing (TCO) implementation. Fournet and Gordon recognize
this fact and state that “[S]tack inspection profoundly affects the semantics of
all programs. In particular, it invalidates [. . .] tail call optimizations.” [7]

This understanding of the stack inspection protocol also pervades the im-
plementation of existing run-time systems. The Java design team, for example,
chose not to provide a TCO implementation in part because of the perceived

incompatibility between tail call optimizations and stack inspection.1 The .NET
effort at Microsoft provides a runtime system that is properly TCO—except
in the presence of security primitives, which disable it. Microsoft’s documen-
tation [11] states that “[t]he current frame cannot be discarded when control
is transferred from untrusted code to trusted code, since this would jeopardize
code identity security.”

Wallach et al. [18] suggest an alternate security model that accommodates
TCO implementations. They add an argument to each function call that repre-
sents the security context as a statement in their belief logic. Statements in this
belief logic can be unraveled to determine whether an operation is permitted.
Unfortunately, this transformation is global; it cannot be applied in isolation
to a single untrusted component, but requires the rewriting of all procedures in
all system libraries. They also fail to provide a formal language semantics that
allows a Fournet-Gordon style validation of their claims.

Our security model exploits a novel mechanism for lightweight stack inspec-
tion [6]. We demonstrate the equivalence between our model and Fournet &
Gordon’s, and prove our claims of TCO. More precisely, our abstract implemen-
tation can transform all tail calls in the source program into instructions that
do not consume any stack (or store) space. Moreover, the transformation that
adds security annotations to the untrusted code is local.

We proceed as follows. First, we derive a CESK machine from Fournet &
Gordon’s semantics. Second, we develop a different, but extensionally equiva-
lent CESK machine that uses a variant of Flatt’s lightweight stack inspection
mechanism [6]. Third, we show that our machine uses strictly less space than
the machine derived from Fournet and Gordon’s semantics and that our machine
uses as much space as Clinger’s canonical tail-call optimizing CESK machine [4].

The paper consists of nine sections. The second section introduces the λsec

language: its syntax, semantics, and security mechanisms. The third section
shows how a pair of tail calls between system and applet code can allocate an
unbounded amount of space. In the fourth section, we derive an extensionally
equivalent CESK machine from Fournet and Gordon’s semantics; in the fifth
section, we modify this machine so that it implements all tail calls in a properly
optimized fashion. The sixth section provides a precise analysis of the space con-
sumption of these machines and shows that our new machine is indeed tail-call
optimizing. In the seventh section, we discuss the compatibility of our model of
λsec with Fournet and Gordon’s, using their theory of contextual equivalence.
The last two sections place our work into context.

2 The λsec Language

Fournet and Gordon use as their starting point the λsec-calculus [13, 15], a sim-
ple model of a programming language with security annotations. They present
two languages: a source language, in which programs are written, and a target
language, which includes an additional form for security annotations. A trusted

1 Private communication between Guy Steele and second author at POPL 1996

annotator performs the translation from the source to the target, annotating
each λ-expression with the appropriate permissions.

In this security model, all code is statically annotated with a given set of per-
missions, chosen from a fixed set P. A program fragment that has permissions R
may choose to enable some or all of these permissions. The set of enabled permis-
sions at any point during execution is determined by taking the intersection of
the permissions enabled for the caller and the set of permissions contained in the
callee’s label. That is, a permission is considered enabled only if two conditions
are met: first, it must have been legally and explicitly enabled by some calling
procedure, and second, all intervening stack frames must have been annotated
with this permission.

The source language (Ms) adds three expressions to the basic call-by-value
λ-calculus. The test expression checks to see whether a given set of permissions
is currently enabled, and branches based on that decision. The grant expression
enables a privilege, provided that the context endows it with those permissions.
Finally, the fail expression causes the program to halt immediately, signaling
a security failure. Our particular source language also changes the traditional
presentation of the λ-calculus by adding an explicit name to each abstraction so
that we get concise definitions of recursive procedures.

Syntax
M, N = x | M N | λfx.M | grant R in M

| test R then M else N | fail | R[M]

x ∈ Identifiers
R ⊆ P

V ∈ Values = x | λfx.M

The target language (M) adds a framing expression to this source language
(underlined in the grammar). A frame specifies the permissions of a component
in the source text. To ensure that these framing expressions are present as the
program is evaluated, we translate source components into target components by
annotating the result with the source-appropriate permissions. In our case, com-
ponents are λ-expressions. The annotator below performs this annotation, and
simultaneously ensures that a grant expression refers only to those permissions
to which it is entitled by its source location.2

Annotator A : 2P → Ms → M
AR[[x]] = x

AR[[λfx.M]] = λfx.R[AR[[M]]]
AR[[M N]] = AR[[M]] AR[[N]]

AR[[grant S in M]] = grant S ∩R in AR[[M]]
AR[[test S then M else N]] = test S then AR[[M]] else AR[[N]]

AR[[fail]] = fail

2 Fournet and Gordon present a semantics in which this check is performed at runtime.
Section 7 discusses the differences between the two languages in more detail.

