
Copyright (C) 2018, http://www.dabeaz.com

Generator Tricks
For Systems Programmers

David Beazley
http://www.dabeaz.com

Originally Presented at PyCon 2008
Updated: October, 2018

 1

(Version 3)

Copyright (C) 2018, http://www.dabeaz.com

Introduction 3.0

 2

This tutorial was originally presented at PyCon'2008
(Chicago). Although the original tutorial was written for
Python 2.5, the underlying concepts remain current. This
revised version of the tutorial has been updated to Python 3.7.
Enjoy!

-- Dave Beazley (October 2018)

If you like this tutorial, come to Chicago and take an advanced
programming class!

https://www.dabeaz.com/courses.html

Copyright (C) 2018, http://www.dabeaz.com

Support Files

 3

• Files used in this tutorial are available here:

http://www.dabeaz.com/generators/

• Go there to follow along with the examples

Copyright (C) 2018, http://www.dabeaz.com

An Introduction

 4

• Generators are cool!

• But what are they?

• And what are they good for?

• That's what this tutorial is about

Copyright (C) 2018, http://www.dabeaz.com

Our Goal

 5

• Explore practical uses of generators

• Focus is "systems programming"

• Which loosely includes files, file systems,
parsing, networking, threads, etc.

• My goal : To provide some more compelling
examples of using generators

Copyright (C) 2018, http://www.dabeaz.com

Disclaimer

 6

• This isn't meant to be an exhaustive tutorial
on generators and related theory

• Will be looking at a series of examples

• I don't know if the code I've written is the
"best" way to solve any of these problems.

• Let's have a discussion

Copyright (C) 2018, http://www.dabeaz.com

Part I

 7

Introduction to Iterators and Generators

Copyright (C) 2018, http://www.dabeaz.com

Iteration
• As you know, Python has a "for" statement

• You use it to iterate over a collection of items

 8

>>> for x in [1,4,5,10]:
... print(x, end=' ')
...
1 4 5 10
>>>

• And, as you have probably noticed, you can
iterate over many different kinds of objects
(not just lists)

Copyright (C) 2018, http://www.dabeaz.com

Iterating over a Dict

• If you iterate over a dictionary you get keys

 9

>>> prices = { 'GOOG' : 490.10,
... 'AAPL' : 145.23,
... 'YHOO' : 21.71 }
...
>>> for key in prices:
... print(key)
...
YHOO
GOOG
AAPL
>>>

Copyright (C) 2018, http://www.dabeaz.com

Iterating over a String

• If you iterate over a string, you get characters

 10

>>> s = "Yow!"
>>> for c in s:
... print(c)
...
Y
o
w
!
>>>

Copyright (C) 2018, http://www.dabeaz.com

Iterating over a File
• If you iterate over a file you get lines

 11

>>> for line in open("real.txt"):
... print(line, end='')
...
 Real Programmers write in FORTRAN

 Maybe they do now,
 in this decadent era of
 Lite beer, hand calculators, and "user-friendly" software
 but back in the Good Old Days,
 when the term "software" sounded funny
 and Real Computers were made out of drums and vacuum tubes,
 Real Programmers wrote in machine code.
 Not FORTRAN. Not RATFOR. Not, even, assembly language.
 Machine Code.
 Raw, unadorned, inscrutable hexadecimal numbers.
 Directly.

Copyright (C) 2018, http://www.dabeaz.com

Consuming Iterables
• Many operations consume an "iterable" object

• Reductions:

 12

sum(s), min(s), max(s)

• Constructors
list(s), tuple(s), set(s), dict(s)

• Various operators
item in s

• Many others in the library

Copyright (C) 2018, http://www.dabeaz.com

Iteration Protocol
• The reason why you can iterate over different

objects is that there is a specific protocol

 13

>>> items = [1, 4, 5]
>>> it = iter(items)
>>> it.__next__()
1
>>> it.__next__()
4
>>> it.__next__()
5
>>> it.__next__()
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
StopIteration
>>>

Copyright (C) 2018, http://www.dabeaz.com

Iteration Protocol
• An inside look at the for statement

for x in obj:
 # statements

• Underneath the covers
_iter = iter(obj) # Get iterator object
while 1:
 try:
 x = _iter.__next__() # Get next item
 except StopIteration: # No more items
 break
 # statements
 ...

• Any object that supports iter() is said to be
"iterable."

 14

Copyright (C) 2018, http://www.dabeaz.com

Supporting Iteration

• User-defined objects can support iteration

• Example: Counting down...
>>> for x in countdown(10):
... print(x, end=' ')
...
10 9 8 7 6 5 4 3 2 1
>>>

 15

• To do this, you have to make the object
implement __iter__() and __next__()

Copyright (C) 2018, http://www.dabeaz.com

Supporting Iteration

class countdown(object):
 def __init__(self,start):
 self.start = start
 def __iter__(self):
 return countdown_iter(self.start)

class countdown_iter(object):
 def __init__(self, count):
 self.count = count
 def __next__(self):
 if self.count <= 0:
 raise StopIteration
 r = self.count
 self.count -= 1
 return r

 16

• Sample implementation

Copyright (C) 2018, http://www.dabeaz.com

Iteration Example

• Example use:
>>> c = countdown(5)
>>> for i in c:
... print(i, end=' ')
...
5 4 3 2 1
>>>

 17

Copyright (C) 2018, http://www.dabeaz.com

Iteration Commentary

• There are many subtle details involving the
design of iterators for various objects

• However, we're not going to cover that

• This isn't a tutorial on "iterators"

• We're talking about generators...

