
Technische Universität München
Fakultät für Informatik
Lehrstuhl für Effiziente Algorithmen
Dmytro Chibisov
Sandeep Sadanandan

Winter Semester 2007/08
Solution Sheet 9
January 08, 2008

Fundamental Algorithms

Problem 1

Prove that a binary tree can be reconstructed unambiguously using the numberings of a
preorder and a postorder traversals of the tree. Can the same be done using preorder and
inorder?

Solution

Assumption: In the sequence, if the there are nodes with just one child, then the non-
existing child is represented with a symbol △. Otherwise, we cannot differentiate the
left/right child.

The preorder traversal gives the root, left-subtree and the right-subtree. Where as, the
post order gives the left-subtree, right-subtree and root.

So, it is clear that the root of the tree is the first element in the preorder sequence (or the
last number in the postorder sequence)

From the definition of traversals, it is evident that the root of the right subtree is the
predecessor of the last element, in the postorder. Once we find out the occurance of that
number in the preorder sequence, all the numbers after the specified number will be on
the right subtree and the numbers before it will be on the left subtree.

Similarly, the number coming next to the root node in the preorder is the root of the
left subtree. All the numbers in the postorder sequence till the occurance of this specified
number are in the left subtree. And the numbers from then are in the right subtree.

We have already found out the root and we now have the preorder and postorder traver-
sals of the left and right subtrees. Using the same method, we can find out the roots and
subtrees recursively.

The details are marked in the figure below. (please refer to the example given in the class)

If preorder and inorder traversals are given, the method is more easy. The first number
in preorder sequence is the root. On finding out that number in the inorder sequence, all
the elements to the left of it in the inorder sequence are in the left tree and the ones on
right are in the right subtree.

From this knowledge, we can mark the preorder traversals of left and right subtrees in
the given preorder traversal of the tree. Once we have preorder and inorder traversals of

Abbildung 1: Locating the root and left/right subtrees from preorder and postorder se-
quences

the left and right subtrees, the method could be applied recursively. The following figure
gives some details.

Abbildung 2: Locating the root and left/right subtrees from preorder and inorder se-
quences

Problem 2

For the given graph, starting with node 0, show how BFS and DFS traversals are done.

Solution

The following piture shows the call tree created by BFS. The nodes shown in same color
are at the same level. The edges going from one level are marked in same color too.
The table below shows the contents of the queue while search was done.

2

Abbildung 3: The Graph for DFS/BFS

Abbildung 4: BFS on the Graph

Step Visited/Done In the queue
1 0
2 0 1, 3, 4, 5
3 0, 1 3, 4, 5, 2
4 0, 1, 3 4, 5, 2, 7, 8
5 0, 1, 3, 4 5, 2, 7, 8
6 0, 1, 3, 4, 5 2, 7, 8
7 0, 1, 3, 4, 5, 2 7, 8, 6
8 0, 1, 3, 4, 5, 2, 7 8, 6
9 0, 1, 3, 4, 5, 2, 7, 8 6, 9
10 0, 1, 3, 4, 5, 2, 7, 8, 6 9
11 0, 1, 3, 4, 5, 2, 7, 8, 6, 9 10, 12, 13
12 0, 1, 3, 4, 5, 2, 7, 8, 6, 9, 10 12, 13
13 0, 1, 3, 4, 5, 2, 7, 8, 6, 9, 10, 12 13
14 0, 1, 3, 4, 5, 2, 7, 8, 6, 9, 10, 12, 13

3

The following figure shows the DFS-tree. Here the graph starts with node 0 and the
sequence of nodes are marked near the node.

Abbildung 5: DFS on the Graph

Problem 3

Show that the tree defined by the edges traversed in a BFS (starting at v0) is a shortest
paths tree rooted at v0.

Solution

A complete mathematical proof based on induction is available on many texts and also
available online. But that appears to be out of the scope of our course. The following
proof give a more verbal treatment.