The annotatorA consumes two arguments: the set of permissions appropriate
for the source and the source code; it produces a target expression. It commutes
with all expression constructors except for λ and grant. For a λ expression, it
adds a frame expression wrapping the body. For a grant expression, it replaces
the permissions S that the expression specifies with the intersection S ∩ R. So,
if a component containing the expression grant {a, b} in E were annotated with
the permissions {b, c}, the resulting expression would read grant {b} in E′ (where
E′ represents the recursive annotation of E).

We adapt Fournet & Gordon’s semantics to our variant of λsec mutatis mu-
tandis. Evaluation of programs is specified using a reduction semantics based
on evaluation contexts. In such a semantics, every expression is divided into an
evaluation context containing a single hole (denoted by •), and a redex. An eval-
uation context is composed with a redex by replacing the context’s hole with
the redex. The choice of evaluation contexts determines where evaluation can
occur, and typically the evaluation contexts are chosen to enforce deterministic
evaluation; that is, each expression has a unique decomposition into context and
redex. Reduction rules in such a semantics take the form “E[f] 7→ E[g],” where
f is a redex, g is its contractum, and E is the context (which may be observable,
as for instance in the test rule).

Contexts
E = • | E M | V E | grant R in E | R[E]

Reduction Rules

E[λfx.M V] 7→ E[[λfx.M/f][V/x]M]
E[R[V]] 7→ E[V]

E[grant R in V] 7→ E[V]

E[test R then M else N] 7→
{

E[M] if OK[[R]][[E]]
E[N] otherwise

E[fail] 7→ fail

where
OK[[∅]][[E]] = true
OK[[R]][[•]] = true

OK[[R]][[E[• M]]] = OK[[R]][[E]]
OK[[R]][[E[V •]]] = OK[[R]][[E]]
OK[[R]][[E[S[•]]]] = R ⊆ S ∧ OK[[R]][[E]]

OK[[R]][[E[grant S in •]]] = OK[[R− S]][[E]]

This semantics is an extension of a standard call-by-value reduction seman-
tics. The hole and the two application contexts are standard and enforce left-to-
right evaluation of arguments. The reduction rule for applications is also stan-
dard. The added contexts and reduction rules for frame and grant expressions are
interesting in that they are largely transparent; evaluation may proceed inside
of either form, and each one disappears when its expression is a value. These
expressions affect the evaluation only when a test expression occurs as a redex.
In this case, the result of the reduction depends on the OK predicate, which is
applied to the current context and the desired permissions.

The OK predicate recurs over the continuation from the inside out, suc-
ceeding either when the permissions remaining to check are empty or when the
context is exhausted. The OK predicate commutes with both kinds of applica-
tion context. In the case of a frame annotation, the desired permissions must
occur in the frame, and the predicate must succeed recursively. Finally, a grant
expression removes all permissions it grants from the set of those that need to
be checked. The stack inspection protocol is, at heart, a lightweight form of
continuation manipulation [3].

In Fournet and Gordon’s framework, a program consists of a set of compo-
nents, each one a closed λ-expression with its own set of permissions.

Definition 1 (Components). A ∈ Components = 〈λfx.Ms, R〉

Finally, the Eval function determines the meaning of a source program. A
program consists of a list of components. Evaluation is performed by annotating
each λ-expression with the permissions of its component, and combining all
such expressions into a single application. This application uses the traditional
abbreviation of a curried application as a single one.

Definition 2 (Eval).

Eval(〈λfx.Mu0, R0〉 . . .) = V if (AR0[[λfx.Mu0]] . . .) ∗7→ V

Since the first component is applied to the rest, it is presumed to represent
the runtime system, or at least a linker. Eval is undefined for programs that
diverge or enter a stuck state.

3 Tail-Call Optimization

Modern functional programming languages avoid looping constructs in favor of
recursion. Doing so keeps the language smaller and simplifies its implementation.
Furthermore, it empowers programmers to match functions and data structures,
which makes programs more comprehensible than random mixtures of loops and
function calls. Even modern object-oriented programmers have recognized this
fact, as indicated by the inclusion of tail-call instructions in Microsoft’s CLR [2]
and the promotion of traversal strategies such as the interpreter, composite, or
visitor patterns [8].

Of course, if function calls were implemented näıvely, this strategy would
introduce an unacceptably large overhead on iterative computations. Each it-
eration would consume a stack frame and long loops would quickly run out of
space. As Guy Steele pointed out in the late 1970’s, however, language designers
can have efficiency and a small language if they translate so-called tail calls into
instruction sequences that do not consume any space [16]. Typically, such func-
tion calls turn into plain jumps, and hence, the translation of a tail-recursive
function equals the translation of a looping construct. Using this reasoning, the

language definitions for Scheme require that correct implementations must op-
timize all tail-calls and thereby “support an unbounded number of active tail
calls” [10].

At first glance, tail-call optimization seems inherently incompatible with
stack inspection. To see this, consider a mutually recursive loop between ap-
plet and library code.