 18

Copyright (C) 2018, http://www.dabeaz.com

Generators
• A generator is a function that produces a

sequence of results instead of a single value

 19

def countdown(n):
 while n > 0:
 yield n
 n -= 1

>>> for i in countdown(5):
... print(i, end=' ')
...
5 4 3 2 1
>>>

• Instead of returning a value, you generate a
series of values (using the yield statement)

Copyright (C) 2018, http://www.dabeaz.com

Generators

 20

• Behavior is quite different than normal func

• Calling a generator function creates an
generator object. However, it does not start
running the function.
def countdown(n):
 print("Counting down from", n)
 while n > 0:
 yield n
 n -= 1

>>> x = countdown(10)
>>> x
<generator object at 0x58490>
>>>

Notice that no
output was
produced

Copyright (C) 2018, http://www.dabeaz.com

Generator Functions
• The function only executes on __next__()

>>> x = countdown(10)
>>> x
<generator object at 0x58490>
>>> x.__next__()
Counting down from 10
10
>>>

• yield produces a value, but suspends the function

• Function resumes on next call to __next__()
>>> x.__next__()
9
>>> x.__next__()
8
>>>

Function starts
executing here

 21

Copyright (C) 2018, http://www.dabeaz.com

Generator Functions

• When the generator returns, iteration stops
>>> x.__next__()
1
>>> x.__next__()
Traceback (most recent call last):
 File "<stdin>", line 1, in ?
StopIteration
>>>

 22

Copyright (C) 2018, http://www.dabeaz.com

Generator Functions

• A generator function is a much more
convenient way of writing an iterator

• You don't have to worry about the iterator
protocol (__next__, __iter__, etc.)

• It just works

 23

Copyright (C) 2018, http://www.dabeaz.com

Generators vs. Iterators

• A generator function is slightly different
than an object that supports iteration

• A generator is a one-time operation. You
can iterate over the generated data once,
but if you want to do it again, you have to
call the generator function again.

• This is different than a list (which you can
iterate over as many times as you want)

 24

Copyright (C) 2018, http://www.dabeaz.com

Generator Expressions
• A generated version of a list comprehension

>>> a = [1,2,3,4]
>>> b = (2*x for x in a)
>>> b
<generator object at 0x58760>
>>> for i in b: print(b, end=' ')
...
2 4 6 8
>>>

• This loops over a sequence of items and applies
an operation to each item

• However, results are produced one at a time
using a generator

 25

Copyright (C) 2018, http://www.dabeaz.com

Generator Expressions
• Important differences from a list comp.

• Does not construct a list.

• Only useful purpose is iteration

• Once consumed, can't be reused

 26

• Example:
>>> a = [1,2,3,4]
>>> b = [2*x for x in a]
>>> b
[2, 4, 6, 8]
>>> c = (2*x for x in a)
<generator object at 0x58760>
>>>

Copyright (C) 2018, http://www.dabeaz.com

Generator Expressions

• General syntax

(expression for i in s if condition)

 27

• What it means
 for i in s:
 if condition:
 yield expression

Copyright (C) 2018, http://www.dabeaz.com

A Note on Syntax

• The parens on a generator expression can
dropped if used as a single function argument

• Example:

sum(x*x for x in s)

 28

Generator expression

Copyright (C) 2018, http://www.dabeaz.com

Interlude
• We now have two basic building blocks

• Generator functions:

 29

def countdown(n):
 while n > 0:
 yield n
 n -= 1

• Generator expressions
squares = (x*x for x in s)

• In both cases, we get an object that
generates values (which are typically
consumed in a for loop)

Copyright (C) 2018, http://www.dabeaz.com

Part 2

 30

Processing Data Files

(Show me your Web Server Logs)

Copyright (C) 2018, http://www.dabeaz.com

Programming Problem

 31

Find out how many bytes of data were
transferred by summing up the last column
of data in this Apache web server log

81.107.39.38 - ... "GET /ply/ HTTP/1.1" 200 7587
81.107.39.38 - ... "GET /favicon.ico HTTP/1.1" 404 133
81.107.39.38 - ... "GET /ply/bookplug.gif HTTP/1.1" 200 23903
81.107.39.38 - ... "GET /ply/ply.html HTTP/1.1" 200 97238
81.107.39.38 - ... "GET /ply/example.html HTTP/1.1" 200 2359
66.249.72.134 - ... "GET /index.html HTTP/1.1" 200 4447

Oh yeah, and the log file might be huge (Gbytes)

Copyright (C) 2018, http://www.dabeaz.com

The Log File
• Each line of the log looks like this:

 32

bytes_sent = line.rsplit(None,1)[1]

81.107.39.38 - ... "GET /ply/ply.html HTTP/1.1" 200 97238

• The number of bytes is the last column

• It's either a number or a missing value (-)
81.107.39.38 - ... "GET /ply/ HTTP/1.1" 304 -

• Converting the value
if bytes_sent != '-':
 bytes_sent = int(bytes_sent)

Copyright (C) 2018, http://www.dabeaz.com

A Non-Generator Soln
• Just use a simple for-loop

 33

with open("access-log") as wwwlog:
 total = 0
 for line in wwwlog:
 bytes_sent = line.rsplit(None,1)[1]
 if bytes_sent != '-':
 total += int(bytes_sent)
 print("Total", total)

• We read line-by-line and just update a sum

• However, that's so 90s...

Example File: nongenlog.py

Copyright (C) 2018, http://www.dabeaz.com

A Generator Solution
• Let's use some generator expressions

 34

with open("access-log") as wwwlog:
 bytecolumn = (line.rsplit(None,1)[1] for line in wwwlog)
 bytes_sent = (int(x) for x in bytecolumn if x != '-')
 print("Total", sum(bytes_sent))

• Whoa! That's different!

