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Abstract

Geometric structure of a scene can be reconstructed us-
ing many methods. In recent years, two prominent ap-
proaches have been digital photogrammetric analysis us-
ing passive stereo imagery and feature extraction from lidar
point clouds. In the first method, the traditional technique
relies on finding common points in two or more 2D images
that were acquired from different view perspectives. More
recently, similar approaches have been proposed where
stereo mosaics are built from aerial video using parallel ray
interpolation, and surfaces are subsequently extracted from
these mosaics using stereo geometry. Although the lidar
data inherently contain 2.5 or 3 dimensional information,
they also require processing to extract surfaces. In general,
structure from stereo approaches work well when the scene
surfaces are flat and have strong edges in the video frames.
Lidar processing works well when the data is densely sam-
pled. In this paper, we analyze and discuss the pros and
cons of the two approaches. We also present three chal-
lenging situations that illustrate the benefits that could be
derived from this data fusion: when one or more edges are
not clearly visible in the video frames, when the lidar data
sampling density is low, and when the object surface is not
planar. Examples are provided from the processing of real
airborne data gathered using a combination of lidar and
passive imagery taken from separate aircraft platforms at
different times.
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1. Introduction

Research in the field of 3D scene reconstruction has
gained momentum in recent years due to a wide range of
military and civilian applications. Much advancement has
been made in this front. There are many approaches in the
market today to extract 3D models from aerial passive im-
agery. A good survey of some of the methods can be found
in [3]. We can also find a large number of approaches (man-
ual and semi-automated) dealing with lidar point cloud to
extract 3D models in [3].

In this direction, we are trying to build a 3D model of a
scene which conforms both geometrically as well as spec-
trally to the real world. For this purpose, accurate 3D ge-
ometry of the scene is required. We are trying to extract this
information from multi-modal data sets like passive video
and lidar point data. Once we have the 3D scene model, we
are going to combine this model with the material properties
derived from hyperspectral imagery to generate a realistic
scene in RIT’s DIRSIG (The Digital Imaging and Remote
Sensing Image Generation) model [1]. A more detailed pro-
cess can be found in [10].

Buildings and trees are two dominant classes of objects
typically observed in urban scenes and are therefore the pri-
mary objects of interest for reconstruction of a scene. In
this paper, we discuss the extraction and modeling of man-
made buildings using passive video and lidar point data. We
also compare the models extracted from these two sets of
data. For this, first the terrain is extracted from the area
of interest. The surfaces belonging to individual objects in
this area, namely, the buildings and the trees, are identi-
fied next. Building surfaces and tree regions can be distin-
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guished from each other using texture measures such as the
entropy of height values within a small window. All the
surfaces of a single building are then used to reconstruct a
3D CAD model of that building., while tree geometries are
currently selected from a pre-constructed CAD library.

The rest of the paper is organized as follows: Section 2
describes the process of constructing a building model using
passive video and lidar point cloud, Section 3 presents the
results and Section 4 provides the conclusions and future
goals.

2. Two approaches for extraction of 3D models
from multi-modal data sets

We are using two approaches to extract 3D geometry of
a building in a scene. In the case of passive video, stereo
mosaics are built from the individual video frames and 3D
coordinates are extracted from the stereo mosaics. A li-
dar point cloud is available in raw format. We have semi-
automated the process of extraction and modeling of any
building from this data. The approaches are explained in
the following sub-sections.

2.1. Extraction of 3D models from passive
video

Various methods are used to extract 3D information from
visual imagery. The most popular and widely used method
is stereo vision, which refers to the ability to infer informa-
tion on the 3-D structure of a scene from images obtained at
two or more viewpoints [17]. A stereo system usually has
a stereo rig with two cameras placed at a particular angle
with each other (to satisfy stereo geometry). But this hard-
ware formerly required for a stereo system is no longer in-
dispensable, as new algorithms can extract desired 3D infor-
mation from two or more images of a scene photographed
by a single camera. Every object in the scene requires two
or more views for such techniques to be successfully ap-
plied on them. Hence, a large scene requires many images
to cover the entire area.