BFS lists all the vertices at level k− 1 before those at level k. Therefore, it will place into
the queue all vertices at level k before all those of level k + 1 and therefore list the ones
at k before those in level k +1. It is not possible for two vertices which are connected and
have a difference of levels to be more than 1. ie, if a node is at level i and a connected
node cannot be in level i + 2. Because if they are connected, then that node should be
added at level i + 1.

So BFS actually gives a shortest path tree starting at root.

• Every vertex has a path from/to root.

• The path length is equal to the level

• No path can skip a level hence the level will be always the minimum possible.

Hence the available path will be minimum path - hence the shortest paths tree.

4

Problem 4

Design an algorithm to find out the kth smallest number from a set of n unsorted (pair-wise
different) numbers. What is the complexity of the algorithm?

Solution

This problem has more than one solution. Let’s start from the most naive method possible.

1. Sweep through the numbers k times to have the desired element.

This method is the one used in bubble sort, every time we find out the smallest
element in the whole sequence by comparing every element. In this method, the
sequence has to be traversed k times. So the complexity is O(n ∗ k).

2. Sort and take kth element.

Step 1: Sort the numbers

Step 2: Pick the kth element

The complexity is very evident. Sorting of n numbers is of O(n lg n). And picking
kth element is of O(k). So the total complexity is O(n lg n + k) = O(n lgn).

3. Use a tree to sort

Step 1: Insert the elements to a binary search tree

Step 2: Do an inorder traversal until and print k elements which will be the smallest
ones. So, we have the kth smallest element.

The cost of creation od a binary search tree of n elements is O(n lg n). And the
traversal upto k elements is O(k). Hence the complexity is O(n lg n+k) = O(n lgn).

Pitfall: If the numbers are sorted in descending order, we will be getting a tree
which will be skewed towards left. In that case, construction of the tree will be
0 + 1 + 2 + . . . + (n − 1) = (n−1)∗n

2
which is O(n2).

To escape from this pitfall, we can keep the tree balanced, so that the cost of
constructing the tree will be only n lg n.

4. Use a smaller tree to give the same result.

Step 1: Take the first k elements of the sequence to create a balanced tree of k nodes.
(this will cost k lg k)

Step 2: Take the remaining numbers one by one, and

• if the number is larger than the largest element of the tree, DO NOTHING

• if the number is smaller than the largest element of the tree, remove the largest
element of the tree and add the new element. This step is to make sure that a
smaller element replaces a larger element from the tree. And of course the cost
of this operation is lg k since the tree is a balanced tree of k elements.

Once the step 2 is over, the balanced tree with k elements will be having the smallest
k elements. The only remaining task is to print out the largest element of the tree.

Complexity:

(a) For the first k elements, we make the tree. Hence the cost is k lg k

5

(b) For the rest n − k elements, the complexity is of O(lg k). That is step 2 has a
complexity of (n − k) lg k.

The total cost is k lg k + (n − k) lg k = n lg k which is O(n lg k). This bound is
actually better than the ones provided earlier.

5. Use a random element to partition the set of numbers. (You could skip this one)

This method is very simple, but the worst case complexity could go to O(n2). But
on an average case, we get a linear complexity.

Step 1: Take a random element from the set S of numbers

Step 2: Partition the set S to three sets S1, S2 and S3 such that each contain numbers
less-than, equal-to, larger-than the random-element respectively.

Step 3: If S1 has more than k elements, then the kth smallest element must be in
S1, apply the procedure recursively.

Step 4: If S1 has lesser than k elements, but S1 and S2 together has more than k

elements, then the random element is the seeked-for kth smallest element.

Step 5: Id S1 and S2 together has more than k elements, then the element has to
be there in S3. Then search for (k − |S1| − |S2|)

th element in S3. (Make sure you
understand why we reduced the value of k).

This method actually partitions S to small fractions and the problem is broken down
into a smaller problem every time. On an average case, the complexity is linear.

6