• Less code

• A completely different programming style

Example File: genlog.py

Copyright (C) 2018, http://www.dabeaz.com

Generators as a Pipeline
• To understand the solution, think of it as a data

processing pipeline

 35

wwwlog bytecolumn bytes_sent sum()access-log total

• Each step is defined by iteration/generation

with open("access-log") as wwwlog:
 bytecolumn = (line.rsplit(None,1)[1] for line in wwwlog)
 bytes_sent = (int(x) for x in bytecolumn if x != '-')
 print("Total", sum(bytes_sent))

Example File: genlog.py

Copyright (C) 2018, http://www.dabeaz.com

Being Declarative
• At each step of the pipeline, we declare an

operation that will be applied to the entire
input stream

 36

bytecolumn = (line.rsplit(None,1)[1] for line in wwwlog)

This operation gets applied to
every line of the log file

wwwlog bytecolumn bytes_sent sum()access-log total

Copyright (C) 2018, http://www.dabeaz.com

Being Declarative

• Instead of focusing on the problem at a line-
by-line level, you just break it down into big
operations that operate on the whole file

• It's a "declarative" style

• The key : Think big...

 37

Copyright (C) 2018, http://www.dabeaz.com

Iteration is the Glue

 38

• The glue that holds the pipeline together is the
iteration that occurs in each step

with open("access-log") as wwwlog:

 bytecolumn = (line.rsplit(None,1)[1] for line in wwwlog)

 bytes_sent = (int(x) for x in bytecolumn if x != '-')

 print("Total", sum(bytes_sent))

• The calculation is being driven by the last step

• The sum() function is consuming values being
pulled through the pipeline (via __next__() calls)

Copyright (C) 2018, http://www.dabeaz.com

Performance

• Surely, this generator approach has all
sorts of fancy-dancy magic that is slow.

• Let's check it out on a 1.3Gb log file...

 39

% ls -l big-access-log
-rw-r--r-- beazley 1303238000 Feb 29 08:06 big-access-log

(Note: Use the script 'python3 makebig.py 2000' to create this file).

Copyright (C) 2018, http://www.dabeaz.com

Performance Contest

 40

with open("big-access-log") as wwwlog:
 total = 0
 for line in wwwlog:
 bytes_sent = line.rsplit(None,1)[1]
 if bytes_sent != '-':
 total += int(bytes_sent)
 print("Total", total)

with open("big-access-log") as wwwlog:
 bytecolumn = (line.rsplit(None,1)[1] for line in wwwlog)
 bytes_sent = (int(x) for x in bytecolumn if x != '-')
 print("Total", sum(bytes_sent))

18.6

16.7

Time

Time

Copyright (C) 2018, http://www.dabeaz.com

Commentary

• Not only was it not slow, it was 10% faster

• And it was less code

• And it was relatively easy to read

• And frankly, I like it a whole better...

 41

"Back in the old days, we used AWK for this and
we liked it. Oh, yeah, and get off my lawn!"

Copyright (C) 2018, http://www.dabeaz.com

Performance Contest

 42

with open("access-log") as wwwlog:
 bytecolumn = (line.rsplit(None,1)[1] for line in wwwlog)
 bytes_sent = (int(x) for x in bytecolumn if x != '-')
 print("Total", sum(bytes_sent))

16.7

Time

% awk '{ total += $NF } END { print total }' big-access-log

70.5

Time
Note: extracting the last

column might not be
awk's strong point

Copyright (C) 2018, http://www.dabeaz.com

Food for Thought

• At no point in our generator solution did
we ever create large temporary lists

• Thus, not only is that solution faster, it can
be applied to enormous data files

• It's competitive with traditional tools

 43

Copyright (C) 2018, http://www.dabeaz.com

More Thoughts

• The generator solution was based on the
concept of pipelining data between
different components

• What if you had more advanced kinds of
components to work with?

• Perhaps you could perform different kinds
of processing by just plugging various
pipeline components together

 44

Copyright (C) 2018, http://www.dabeaz.com

This Sounds Familiar

• The Unix philosophy

• Have a collection of useful system utils

• Can hook these up to files or each other

• Perform complex tasks by piping data

 45

Copyright (C) 2018, http://www.dabeaz.com

Part 3

 46

Fun with Files and Directories

Copyright (C) 2018, http://www.dabeaz.com

Programming Problem

 47

You have hundreds of web server logs scattered
across various directories. In additional, some of
the logs are compressed. Modify the last program
so that you can easily read all of these logs

foo/
 access-log-012007.gz
 access-log-022007.gz
 access-log-032007.gz
 ...
 access-log-012008
bar/
 access-log-092007.bz2
 ...
 access-log-022008

Copyright (C) 2018, http://www.dabeaz.com

Path.rglob()

 48

from pathlib import Path

for filename in Path('/').rglob('*.py'):
 print(filename)

• A useful way to search the filesystem

• Guess what? It uses generators!
>>> from pathlib import Path
>>> Path('/').rglob('*.py')
<generator object Path.rglob at 0x10e3e0b88>
>>>

• So, you could build processing pipelines from it

Example File: genfind.py

Copyright (C) 2018, http://www.dabeaz.com

A File Opener

 49

import gzip, bz2
def gen_open(paths):
 for path in paths:
 if path.suffix == '.gz':
 yield gzip.open(path, 'rt')
 elif path.suffix == '.bz2':
 yield bz2.open(path, 'rt')
 else:
 yield open(path, 'rt')

• Open a sequence of paths

• This is interesting.... it takes a sequence of paths
as input and yields a sequence of open file
objects

Example File: genopen.py

Copyright (C) 2018, http://www.dabeaz.com

cat

 50

def gen_cat(sources):
 for src in sources:
 for item in src:
 yield item

• Concatenate items from one or more
source into a single sequence of items

• Example:
lognames = Path('/usr/www').rglob("access-log*")
logfiles = gen_open(lognames)
loglines = gen_cat(logfiles)

def gen_cat(sources):
 for src in sources:
 yield from srcOR

Example File: gencat.py

Copyright (C) 2018, http://www.dabeaz.com

Aside: yield from

 51

def countdown(n):
 while n > 0:
 yield n
 n -= 1

def countup(stop):
 n = 1
 while n < stop:
 yield n
 n += 1

• 'yield from' can be used to delegate iteration
def up_and_down(n):
 yield from countup(n)
 yield from countdown(n)