To effectively deal with this problem, a video camera
maybe attached to an aircraft and flown over the scene.
However this results in hundreds of frames that need to be
processed. Also, in order to extract 3D coordinates of a
particular object, we must identify the frames in which that
object is present. There is also an additional constraint that
the object has to exhibit good disparity with respect to the
baseline for fairly accurate results. Thus the frames need
to be indexed and used for the retrieval of 3D data of any
object. This is a very tedious process to implement for an
extended scene due to the large number of frames and ob-
jects involved in the scene. To alleviate this issue, we have
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chosen to stitch the frames to form a mosaic which is eas-
ier to handle than individual frames. Two mosaics are built
from these frames, in such a way that they form a stereo pair
for the entire scene.

The process of stitching large number of video frames
to form a mosaic is very simple once corresponding points
are matched in successive frames. But such mosaics do not
serve our purpose because they are not seamless, and the
apparent motion parallax information between the frames
is often lost in the mosaics. To address this, Zhu et al.
proposed the Parallel Ray Interpolation for Stereo Mosaic-
ing (PRISM) [18] algorithm to build seamless stereo mo-
saics. In this method, the mosaics are built by creating
imaginary viewpoints between already existing viewpoints
of the camera using ray interpolation, such that we are ap-
parently looking at the scene at a particular angle (perspec-
tive does not change) at any (existing or imaginary) view-
point (emulating a pushbroom camera). This technique con-
verts the perspective-perspective view of the video frames
to parallel-perspective view of the mosaics with parallel
view in the dominant motion direction of the camera. By
varying the angle of the parallel view in the algorithm, two
mosaics are built: a left mosaic (forward looking in the di-
rection of motion of the sensor) and a right mosaic (rear
looking), which act as a stereo pair.

We have improved this technique by avoiding the arti-
facts generated during the triangulation process of the algo-
rithm when there is large motion parallax between two sur-
faces in successive frames. The triangulation process was
modified in such a way that none of the triangles would en-
close regions from two different surfaces in any video frame
and thus will not get warped in an undesired way on to the
mosaic [6].

Along with the left and right mosaics, we also build a
nadir mosaic (with the parallel view of the sensor looking
straight down at the scene). The nadir mosaic is used to
distinguish the visible surfaces from the occluded surfaces
in the scene. For example, a vertical surface of an object
will not be visible in the nadir mosaic but may be visible in
the left or right mosaic. On the other hand, a slant surface
will be visible in the nadir mosaic too.

The nadir mosaic is segmented to identify the different
surfaces in the scene [15]. In this paper, we focus on mod-
eling a building. First, all the surfaces belonging to a build-
ing are identified. For each segment, the boundary pixels
(which form the edge of each surface) are found using mor-
phological operations. Matches are then found for these
boundary pixels in the left and right mosaics. Disparity be-
tween the corresponding points in the left and right mosaics
is determined, and the elevation of the surface at each of
these points is found as described in [18]. 3D points are
available for each surface by combining the elevation of the
boundary pixels with their 2D position in the nadir mosaic.
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Figure 1. Building modeling from stereo mosaics

Planes are fit through these 3D points using the RANSAC
(RANdom SAmple Consensus) algorithm [8]. RANSAC
is used to make the process robust to noise which might
arise due to improper segmentation and improper matching
of points between the left and right mosaics and remove the
outliers. The surface boundary pixels of each segment are
also used to define the corners of that surface. Boundary
pixels with high curvature are identified as corners as de-
scribed in the Curvature Scale Space (CSS) algorithm [13],
[7]. Since the boundary is derived from a segment, and not
by gradient methods, it is continuous, and therefore we can
avoid some of the steps described in [13]. The unwanted
corners are removed by applying one more verification step
using the mean squared distance between the boundary ob-
tained by connecting the corners and actual boundary as a
measure. Using the 2D corners and plane equation of the
surface, we obtain 3D vertices of the surface. A CAD model
can be generated with just the 3D vertices of every surface
and the order of connectivity of these vertices. However, we
still have an issue, as no information is available regarding
the occluded (vertical) surfaces (shadows due to the view
angle of the sensor). To address this, we make use of pris-
matic building assumption. Vertical surfaces can be iden-
tified using the information that they are not visible in the
nadir mosaic and must exist between two surfaces which
have a common edge but are at different heights [16]. For
this purpose, edges are obtained by joining the corners of
each surface. Once a vertical surface is identified, we drop a
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surface vertically down from the higher surface to the lower
surface. We repeat this for all the surfaces to obtain the
CAD model of a building. This entire process is depicted in
Figure 1.