Abbreviations

UserFn
∆
= λuser sys.sys user

SystemFn
∆
= λsysuser .user sys

ARA[[UserFn]] = λuser sys.RA[sys user]
ARS[[SystemFn]] = λsysuser .RS[user sys]

Reduction (w/ Annotations)
ARA[[UserFn]] ARS[[SystemFn]]

7→ RA[ARS[[SystemFn]] ARA[[UserFn]]]
7→ RA[RS[ARA[[UserFn]] ARS[[SystemFn]]]]

7→ RA[RS[RA[ARS[[SystemFn]] ARA[[UserFn]]]]]
7→ RA[RS[RA[RS[ARA[[UserFn]] ARS[[SystemFn]]]]]]

. . .

Reduction (w/o Annotations)
UserFn SystemFn
7→ SystemFn UserFn
7→ UserFn SystemFn
7→ SystemFn UserFn
7→ UserFn SystemFn
. . .

This program consists of two copies of a mutually recursive loop function,
one a ‘user’ component and one a ‘system’ component. Each takes the other as
an argument, and then calls it, passing itself as the sole argument. To simplify
the presentation of the looping functions, we introduce abbreviations for the user
and system procedures.

This program is a toy example, but it represents the core of many interactions
between user and system code. For instance, any co-routine-style interaction be-
tween producer and consumer exhibits this behavior—unfortunately, program-
mers are forced to avoid this powerful and natural style in Java precisely because
of the lack of tail-call optimization. Perhaps the most common examples of this
kind of interaction occur in OO-style traversals of data structures, such as the
above-mentioned patterns.

The first reduction sequence illustrates the steps taken by λsec in evaluating
the given program, where the two procedures are annotated with their permis-
sions. In this example, the context quickly grows without bound. A functional
programmer would expect to see a sequence more like the second one. This series
is also a reduction sequence in λsec, but one which is obtained by evaluating the
program’s pure source.

As Fournet and Gordon point out in their paper, all is not lost. They intro-
duce an additional reduction into their abstract machine that explicitly removes

a frame before performing a call. Unfortunately, as they point out, indiscriminate
application of this rule changes the semantics. Thus, they impose strict condi-
tions that the machine must check before it can apply the rule. The rule and its
side conditions clarify that an improved compiler can turn some tail calls into
jumps, but Fournet and Gordon state that many tail calls cannot be optimized.

4 An Abstract Machine for λsec

Following Clinger’s work on defining tail-optimized languages via space complex-
ity classes [4], we reformulate the λsec semantics as a CESK machine [5]. We can
then measure the space consumed by machine configurations, programs, and ma-
chines. Furthermore, we can determine whether the space consumption function
of an implementation is in the same complexity class as Clinger’s machine.

4.1 The fg machine

We begin with a direct translation of λsec’s semantics into a CESK machine,
which we call “frame-generating” or fg (see figure 1). A CESK machine has
four registers: the control string, the environment, the store, and the continua-
tion. The control string indicates which program instruction is being reduced.
In conventional machines, this is called the program counter. The environment
binds variable names to values, much like the current stack frame of an assembly
language machine. The store, like a heap, contains shared values.3 Finally, the
continuation represents the instruction’s control context; it is analogous to the
stack.

The derivation of a CESK machine from a reduction semantics is straight-
forward [5]. In particular, the proof of equivalence of the two models is a refine-
ment of Felleisen and Flatt’s proof, which proceeds by a series of transformations
from a simple reduction semantics to a register machine. At each step, we must
strengthen the induction hypothesis by adding a claim about the value of the
OK predicate when applied to the current context.

The new Eval function is abstracted over the machine under consideration. In
particular, the definition of Evalx for a machine x depends both on the transition
function, 7→x, and on the empty context, emptyx.

In order to ensure that Eval and Evalfg are indeed the same function, the
Evalx function must employ a “load” function L at the beginning of an execu-
tion that coerces the target program to a valid machine configuration, and an
“unload” function U at the end, which recursively substitutes values bound in
the environment for the variables that represent them.

Definition 3 (Evalx).

Evalx(A, . . .) = U(V, σ) if Lx(A, . . .) ∗7→x 〈V, σ〉
3 The store in our model is necessitated by Clinger’s model of tail call optimization;

a machine with no store can grow without bound due to copying.

The FG Machine
Cfg = 〈M, ρ, σ, κ〉 | 〈V, ρ, σ, κ〉 | 〈V, σ〉 | fail

κ = 〈〉 | 〈push : M, ρ, κ〉 | 〈call : V, κ〉 | 〈frame : R, κ〉 | 〈grant : R, κ〉
V ∈ Values = 〈closure : M, ρ〉

ρ ∈ Identifiers →f Locations
α, β ∈ Locations

σ ∈ Locations →f Values
emptyfg = 〈〉

〈λfx.M, ρ, σ, κ〉 7→fg 〈〈closure : λfx.M, ρ〉, ρ, σ, κ〉
〈x, ρ, σ, κ〉 7→fg 〈σ(ρ(x)), ρ, σ, κ〉

〈M N, ρ, σ, κ〉 7→fg 〈M, ρ, σ, 〈push : N, ρ, κ〉〉
〈R[M], ρ, σ, κ〉 7→fg 〈M, ρ, σ, 〈frame : R, κ〉〉