>>> for x in up_and_down(3):
... print(x)
...
1
2
3
2
1
>>>

Copyright (C) 2018, http://www.dabeaz.com

grep

 52

import re

def gen_grep(pat, lines):
 patc = re.compile(pat)
 return (line for line in lines if patc.search(line))

• Generate a sequence of lines that contain
a given regular expression

• Example:
lognames = Path('/usr/www').rglob("access-log*")
logfiles = gen_open(lognames)
loglines = gen_cat(logfiles)
patlines = gen_grep(pat, loglines)

Example File: gengrep.py

Copyright (C) 2018, http://www.dabeaz.com

Example

 53

• Find out how many bytes transferred for a
specific pattern in a whole directory of logs
pat = r"somepattern"
logdir = "/some/dir/"

filenames = Path(logdir).rglob("access-log*")
logfiles = gen_open(filenames)
loglines = gen_cat(logfiles)
patlines = gen_grep(pat,loglines)
bytecolumn = (line.rsplit(None,1)[1] for line in patlines)
bytes_sent = (int(x) for x in bytecolumn if x != '-')

print("Total", sum(bytes_sent))

Example File: bytesgen.py

Copyright (C) 2018, http://www.dabeaz.com

Important Concept

 54

• Generators decouple iteration from the
code that uses the results of the iteration

• In the last example, we're performing a
calculation on a sequence of lines

• It doesn't matter where or how those
lines are generated

• Thus, we can plug any number of
components together up front as long as
they eventually produce a line sequence

Copyright (C) 2018, http://www.dabeaz.com

Part 4

 55

Parsing and Processing Data

Copyright (C) 2018, http://www.dabeaz.com

Programming Problem

 56

Web server logs consist of different columns of
data. Parse each line into a useful data structure
that allows us to easily inspect the different fields.

81.107.39.38 - - [24/Feb/2008:00:08:59 -0600] "GET ..." 200 7587

host referrer user [datetime] "request" status bytes

Copyright (C) 2018, http://www.dabeaz.com

Parsing with Regex
• Let's route the lines through a regex parser

 57

logpats = r'(\S+) (\S+) (\S+) \[(.*?)\] '\
 r'"(\S+) (\S+) (\S+)" (\S+) (\S+)'

logpat = re.compile(logpats)

groups = (logpat.match(line) for line in loglines)
tuples = (g.groups() for g in groups if g)

• This generates a sequence of tuples
('71.201.176.194', '-', '-', '26/Feb/2008:10:30:08 -0600',
'GET', '/ply/ply.html', 'HTTP/1.1', '200', '97238')

Example File: retuple.py

Copyright (C) 2018, http://www.dabeaz.com

Tuple Commentary
• I generally don't like data processing on tuples

 58

('71.201.176.194', '-', '-', '26/Feb/2008:10:30:08 -0600',
'GET', '/ply/ply.html', 'HTTP/1.1', '200', '97238')

• First, they are immutable--so you can't modify

• Second, to extract specific fields, you have to
remember the column number--which is
annoying if there are a lot of columns

• Third, existing code breaks if you change the
number of fields

Copyright (C) 2018, http://www.dabeaz.com

Tuples to Dictionaries
• Let's turn tuples into dictionaries

 59

colnames = ('host','referrer','user','datetime',
 'method','request','proto','status','bytes')

log = (dict(zip(colnames, t)) for t in tuples)

• This generates a sequence of named fields
{ 'status' : '200',
 'proto' : 'HTTP/1.1',
 'referrer': '-',
 'request' : '/ply/ply.html',
 'bytes' : '97238',
 'datetime': '24/Feb/2008:00:08:59 -0600',
 'host' : '140.180.132.213',
 'user' : '-',
 'method' : 'GET'}

Example File: redict.py

Copyright (C) 2018, http://www.dabeaz.com

Field Conversion
• You might want to map specific dictionary fields

through a conversion function (e.g., int(), float())

 60

def field_map(dictseq, name, func):
 for d in dictseq:
 d[name] = func(d[name])
 yield d

• Example: Convert a few field values

log = field_map(log, "status", int)
log = field_map(log, "bytes",
 lambda s: int(s) if s !='-' else 0)

Example File: fieldmap.py

Copyright (C) 2018, http://www.dabeaz.com

Field Conversion

• Creates dictionaries of converted values

 61

{ 'status': 200,
 'proto': 'HTTP/1.1',
 'referrer': '-',
 'request': '/ply/ply.html',
 'datetime': '24/Feb/2008:00:08:59 -0600',
 'bytes': 97238,
 'host': '140.180.132.213',
 'user': '-',
 'method': 'GET'}

• Again, this is just one big processing pipeline

Note conversion

Copyright (C) 2018, http://www.dabeaz.com

The Code So Far

 62

from pathlib import Path

lognames = Path('www').rglob('access-log*')
logfiles = gen_open(lognames)
loglines = gen_cat(logfiles)
groups = (logpat.match(line) for line in loglines)
tuples = (g.groups() for g in groups if g)

colnames = ('host','referrer','user','datetime','method',
 'request','proto','status','bytes')

log = (dict(zip(colnames, t)) for t in tuples)
log = field_map(log,"bytes",
 lambda s: int(s) if s != '-' else 0)
log = field_map(log,"status",int)

Example File: fieldmap.py

Copyright (C) 2018, http://www.dabeaz.com

Getting Organized

 63

• As a processing pipeline grows, certain parts of it
may be useful components on their own

generate lines
from a set of files

in a directory

Parse a sequence of lines from
Apache server logs into a
sequence of dictionaries

• A series of pipeline stages can be easily
encapsulated by a normal Python function