2.2. Extraction of 3D models from raw lidar
point cloud

The method used to reconstruct buildings from lidar
point cloud data also makes use of the prismatic building
assumption. Dominant roof planes are identified by seg-
menting the original points using local point properties as
feature vectors, and adjacent planes are then analyzed to
determine the inner roof-segment boundaries. Since verti-
cal surfaces of the building structure are not directly repre-
sented in the data, a separate methodology must be used to
determine the outer roof boundary. Once the initial building
model is completed, the geometry is refined through both a
comparison of the model with the original point data and the
introduction of geometric constraints. To this end, we have
implemented the following steps in our approach, which is
more fully detailed in [9]:

1. Determine initial exterior boundary estimate from lidar
data using alpha shapes and line-fitting.

2. Segment the lidar range image such that each segment
represents a planar face.



Figure 2. Shape of a collection of 2D points.
Convex hull (left) and alpha shapes (right)

3. Determine internal boundaries through an intersection-
of-planes approach

4. Determine vertices through intersections of inner
and/or outer boundaries.

5. Refine the building model by introducing geometric
constraints

6. Refine the lidar-derived model through a verification
process using the original point data

Since many lidar datasets are obtained from near-nadir
orientations, very few data points are available that lie on
vertical surfaces. As such, it is often difficult to determine
the planes corresponding to exterior walls from data points
on these walls. This problem may be partially alleviated if
we make the simplifying assumption that exterior walls are
oriented directly under the outer boundary of a building ob-
ject, a condition that is true in many building types. There-
fore, in modeling the geometry of a given object on a given
building layer, the first step is to determine the exterior roof
boundary of that object.

Due to potential concavity in this boundary, simple shape
descriptions such as the convex hull do not provide an ad-
equate description of the outer roof shape. To this end,
we have opted to use alpha shapes for the determination
of our exterior roof boundaries. Like the convex hull, alpha
shapes are simply another approach to formally describe the
’shape’ of a set of spatial point data. Unlike the convex hull,
alpha shapes are not limited to convex geometries, and may
even represent holes inside the geometry.

As described in [5], we may think of alpha shapes as
a family of shapes for a given point data set, where each
shape is defined as the intersection of all closed discs with
radius 1/c. In practice, is set such that 2o is set to be 25%
larger than the largest point-point spacing in the sampled
lidar data. Figure 2 depicts the convex hull and one of the
alpha shapes for a given set of 2D data points.

Once the outer boundary has been determined, inner
plane edges and corresponding vertices still need to be de-
fined. This is accomplished though a methodology similar
to that presented in [14]. First, each data point is assigned a
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normal vector according to the plane best fitting the data in
a Im? voxel centered on the point of interest. This plane is
determined through a 3D Deming regression. In a manner
similar to that presented in [14], the mean shift algorithm
[4] is then used to segment the points into several groups,
using the normal vectors and point locations as the defining
features. Coplanar adjacent regions are then merged, and
planes are fit to each data region. Planes from adjacent re-
gions are then intersected with each other to determine can-
didate facet boundaries. Where the candidate boundaries
match the actual data region boundaries well, those candi-
date boundaries are used to define the inner roof edges. In
places where the candidate boundary does not match the ac-
tual data region boundaries, a breakline is assumed, and a
piecewise linear boundary is fit to the data region boundary.
Vertical walls are projected down from both breaklines and
outer edge surfaces until they intersect another roof plane or
the previously extracted terrain model.

After the initial roof structure has been coarsely mod-
eled, we often refine this model by introducing geometric
constraints. Although we typically only require the outer
roof edges to lie along lines that are oriented at increments
of 45 degrees relative to each other, additional constraints
are possible. These include ensuring certain edges lie at a
constant height, or that specific inner edges meet exactly at
outer boundary corner points. A second refinement stage
may also be performed, in which the distance between each
original data point and the resultant model is calculated. In
regions where the errors are large, we search for additional
(and often undersampled) features such as window dorm-
ers. A reconstruction of these additional features is then at-
tempted through an intersection of planes approach as well
as through parametric modeling of common roof objects.
When this additional feature extraction step fails and errors
between the model and the original data remain high in a lo-
calized region, we then create facets directly from the point
data using a Delaunay triangulation.

2.3. Need for the fusion of the two ap-
proaches

Both forms of data have limitations, because of which
they can be used only upto a certain extent. Section 3 ex-
plains the limitations in one method and shows they can be
compensated for by using the alternate approach. Hence our
final goal is to fuse both the approaches to produce a fairly
accurate 3D geometrical model of a scene.