〈grant R in M, ρ, σ, κ〉 7→fg 〈M, ρ, σ, 〈grant : R, κ〉〉

〈test R then M else N, ρ, σ, κ〉 7→fg

{
〈M, ρ, σ, κ〉 if OKfg[[R]][[κ]]
〈N, ρ, σ, κ〉 otherwise

〈fail, ρ, σ, κ〉 7→fg fail

〈V, ρ, σ, 〈〉〉 7→fg 〈V, σ〉
〈V, ρ, σ, 〈push : M, ρ′, κ〉〉 7→fg 〈M, ρ′, σ, 〈call : V, κ〉〉

〈V, ρ, σ, 〈call : V ′, κ〉〉 7→fg 〈M, ρ′[f 7→ β][x 7→ α], σ[α 7→ V][β 7→ V ′], κ〉
if V ′ = 〈closure : λfx.M, ρ′〉 and α, β 6∈ dom(σ)

〈V, ρ, σ, 〈frame : R, κ〉〉 7→fg 〈V, ρ, σ, κ〉
〈V, ρ, σ, 〈grant : R, κ〉〉 7→fg 〈V, ρ, σ, κ〉

〈V, ρ, σ[β, . . . 7→ V ′, . . .], κ〉 7→fg 〈V, ρ, σ, κ〉
if {β, . . .} is nonempty and
β, . . . do not occur in V , ρ, σ, or κ

where
OKfg[[∅]][[κ]] = true
OKfg[[R]][[〈〉]] = true

OKfg[[R]][[〈push : M, ρ, κ〉]] = OKfg[[R]][[κ]]
OKfg[[R]][[〈call : V, κ〉]] = OKfg[[R]][[κ]]

OKfg[[R]][[〈frame : R′, κ〉]] =

{
OKfg[[R]][[κ]] if R ⊆ R′

false otherwise

OKfg[[R]][[〈grant : R′, κ〉]] = OKfg[[R−R′]][[κ]]

Fig. 1.

where

Lx(〈λfx.Mu0, R0〉, . . .) = 〈(AR0[[λfx.Mu0]] . . .), ∅, ∅, emptyx〉

and

U(〈closure : M, {〈x1, α1〉, . . . , 〈xn, αn〉}〉, σ) =
[U(σ(α1))/x1] . . . [U(σ(αn))/xn]M

Theorem 1 (Machine Fidelity). For all (〈M0, R0〉, . . .),

Evalfg(〈M0, R0〉, . . .) = V iff Eval(〈M0, R0〉, . . .) = V

The proof proceeds by induction on the length of a reduction sequence.

4.2 The fg machine is not tail-call-optimizing

To see that this implementation of the λsec language is not TCO, we show the
reduction sequence in the fg machine for the program from section 3, and validate
that the space taken by the configuration is growing without bound.

UserClo
∆
= 〈closure : λuser sys.ARA[[UserFn]], ∅〉

SystemClo
∆
= 〈closure : λsysuser .ARS[[SystemFn]], ∅〉

ρ0
∆
= [sys 7→ α, user 7→ β]

σ0
∆
= [α 7→ SystemClo, β 7→ UserClo]

〈ARA[[UserFn]] ARS[[SystemFn]], ∅, ∅, 〈〉〉
7→fg 〈ARA[[UserFn]], ∅, ∅, 〈push : ARS[[SystemFn]], ∅, 〈〉〉〉
7→fg 〈UserClo, ∅, ∅, 〈push : ARS[[SystemFn]], ∅, 〈〉〉〉
7→fg 〈ARS[[SystemFn]], ∅, ∅, 〈call : UserClo, 〈〉〉〉
7→fg 〈SystemClo, ∅, ∅, 〈call : UserClo, 〈〉〉〉
7→fg 〈RA[sys user], ρ0, σ0, 〈〉〉
7→fg 〈sys user , ρ0, σ0, 〈frame : RA, 〈〉〉〉
7→fg 〈sys, ρ0, σ0, 〈push : user , ρ0, 〈frame : RA, 〈〉〉〉〉
7→fg 〈SystemClo, ρ0, σ0, 〈push : user , ρ0, 〈frame : RA, 〈〉〉〉〉
7→fg 〈user , ρ0, σ0, 〈call : SystemClo, 〈frame : RA, 〈〉〉〉〉
7→fg 〈UserClo, ρ0, σ0, 〈call : SystemClo, 〈frame : RA, 〈〉〉〉〉
27→fg 〈RS[user sys], ρ0, σ0, 〈frame : RA, 〈〉〉〉
7→fg 〈user sys, ρ0, σ0, 〈frame : RS, 〈frame : RA, 〈〉〉〉〉
7→fg 〈user , ρ0, σ0, 〈push : sys, ρ0, 〈frame : RS, 〈frame : RA, 〈〉〉〉〉〉
7→fg 〈UserClo, ρ0, σ0, 〈push : sys, ρ0, 〈frame : RS, 〈frame : RA, 〈〉〉〉〉〉
7→fg 〈sys, ρ0, σ0, 〈call : UserClo, 〈frame : RS, 〈frame : RA, 〈〉〉〉〉〉
7→fg 〈SystemClo, ρ0, σ0, 〈call : UserClo, 〈frame : RS, 〈frame : RA, 〈〉〉〉〉〉
77→fg 〈UserClo, ρ0, σ0, 〈call : SystemClo, 〈frame : RA, 〈frame : RS, 〈frame : RA, 〈〉〉〉〉〉〉
77→fg 〈SystemClo, ρ0, σ0,