Copyright (C) 2018, http://www.dabeaz.com

Packaging

• Example : multiple pipeline stages inside a function

 64

from pathlib import Path

def lines_from_dir(filepat, dirname):
 names = Path(dirname).rglob(filepat)
 files = gen_open(names)
 lines = gen_cat(files)
 return lines

• This is now a general purpose component that can
be used as a single element in other pipelines

Example File: linesdir.py

Copyright (C) 2018, http://www.dabeaz.com

Packaging
• Example : Parse an Apache log into dicts

 65

def apache_log(lines):
 groups = (logpat.match(line) for line in lines)
 tuples = (g.groups() for g in groups if g)

 colnames = ('host','referrer','user','datetime','method',
 'request','proto','status','bytes')

 log = (dict(zip(colnames, t)) for t in tuples)
 log = field_map(log, "bytes",
 lambda s: int(s) if s != '-' else 0)
 log = field_map(log, "status", int)

 return log

Example File: apachelog.py

Copyright (C) 2018, http://www.dabeaz.com

Example Use

• It's easy

 66

lines = lines_from_dir("access-log*","www")
log = apache_log(lines)

for r in log:
 print(r)

• Different components have been subdivided
according to the data that they process

Example File: apachelog.py

Copyright (C) 2018, http://www.dabeaz.com

Food for Thought

• When creating pipeline components, it's
critical to focus on the inputs and outputs

• You will get the most flexibility when you
use a standard set of datatypes

• Is it simpler to have a bunch of components
that all operate on dictionaries or to have
components that require inputs/outputs to
be different kinds of user-defined instances?

 67

Copyright (C) 2018, http://www.dabeaz.com

A Query Language

• Now that we have our log, let's do some queries

 68

stat404 = { r['request'] for r in log
 if r['status'] == 404 }

• Find the set of all documents that 404

• Print all requests that transfer over a megabyte
large = (r for r in log
 if r['bytes'] > 1000000)

for r in large:
 print(r['request'], r['bytes'])

Example Files: query404.py, largefiles.py

Copyright (C) 2018, http://www.dabeaz.com

A Query Language

• Find the largest data transfer

 69

print("%d %s" % max((r['bytes'],r['request'])
 for r in log))

• Collect all unique host IP addresses

hosts = { r['host'] for r in log }

• Find the number of downloads of a file
sum(1 for r in log
 if r['request'] == '/ply/ply-2.3.tar.gz')

Example Files: largest.py, hosts.py, downloads.py

Copyright (C) 2018, http://www.dabeaz.com

A Query Language

• Find out who has been hitting robots.txt

 70

addrs = { r['host'] for r in log
 if 'robots.txt' in r['request'] }

import socket
for addr in addrs:
 try:
 print(socket.gethostbyaddr(addr)[0])
 except socket.herror:
 print(addr)

Example File: robots.py

Copyright (C) 2018, http://www.dabeaz.com

Some Thoughts

 71

• I like the idea of using generator expressions as a
pipeline query language

• You can write simple filters, extract data, etc.

• If you pass dictionaries/objects through the
pipeline, it becomes quite powerful

• Feels similar to writing SQL queries

Copyright (C) 2018, http://www.dabeaz.com

Part 5

 72

Processing Infinite Data

Copyright (C) 2018, http://www.dabeaz.com

Question
• Have you ever used 'tail -f' in Unix?

 73

% tail -f logfile
...
... lines of output ...
...

• This prints the lines written to the end of a file

• The "standard" way to watch a log file

• I used this all of the time when working on
scientific simulations ten years ago...

Copyright (C) 2018, http://www.dabeaz.com

Infinite Sequences

• Tailing a log file results in an "infinite" stream

• It constantly watches the file and yields lines as
soon as new data is written

• But you don't know how much data will actually
be written (in advance)

• And log files can often be enormous

 74

Copyright (C) 2018, http://www.dabeaz.com

Tailing a File
• A Python version of 'tail -f'

 75

import time
import os

def follow(thefile):
 thefile.seek(0, os.SEEK_END) # End-of-file
 while True:
 line = thefile.readline()
 if not line:
 time.sleep(0.1) # Sleep briefly
 continue
 yield line

• Idea : Seek to the end of the file and repeatedly
try to read new lines. If new data is written to
the file, we'll pick it up.

Example File: follow.py

Copyright (C) 2018, http://www.dabeaz.com

Example

• Using our follow function

 76

logfile = open("access-log")
loglines = follow(logfile)

for line in loglines:
 print(line, end='')

• This produces the same output as 'tail -f'

Copyright (C) 2018, http://www.dabeaz.com

Example

• Turn the real-time log file into records

 77

logfile = open("access-log")
loglines = follow(logfile)
log = apache_log(loglines)

• Print out all 404 requests as they happen

r404 = (r for r in log if r['status'] == 404)
for r in r404:
 print(r['host'],r['datetime'],r['request'])

Example File: realtime404.py

Copyright (C) 2018, http://www.dabeaz.com

Commentary

• We just plugged this new input scheme onto
the front of our processing pipeline

• Everything else still works, with one caveat-
functions that consume an entire iterable won't
terminate (min, max, sum, set, etc.)

• Nevertheless, we can easily write processing
steps that operate on an infinite data stream

 78

Copyright (C) 2018, http://www.dabeaz.com

Part 6

 79

Feeding the Pipeline

Copyright (C) 2018, http://www.dabeaz.com

Feeding Generators

• In order to feed a generator processing
pipeline, you need to have an input source

• So far, we have looked at two file-based inputs

• Reading a file

 80

lines = open(filename)

• Tailing a file
lines = follow(open(filename))

Copyright (C) 2018, http://www.dabeaz.com

A Thought

• There is no rule that says you have to
generate pipeline data from a file.