3. Results

We present the results in the form of three challenging
situations for us to use either the passive video or lidar to
reconstruct the 3D model of a building. The passive video



and lidar data were collected from different airborne plat-
forms at different times. Three-band video was collected
using a sensor called Wildfire Airborne Sensing Program
(WASP) Lite [2] which was developed at RIT. Three narrow
band filters were used to capture the color information. The
ground spot size of this sensor is about 0.25 m at a height
of about 1000 ft¢. The overlap between successive frames
varies between 90% and 98%. Lidar data was supplied by
Leica Geosystems flying a commercial Optech sensor. The
data contained approximately 6 points/m?, roughly uni-
form in both the in- and cross-track dimensions. Multiple-
return range and intensity data were provided.

3.1. Situation 1

In many cases, usually passive video has many shadow
regions due to the viewing angle of the sensor and also due
to the solar inclination angle. The shadow regions (occlu-
sions) due to the viewing angle of the sensor can be taken
care of, for many cases as shown in [16]. But the shadow
regions due to solar inclination angle pose a much bigger
problem as there is no visual information in such regions.
Such regions when segmented as a part of the modeling pro-
cess described in Section 2.1, will either merge into other
shadow regions or provide no information even with their
edges. In such cases, we have a part of the building missing
in the reconstructed CAD model of RIT’s Center for Imag-
ing Science as shown in Figure 3. There is another problem
with edges when there is noise in the images. One surface
gets merged into another during segmentation due to noise
and hence, the surfaces would have a different orientation
and height compared to the true values as seen in Figure 3.
But lidar data inherently has 3D information and does not
have a problem with shadows, the surfaces along with their
edges can be reconstructed fairly accurately depending on
the sampling of the lidar data. On a side note, we can see in
Figure 3, some of the projected structures on the top of the
roof of the building could not be reconstructed using passive
video as they do not show significant disparity compared to
that of the roof. But adequately sampled lidar data can give
us information about these small structures too.

3.2. Situation 2

Sometimes lidar data might be undersampled due to the
constraints in the lidar data acquisition system hardware. In
such cases, the outer boundary of a building found using the
method described in Section 2.2 falls apart as shown in Fig-
ure 4. Even the segmentation to determine the inner bound-
aries of a building also falls apart and the building cannot be
reconstructed. But the passive video, once segmented, can
give good boundaries and hence help in the reconstruction
of the CAD model.
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Solar shadow
_

Figure 3. (a) Artifacts in 3D model of RITs
Center for Imaging Science built from pas-
sive video due to solar shadows and noisy
edges (b) Accurate 3D model of the same
building built from lidar point cloud

3.3. Situation 3

The most difficult situation of all is the case of a texture-
less non-planar surface like a hemispherical dome. With
passive video, as the surface does not have texture, it will
not show any variation in disparity over the surface. And
hence the surface rebuilt would look like a cylindrical struc-
ture rather than a hemispherical dome over a cylindrical
structure. But in the case of lidar data, we already have 3D
points on the surface. A spherical surface is fit to these 3D
points using Levenberg-Marquardt non-linear least squares
regression [11], [12]. The model is a good fit to the 3D data
and fairly accurate. RIT Observatory which has a similar
structure is shown in Figure 5.

4. Conclusion

We have shown in the results that passive video and lidar
point cloud are complementary to each other for extraction
and modeling of buildings in an urban scene. So if the two
models are registered and fused together, they can mutu-
ally reinforce one another and an accurate scene model can
be obtained. For this, there is a need to recognize which
method performs better in what situation. Our next step is
to develop some kind of ’hypothesize and verify” process
at each step for both the methods. Accordingly, we can at-
tribute a confidence measure to each feature extracted from
the two methods. If the models built from the two methods
are registered using features with high confidence in both
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Figure 4. (a) Images showing the edges ex-
traction using outer boundary analysis when
lidar point cloud is adequately sampled, sam-
pled at half the rate and sampled at quarter
the rate. (b) Images showing failure of seg-
mentation in inner boundary analysis due to

undersampled lidar data

the models, then the features with low confidence in one
model can be corrected using the same feature in the sec-
ond model.

5. Disclaimer

The views expressed in this article are those of the au-
thors and do not reflect the official policy or position of the
U.S. Air Force, the Department of Defense or the U.S. Gov-
ernment.
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