〈call : UserClo, 〈frame : RS, 〈frame : RA, 〈frame : RS, 〈frame : RA, 〈〉〉〉〉〉〉〉

5 An Alternative Implementation

5.1 How security inspections really work

A close look at λsec shows that frame and grant contexts affect the computation
only when they are observed by a test expression. That is, a program with no

test expressions may be simplified by removing all frame and grant expressions
without changing its meaning. Furthermore, the observations possible with the
test expression are limited by the OK function.

In particular, any sequence of frame and grant expressions may be collapsed
into a canonical table that provides a partial map from the set of permissions to
one of two conditions: ‘no’, indicating that the permission is not granted by the
sequence, and ‘grant’, indicating that the permission is granted (and legally so)
by some grant frame in the sequence.

To derive update rules for this table, we consider evaluation of the OK func-
tion as the recognition of a context-free grammar over the alphabet of frame
and grant expressions. We start by simplifying the model to one with a single
permission. Then each frame is either empty or contains the desired permis-
sion. Likewise, there is only one possible grant. All other continuation frames
are irrelevant. So a full evaluation context can be seen as an arbitrary string in
the alphabet Σ = {y, n, g}, where y and n represent frames that contain or are
missing the given permission, and g represents a grant. Assume the ordering of
the letters in the word places the outermost frames at the left end of the string.

With the grammar in place, the OKfg predicate can easily be interpreted as
a finite-state machine that recognizes the regular expression Σ∗gy∗; that is, a
string ending with a grant followed by any number of y’s. The resulting FSA has
just two states, one accepting and one non-accepting. A g always transitions to
the accepting state, and a n always transitions to the non-accepting state. A y
causes a (trivial) transition to the current state.

This last observation leads us to a further simplification. Since the presence
of the character y does not affect the decision of the FSA, we may ignore the
continuation frames that generate them, and consider only the grant frames and
those security frames that do not include the desired permission. The regular
expression indicating the success of OKfg becomes simply Σ∗g.

Now consider the reduction semantics again. Although a context represents a
long string, we cannot reduce all permission information in a context to a single
state in our machine, because the context also contains expressions waiting to
be evaluated. In other words, there are many prefixes of this “permission word”
that evaluation depends on. Whenever a sequence of frame and grant expressions
occurs without interruption, however, it is safe to collapse it, and it is easy to see
how to do so. A substring ending in a g results in an accepting state, a substring
ending in an n results in a non-accepting state, and the empty substring does
not alter the decision. To extend this to the whole language, we must expand
our single-permission state to a full table of permissions.

This reasoning also provides an intuitive understanding for the componential
nature of our annotation scheme. Consider the evaluation of a program con-
taining both annotated and unannotated components. Since this computation
ignores security frames indicating the presence of a given permission, code that
has not been annotated at all is equivalent to code that has been granted all
permissions. This means that system libraries need not be recompiled to take
advantage of such a scheme.

The CM Machine
m ∈ P →f {grant, no}

configurations : Ccm = 〈M, ρ, σ, κ〉 | 〈V, ρ, σ, κ〉 | 〈V, σ〉 | fail
κ = 〈empty : m〉 | 〈push : M, ρ, κ, m〉 | 〈call : V, κ, m〉

V ∈ Values = 〈closure : M, ρ〉
ρ ∈ Identifiers →f Locations

α, β ∈ Locations
σ ∈ Locations →f Values

emptycm = 〈empty : ∅〉

〈λfx.M, ρ, σ, κ〉 7→cm 〈〈closure : λfx.M, ρ〉, ρ, σ, κ〉
〈x, ρ, σ, κ〉 7→cm 〈σ(ρ(x)), ρ, σ, κ〉

〈M N, ρ, σ, κ〉 7→cm 〈M, ρ, σ, 〈push : N, ρ, κ, ∅〉〉
〈R[M], ρ, σ, κ〉 7→cm 〈M, ρ, σ, κ[R 7→ no]〉

〈grant R in M, ρ, σ, κ〉 7→cm 〈M, ρ, σ, κ[R 7→ grant]〉

〈test R then M else N, ρ, σ, κ〉 7→cm

{
〈M, ρ, σ, κ〉 if OKcm[[R]][[κ]]
〈N, ρ, σ, κ〉 otherwise

〈fail, ρ, σ, κ〉 7→cm fail

〈V, ρ, σ, 〈empty : m〉〉 7→cm 〈V, σ〉
〈V, ρ, σ, 〈push : M, ρ′, κ, m〉〉 7→cm 〈M, ρ′, σ, 〈call : V, κ, ∅〉〉