• Or that the input data has to be a string

• Or that it has to be turned into a dictionary

• Remember: All Python objects are "first-class"

• Which means that all objects are fair-game for
use in a generator pipeline

 81

Copyright (C) 2018, http://www.dabeaz.com

Generating Connections
• Generate a sequence of TCP connections

 82

import socket
def receive_connections(addr):
 s = socket.socket(socket.AF_INET,socket.SOCK_STREAM)
 s.setsockopt(socket.SOL_SOCKET,socket.SO_REUSEADDR,1)
 s.bind(addr)
 s.listen(5)
 while True:
 client = s.accept()
 yield client

• Example:
for c, a in receive_connections(("",9000)):
 c.send(b"Hello World\n")
 c.close()

Example File: genreceive.py

Copyright (C) 2018, http://www.dabeaz.com

Generating Messages

• Receive a sequence of UDP messages

 83

import socket
def receive_messages(addr,maxsize):
 s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
 s.bind(addr)
 while True:
 msg = s.recvfrom(maxsize)
 yield msg

• Example:
for msg, addr in receive_messages(("",10000), 1024):
 print(msg, "from", addr)

Example File: genmessages.py

Copyright (C) 2018, http://www.dabeaz.com

Part 7

 84

Extending the Pipeline

Copyright (C) 2018, http://www.dabeaz.com

Multiple Processes

• Can you extend a processing pipeline across
processes and machines?

 85

process 1

process 2
socket

pipe

Copyright (C) 2018, http://www.dabeaz.com

Pickler/Unpickler
• Turn a generated sequence into pickled objects

 86

def gen_pickle(source):
 for item in source:
 yield pickle.dumps(item, protocol)

def gen_unpickle(infile):
 while True:
 try:
 item = pickle.load(infile)
 yield item
 except EOFError:
 return

• Now, attach these to a pipe or socket

Example File: genpickle.py

Copyright (C) 2018, http://www.dabeaz.com

Sender/Receiver
• Example: Sender

 87

def sendto(source,addr):
 s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
 s.connect(addr)
 for pitem in gen_pickle(source):
 s.sendall(pitem)
 s.close()

• Example: Receiver
def receivefrom(addr):
 s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
 s.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)
 s.bind(addr)
 s.listen(5)
 c,a = s.accept()
 for item in gen_unpickle(c.makefile('rb')):
 yield item
 c.close()

Example Files: sendto.py, receivefrom.py

Copyright (C) 2018, http://www.dabeaz.com

Example Use

• Example: Read log lines and parse into records

 88

producer.py

lines = follow(open("access-log"))
log = apache_log(lines)
sendto(log,("",15000))

• Example: Pick up the log on another machine
consumer.py
for r in receivefrom(("",15000)):
 print(r)

Example Files: sendto.py, receivefrom.py

Copyright (C) 2018, http://www.dabeaz.com

Generators and Threads

• Processing pipelines sometimes come up in the
context of thread programming

• Producer/consumer problems

 89

Thread 1 Thread 2

Producer Consumer

• Question: Can generator pipelines be
integrated with thread programming?

Copyright (C) 2018, http://www.dabeaz.com

Multiple Threads

• For example, can a generator pipeline span
multiple threads?

 90

Thread 1 Thread 2

• Yes, if you connect them with a Queue object

?

Copyright (C) 2018, http://www.dabeaz.com

Generators and Queues
• Feed a generated sequence into a queue

 91

def genfrom_queue(thequeue):
 while True:
 item = thequeue.get()
 if item is StopIteration:
 break
 yield item

• Note: Using StopIteration as a sentinel

genqueue.py
def sendto_queue(source, thequeue):
 for item in source:
 thequeue.put(item)
 thequeue.put(StopIteration)

• Generate items received on a queue

Example File: genqueue.py

Copyright (C) 2018, http://www.dabeaz.com

Thread Example

• Here is a consumer function

 92

A consumer. Prints out 404 records.
def print_r404(log_q):
 log = genfrom_queue(log_q)
 r404 = (r for r in log if r['status'] == 404)
 for r in r404:
 print(r['host'],r['datetime'],r['request'])

• This function will be launched in its own thread

• Using a Queue object as the input source

Copyright (C) 2018, http://www.dabeaz.com

Thread Example
• Launching the consumer

 93

import threading, queue
log_q = queue.Queue()
r404_thr = threading.Thread(target=print_r404,
 args=(log_q,))
r404_thr.start()

• Code that feeds the consumer

lines = follow(open("access-log"))
log = apache_log(lines)
sendto_queue(log, log_q)

Copyright (C) 2018, http://www.dabeaz.com

Part 8

 94

Advanced Data Routing

Copyright (C) 2018, http://www.dabeaz.com

The Story So Far

• You can use generators to set up pipelines

• You can extend the pipeline over the network

• You can extend it between threads

• However, it's still just a pipeline (there is one
input and one output).

• Can you do more than that?

 95

Copyright (C) 2018, http://www.dabeaz.com

Multiple Sources
• Can a processing pipeline be fed by multiple

sources---for example, multiple generators?

 96

source1 source2 source3

for item in sources:
 # Process item

Copyright (C) 2018, http://www.dabeaz.com

Concatenation
• Concatenate one source after another (reprise)

 97

def gen_cat(sources):
 for src in sources:
 yield from src

• This generates one big sequence

• Consumes each generator one at a time

• But only works if generators terminate

• So, you wouldn't use this for real-time streams

Copyright (C) 2018, http://www.dabeaz.com

Parallel Iteration

• Zipping multiple generators together

 98

import itertools

z = itertools.izip(s1,s2,s3)

• This one is only marginally useful

• Requires generators to go lock-step

• Terminates when any input ends

Copyright (C) 2018, http://www.dabeaz.com

Multiplexing

• Feed a pipeline from multiple generators in
real-time--producing values as they arrive

 99

log1 = follow(open("foo/access-log"))
log2 = follow(open("bar/access-log"))

lines = multiplex([log1,log2])

• Example use

• There is no way to poll a generator

• And only one for-loop executes at a time

Copyright (C) 2018, http://www.dabeaz.com

Multiplexing
• You can multiplex if you use threads and you

use the tools we've developed so far

 100

• Idea : source1 source2 source3

for item in queue:
 # Process item

queue

Copyright (C) 2018, http://www.dabeaz.com

Multiplexing

 101

genmulti.py

import threading, queue
from genqueue import genfrom_queue
from gencat import gen_cat

def multiplex(sources):
 in_q = queue.Queue()
 consumers = []
 for src in sources:
 thr = threading.Thread(target=sendto_queue,
 args=(src, in_q))
 thr.start()
 consumers.append(genfrom_queue(in_q))
 return gen_cat(consumers)

• Note: This is the trickiest example so far...

Example File: genmulti.py

Copyright (C) 2018, http://www.dabeaz.com

Multiplexing

 102

source1 source2 source3

sendto_queue

queue

sendto_queue sendto_queue

• Each input source is wrapped by a thread which
runs the generator and dumps the items into a
shared queue

in_q

Copyright (C) 2018, http://www.dabeaz.com

Multiplexing

 103

queue

• For each source, we create a consumer of
queue data

in_q

consumers = [genfrom_queue, genfrom_queue, genfrom_queue]

• Now, just concatenate the consumers together
get_cat(consumers)

• Each time a producer terminates, we move to
the next consumer (until there are no more)

Copyright (C) 2018, http://www.dabeaz.com

Broadcasting

 104

• Can you broadcast to multiple consumers?

consumer1 consumer2 consumer3

generator

Copyright (C) 2018, http://www.dabeaz.com

Broadcasting
• Consume a generator and send to consumers

 105

def broadcast(source, consumers):
 for item in source:
 for c in consumers:
 c.send(item)

• It works, but now the control-flow is unusual

• The broadcast loop is what runs the program

• Consumers run by having items sent to them

Example File: broadcast.py

Copyright (C) 2018, http://www.dabeaz.com

Consumers
• To create a consumer, define an object with a

send() method on it

 106

class Consumer(object):
 def send(self,item):
 print(self, "got", item)

• Example:

c1 = Consumer()
c2 = Consumer()
c3 = Consumer()

lines = follow(open("access-log"))
broadcast(lines,[c1,c2,c3])

Copyright (C) 2018, http://www.dabeaz.com

Network Consumer

 107

import socket,pickle
class NetConsumer(object):
 def __init__(self,addr):
 self.s = socket.socket(socket.AF_INET,
 socket.SOCK_STREAM)
 self.s.connect(addr)
 def send(self,item):
 pitem = pickle.dumps(item)
 self.s.sendall(pitem)
 def close(self):
 self.s.close()

• Example:

• This will route items across the network

Example File: netsend.py

Copyright (C) 2018, http://www.dabeaz.com

Network Consumer

 108

class Stat404(NetConsumer):
 def send(self,item):
 if item['status'] == 404:
 NetConsumer.send(self,item)

lines = follow(open("access-log"))
log = apache_log(lines)

stat404 = Stat404(("somehost",15000))

broadcast(log, [stat404])

• Example Usage:

• The 404 entries will go elsewhere...

Example File: netsend.py

Copyright (C) 2018, http://www.dabeaz.com

Commentary

• Once you start broadcasting, consumers can't
follow the same programming model as before

• Only one for-loop can run the pipeline.

• However, you can feed an existing pipeline if
you're willing to run it in a different thread or in
a different process

 109

Copyright (C) 2018, http://www.dabeaz.com

Consumer Thread

 110

import queue, threading
from genqueue import genfrom_queue

class ConsumerThread(threading.Thread):
 def __init__(self,target):
 threading. Thread.__init__(self)
 self.setDaemon(True)
 self.in_q = queue.Queue()
 self.target = target
 def send(self,item):
 self.in_q.put(item)
 def run(self):
 self.target(genfrom_queue(self.in_q))

• Example: Routing items to a separate thread

Example File: thrsend.py

Copyright (C) 2018, http://www.dabeaz.com

Consumer Thread

 111

def find_404(log):
 for r in (r for r in log if r['status'] == 404):
 print r['status'],r['datetime'],r['request']

def bytes_transferred(log):
 total = 0
 for r in log:
 total += r['bytes']
 print("Total bytes", total)

c1 = ConsumerThread(find_404)
c1.start()
c2 = ConsumerThread(bytes_transferred)
c2.start()

lines = follow(open("access-log")) # Follow a log
log = apache_log(lines) # Turn into records
broadcast(log,[c1,c2]) # Broadcast to consumers

• Sample usage (building on earlier code)

Example File: thrsend.py

Copyright (C) 2018, http://www.dabeaz.com

Part 9

 112

Various Programming Tricks (And Debugging)

Copyright (C) 2018, http://www.dabeaz.com

Putting it all Together

• This data processing pipeline idea is powerful

• But, it's also potentially mind-boggling

• Especially when you have dozens of pipeline
stages, broadcasting, multiplexing, etc.

• Let's look at a few useful tricks

 113

Copyright (C) 2018, http://www.dabeaz.com

Creating Generators
• Any single-argument function is easy to turn

into a generator function

 114

def generate(func):
 def gen_func(s):
 for item in s:
 yield func(item)
 return gen_func

• Example:
gen_sqrt = generate(math.sqrt)
for x in gen_sqrt(range(100)):
 print(x)

Copyright (C) 2018, http://www.dabeaz.com

Debug Tracing
• A debugging function that will print items going

through a generator

 115

def trace(source):
 for item in source:
 print(item)
 yield item

• This can easily be placed around any generator
lines = follow(open("access-log"))
log = trace(apache_log(lines))

r404 = trace(r for r in log if r['status'] == 404)

• Note: Might consider logging module for this

Example File: gentrace.py

Copyright (C) 2018, http://www.dabeaz.com

Recording the Last Item
• Store the last item generated in the generator

 116

class storelast(object):
 def __init__(self,source):
 self.source = source
 def __next__(self):
 item = self.source.__next__()
 self.last = item
 return item
 def __iter__(self):
 return self