〈V, ρ, σ, 〈call : V ′, κ, m〉〉 7→cm 〈M, ρ′[f 7→ β][x 7→ α], σ[α 7→ V][β 7→ V ′], κ〉
if V ′ = 〈closure : λfx.M, ρ′〉 and α, β 6∈ dom(σ)

〈V, ρ, σ[β, . . . 7→ V, . . .], κ〉 7→cm 〈V, ρ, σ, κ〉
if {β, . . .} is nonempty and
β, . . . do not occur in V , ρ, σ, or κ

where
〈. . . , m〉[R 7→ c] = 〈. . . , m[R 7→ c]〉 (pointwise extension)

and

OKcm[[∅]][[κ]] = true
OKcm[[R]][[〈empty : m〉]] = (R ∩m−1(no) = ∅)

OKcm[[R]][[〈push : M, ρ, κ, m〉]]
OKcm[[R]][[〈call : V, κ, m〉]]

}
= (R ∩m−1(no) = ∅) ∧ OKcm[[R−m−1(grant)]][[κ]]

Fig. 2.

5.2 The cm machine

In the cm (continuation-marks) machine, each continuation frame contains a
table of permissions, called a mark. The evaluation steps for frame and grant
expressions update the table in the enclosing continuation, rather than increasing
the length of the continuation itself. The OKcm predicate now inspects these
marks, rather than the frame and grant elements of the continuation. Otherwise,
the cm machine is the same as the fg machine (figure 2).

The Evalcm function is an instance of Evalx. That is, Evalcm is the same as
Evalfg, except that it uses 7→cm as its transition function and emptycm as its
empty continuation.

The two machines produce the same results.

Theorem 2 (Machine Equivalence). For all (〈M0, R0〉, . . .),

Evalfg(〈M0, R0〉, . . .) = V iff Evalcm(〈M0, R0〉, . . .) = V

To prove this theorem, we must show that if the fg machine terminates, the cm
machine terminates with the same value, and that if the fg machine does not
terminate in a final state, then the cm machine also fails to terminate.

For the purposes of the proof, we will assume that no garbage collection steps
are taken, because garbage collection cannot affect the result of the evaluation.

Lemma 1 (No Garbage Collection). For every evaluation sequence in either
the fg or cm machine, removing every garbage-collection step produces another
legal sequence, and no divergent computation is made finite by such a removal.

To compare the machines, we introduce the function T .

T 〈M, ρ, σ, κ〉 = 〈M, ρ, σ, T (κ)〉
T 〈V, ρ, σ, κ〉 = 〈V, ρ, σ, T (κ)〉

T 〈V, σ〉 = 〈V, σ〉
T (fail) = fail
T 〈〉 = 〈empty : ∅〉

T 〈push : M, ρ, κ〉 = 〈push : M, ρ, T (κ), ∅〉
T 〈call : V, κ〉 = 〈call : V, T (κ), ∅〉

T 〈frame : R, κ〉 = T (κ)[R 7→ no]
T 〈grant : R, κ〉 = T (κ)[R 7→ grant]

The function T maps configurations of the fg machine to configurations of
the cm machine. A step in the fg machine corresponds to either no steps or one
step in the cm machine.

Lemma 2 (Simulation). Given a configuration Ccm, with Ccm = T (Cfg), one
of the following holds:

1. Cfg is either fail or 〈V, σ〉
2. Cfg and Ccm are both stuck.
3. Cfg 7→fg C ′

fg and T (C ′
fg) = Ccm

4. Cfg 7→fg C ′
fg and Ccm 7→cm T (C ′

fg)

The proof is a case analysis on the four cases and the configurations of the
machine. The fg machine takes extra steps only when “popping” frame and
grant continuations after reducing their arguments to values.

The cm machine can always represent a sequence of frame and grant expres-
sions with a single mark. The sequence of steps below illustrates this for the
divergent mutually-recursive computation shown in section 3.

RS
∆
= {b, c}

RA
∆
= {a, b}

〈ARA[[UserFn]] ARS[[SystemFn]], ∅, ∅, 〈empty : ∅〉〉
7→cm 〈ARA[[UserFn]], ∅, ∅, 〈push : ARS[[SystemFn]], ∅, 〈empty : ∅〉, ∅〉〉
7→cm 〈UserClo, ∅, ∅, 〈push : ARS[[SystemFn]], ∅, 〈empty : ∅〉, ∅〉〉
7→cm 〈ARS[[SystemFn]], ∅, ∅, 〈call : UserClo, 〈empty : ∅〉, ∅〉〉
7→cm 〈SystemClo, ∅, ∅, 〈call : UserClo, 〈empty : ∅〉, ∅〉〉
7→cm 〈RA[sys user], ρ0, σ0, 〈empty : ∅〉〉
7→cm 〈sys user , ρ0, σ0, 〈empty : [{c} 7→ no]〉〉
7→cm 〈sys, ρ0, σ0, 〈push : user , ρ0, 〈empty : [{c} 7→ no]〉〉〉
7→cm 〈SystemClo, ρ0, σ0, 〈push : user , ρ0, 〈empty : [{c} 7→ no]〉, ∅〉〉
7→cm 〈user , ρ0, σ0, 〈call : SystemClo, 〈empty : [{c} 7→ no]〉, ∅〉〉
7→cm 〈UserClo, ρ0, σ0, 〈call : SystemClo, 〈empty : [{c} 7→ no]〉, ∅〉〉
27→cm 〈RS[user sys], ρ0, σ0, 〈empty : [{c} 7→ no]〉〉
7→cm 〈user sys, ρ0, σ0, 〈empty : [{a, c} 7→ no]〉〉
7→cm 〈user , ρ0, σ0, 〈push : sys, ρ0, 〈empty : [{a, c} 7→ no]〉〉〉
7→cm 〈UserClo, ρ0, σ0, 〈push : sys, ρ0, 〈empty : [{a, c} 7→ no]〉, ∅〉〉
7→cm 〈sys, ρ0, σ0, 〈call : UserClo, 〈empty : [{a, c} 7→ no]〉, ∅〉〉
7→cm 〈SystemClo, ρ0, σ0, 〈call : UserClo, 〈empty : [{a, c} 7→ no]〉, ∅〉〉
77→cm 〈UserClo, ρ0, σ0, 〈call : SystemClo, 〈empty : [{a, c} 7→ no]〉, ∅〉〉
77→cm 〈SystemClo, ρ0, σ0, 〈call : UserClo, 〈empty : [{a, c} 7→ no]〉, ∅〉〉

6 Space Consumption

In order to apply Clinger’s analytic framework of TCO [4], we must extend his
configuration-measuring function to handle security frames (in the case of the
fg machine) and marks (in the case of the cm machine). Fortunately, we can use
the same function for configurations of both machines. Applying the function to
the configurations assumed by the fg and cm machines during the evaluation of a
program yields space functions Sfg and Scm, mapping programs to the maximum
space consumed during the evaluations on their respective machines.

With this extension, we can define space complexity classes O(Sfg) and
O(Scm) as the sets of space functions that are asymptotically similar to Sfg and
Scm. We can demonstrate the inclusion of O(Scm) in O(Sfg) by mapping config-
urations of the cm machine onto configurations of the fg machine and showing a
worst-case growth of no more than the number of permissions |P|, and the non-
inclusion of O(Sfg) in O(Scm) by choosing a program (like the example shown
earlier) that grows without bound in the fg machine but has a finite bound in
the cm machine.

To directly show that the cm machine is TCO, we must define TCO for this
language. We define an oracular machine that makes the right security decisions
with no information whatsoever, and then show that the cm machine’s space use

is asymptotically bounded by the complexity class O(So) induced by the oracle’s
space function So.

Theorem 3 (Space Complexity). O(So) = O(Scm) ⊂ O(Sfg)

7 A Note on TCO in Fournet and Gordon

Our reduction semantics differs from that presented by Fournet & Gordon [7].
In particular, our semantics omits runtime checks for grant expressions against
their source permissions. While we have justified this omission with a static
check (section 5.2), it is important to understand that our evaluator differs from
Fournet & Gordon’s on programs that do not satisfy this predicate.

The difference in the evaluators induces a further difference in the respective
contextual equivalence theories. In Fournet & Gordon’s theory, the equation

∅[grant ∅ in test R then e else f] ≡ ∅[grant R in test R then e else f]

holds. The two expressions are contextually equivalent because the permissions
enabled by the grant are dynamically reduced to the empty set at runtime. In our
system, though, this runtime check is omitted and the two expressions therefore
produce different results.

Although this difference might suggest that the results of this paper do not
apply to the semantics of Fournet & Gordon, this is not the case. To make this
point, we sketch an optimization path using their theory of contextual equiv-
alence that reduces any program to one that contains at most two frame ex-
pressions and one grant expression for each ordinary expression. This guarantees
that the amount of security information in the program is linear in the size of
the ordinary program.

Consider an expression containing an arbitrarily long (nested) sequence of
frame and grant expressions wrapped around a single ordinary expression e.
Using Fournet & Gordon’s contextual equivalence theory, it can be reduced to
at most two frame expressions wrapped around at most one grant expression
wrapped around e. Informally, this optimization path consists of three specific
optimizations, using four laws from the theory [7, pp. 311–312].

Selected Equations
(Frame Frame Frame) : R1[R2[R3[e]]] = (R1 ∩R2)[R3[e]]

(Grant Grant) : grant R1 in grant R2 in e = grant R1 ∪R2 in e
(Frame Grant) : R1[grant R2 in e] = R1[grant R1 ∩R2 in e]

(Frame Grant Frame) : R1 ⊇ R2 ⇒ R1[grant R2 in R3[e]] = R1[R3[grant R2 in e]]

The first reduces a sequence of three or more frame expressions to two frame
expressions. The second reduces two or more grant expressions to a single grant
expression. The third moves a frame outward past a grant. We conjecture that
these optimizations yield a provably TCO machine semantics that is a direct
modification of Fournet & Gordon’s reduction semantics.

8 Related Work

This paper is directly inspired by the POPL presentation of a semantics for
stack inspection by Fournet & Gordon [7], and by our earlier research on an
algebraic stepper for DrScheme [3]. In this work, we produced a portable and
provably correct algebraic stepper, based on a novel, lightweight stack inspec-
tion mechanism. Using a primitive function, a program can place continuation
marks on the stack and inquire about existing marks. If a function places two
marks on the stack, the run-time environment replaces the first with the second.
Hence, the manipulation of continuation marks automatically preserves tail-call
optimizations. The key difference between our earlier work and this paper is
that continuation marks for security permissions contain negative rather than
positive information. Once we understood this, we could derive the rest of the
ideas here in a straightforward manner.

The initial presentation of stack inspection is due to Wallach et al. [17, 18].
They provide informal specifications and multiple implementations for this secu-
rity architecture. Our paper aims to bridge the gap between this implementation
work and the equational reasoning of Fournet & Gordon.

Several others [1, 14] have considered the problem of adding tail calls to the
JVM, which does support stack inspection. However, none of these specifically
addressed stack inspection or security, and all of them made the simplifying
assumption that TCO was only possible between procedures of the same com-
ponent; that is, none of them considered calls between user and library code.

Karjoth [9] presents a semantics for access control in Java 2; his model
presents rules for the maintenance of access control information, but leaves the
rules for the evaluation of the language itself unspecified. Because he includes
rules for matching ‘call’ and ‘return’ expressions, his system cannot be the foun-
dation for a TCO implementation.

9 Conclusions

Our paper invalidates the widely held belief among programming language re-
searchers that a global tail-call optimization policy is incompatible with stack in-
spection for security policies. We develop an alternative implementation of stack
inspection; we prove that it preserves the observable behavior of all programs;
and we show that its notion of tail call is consistent with Clinger’s mathematical
notion of tail-call optimization. It is our belief that translating our ideas into
a compiler or a virtual machine imposes no additional cost on the implementa-
tion of any other construct. Finally, we expect that such an implementation will
perform as well or better than a conventional stack inspection implementation.

Acknowledgments We are grateful to C. Fournet and J. Marshall for their com-
ments, and to M. Flatt for the design and implementation of continuation marks.

References

[1] Nick Benton, Andrew Kennedy, and George Russell. Compiling standard ML
to Java bytecodes. In ACM SIGPLAN International Conference on Functional
Programming, pages 129–140, 1998.

[2] Don Box. Essential .NET, Volume I: The Common Language Runtime. Addison-
Wesley, 2002.

[3] John Clements, Matthew Flatt, and Matthias Felleisen. Modeling an algebraic
stepper. Lecture Notes in Computer Science, 2028:320–334, 2001.

[4] William D. Clinger. Proper tail recursion and space efficiency. In ACM SIGPLAN
Conference on Programming Language Design and Implementation, pages 174–
185, 1998.

[5] Matthias Felleisen and Matthew Flatt. Programming lan-
guages and their calculi. Unpublished Manuscript. Online at
<http://www.ccs.neu.edu/home/matthias/3810-w02/mono.ps.gz>, 1989–2002.

[6] Matthew Flatt. PLT MzScheme: Language manual. Online at
<http://www.plt-scheme.org>, 1995–2002.

[7] Cedric Fournet and Andrew D. Gordon. Stack inspection: theory and variants.
In Symposium on Principles of Programming Languages, pages 307–318, 2002.

[8] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Pat-
terns. Addison-Wesley, 1995.

[9] Günter Karjoth. An operational semantics of Java 2 access control. In The
Computer Security Foundations Workshop, pages 224–232, 2000.

[10] Richard Kelsey, William D. Clinger, and Jonathan Rees. Revised5 report on the
algorithmic language scheme. SIGPLAN Notices, 33(9):26–76, 1998.

[11] Microsoft. Common language runtime SDK documentation. Online at
http://www.microsoft.com. Part of .NET SDK documentation, 2002.

[12] Gordon D. Plotkin. Call-by-name, call-by-value and the λ-calculus. Theoretical
Computer Science, pages 125–159, 1975.

[13] F. Pottier, Christian Skalka, and Scott Smith. A systematic approach to static
access control. Lecture Notes in Computer Science, 2028:30–45, 2001.

[14] Michel Schinz and Martin Odersky. Tail call elimination on the Java virtual
machine. In SIGPLAN BABEL Workshop on Multi-Language Infrastructure and
Interoperability, pages 155–168, 2001.

[15] Christian Skalka and Scott Smith. Static enforcement of security with types. ACM
SIGPLAN Notices, 35(9):34–45, 2000.

[16] Guy Lewis Steele Jr. Debunking the “expensive procedure call” myth. In ACM
Conference, pages 153–162, 1977.

[17] Dan Wallach, Dirk Balfanz, Drew Dean, and Ed Felten. Extensible security ar-
chitectures for Java. In The 16th Symposium on Operating Systems Principles,
pages 116–128, october 1997.

[18] Dan Wallach, Edward Felten, and Andrew Appel. The security architecture for-
merly known as stack inspection: A security mechanism for language-based sys-
tems. ACM Transactions on Software Engineering and Methodology, 9(4):341–378,
October 2000.