• This can be easily wrapped around a generator
lines = storelast(follow(open("access-log")))
log = apache_log(lines)

for r in log:
 print(r)
 print(lines.last)

Example File: storelast.py

Copyright (C) 2018, http://www.dabeaz.com

Shutting Down
• Generators can be shut down using .close()

 117

import time
def follow(thefile):
 thefile.seek(0, os.SEEK_END) # End of file
 while True:
 line = thefile.readline()
 if not line:
 time.sleep(0.1) # Sleep briefly
 continue
 yield line

• Example:
lines = follow(open("access-log"))
for i, line in enumerate(lines):
 print(line, end='')
 if i == 10:
 lines.close()

Example File: genshutdown.py

Copyright (C) 2018, http://www.dabeaz.com

Shutting Down
• In the generator, GeneratorExit is raised

 118

import time
def follow(thefile):
 thefile.seek(0, os.SEEK_END)
 try:
 while True:
 line = thefile.readline()
 if not line:
 time.sleep(0.1) # Sleep briefly
 continue
 yield line
 except GeneratorExit:
 print("Follow: Shutting down")

• This allows for resource cleanup (if needed)

Copyright (C) 2018, http://www.dabeaz.com

Ignoring Shutdown
• Question: Can you ignore GeneratorExit?

 119

import time
def follow(thefile):
 thefile.seek(0, os.SEEK_END)
 while True:
 try:
 line = thefile.readline()
 if not line:
 time.sleep(0.1) # Sleep briefly
 continue
 yield line
 except GeneratorExit: # Note: inside while
 print("Forget about it")

• Answer: No. You'll get a RuntimeError

Copyright (C) 2018, http://www.dabeaz.com

Shutdown and Threads

• Question : Can a thread shutdown a generator
running in a different thread?

 120

lines = follow(open("foo/test.log"))

def sleep_and_close(s):
 time.sleep(s)
 lines.close()

threading.Thread(target=sleep_and_close,args=(30,)).start()

for line in lines:
 print(line, end='')

Copyright (C) 2018, http://www.dabeaz.com

Shutdown and Threads
• Separate threads can not call .close()

• Output:

 121

Exception in thread Thread-1:
Traceback (most recent call last):
 ...
 File "genfollow.py", line 31, in sleep_and_close
 lines.close()
ValueError: generator already executing

• Similarly, don't call .close() from signal handlers

Copyright (C) 2018, http://www.dabeaz.com

Shutdown
• The only way to externally shutdown a

generator would be to instrument with a flag or
some kind of check

 122

def follow(thefile,shutdown=None):
 thefile.seek(0, os.SEEK_END)
 while True:
 if shutdown and shutdown.is_set():
 break
 line = thefile.readline()
 if not line:
 time.sleep(0.1)
 continue
 yield line

Copyright (C) 2018, http://www.dabeaz.com

Shutdown

• Example:

 123

import threading, signal

shutdown = threading.Event()
def sigusr1(signo,frame):
 print("Closing it down")
 shutdown.set()
signal.signal(signal.SIGUSR1,sigusr1)

lines = follow(open("access-log"),shutdown)
for line in lines:
 print(line, end='')

Copyright (C) 2018, http://www.dabeaz.com

Part 10

 124

Parsing and Printing

Copyright (C) 2018, http://www.dabeaz.com

Incremental Parsing
• Generators are a useful way to incrementally

parse almost any kind of data

 125

genrecord.py
import struct

def gen_records(record_format, thefile):
 record_size = struct.calcsize(record_format)
 while True:
 raw_record = thefile.read(record_size)
 if not raw_record:
 break
 yield struct.unpack(record_format, raw_record)

• This function sweeps through a file and
generates a sequence of unpacked records

Copyright (C) 2018, http://www.dabeaz.com

Incremental Parsing

• Example:

 126

from genrecord import gen_records

f = open("stockdata.bin","rb")
for name, shares, price in gen_records("<8sif",f):
 # Process data
 ...

• Tip : Look at xml.etree.ElementTree.iterparse
for a neat way to incrementally process large
XML documents using generators

Copyright (C) 2018, http://www.dabeaz.com

yield as print
• Generator functions can use yield like a print

statement

• Example:

 127

def print_count(n):
 yield "Hello World\n"
 yield "\n"
 yield "Look at me count to %d\n" % n
 for i in range(n):
 yield " %d\n" % i
 yield "I'm done!\n"

• This is useful if you're producing I/O output, but
you want flexibility in how it gets handled

Copyright (C) 2018, http://www.dabeaz.com

yield as print
• Examples of processing the output stream:

 128

Generate the output
out = print_count(10)

Turn it into one big string
out_str = "".join(out)

Write it to a file
f = open("out.txt","w")
for chunk in out:
 f.write(chunk)

Send it across a network socket
for chunk in out:
 s.sendall(chunk)

Copyright (C) 2018, http://www.dabeaz.com

yield as print

• This technique of producing output leaves the
exact output method unspecified

• So, the code is not hardwired to use files,
sockets, or any other specific kind of output

• There is an interesting code-reuse element

• One use of this : WSGI applications

 129

Copyright (C) 2018, http://www.dabeaz.com

Part 11

 130

Co-routines

Copyright (C) 2018, http://www.dabeaz.com

The Final Frontier

• Generators can also receive values using .send()

 131

def recv_count():
 try:
 while True:
 n = yield # Yield expression
 print("T-minus", n)
 except GeneratorExit:
 print("Kaboom!")

• Think of this function as receiving values rather
than generating them

Example File: recvcount.py

Copyright (C) 2018, http://www.dabeaz.com

Example Use
• Using a receiver

 132

>>> r = recv_count()
>>> r.send(None)
>>> for i in range(5,0,-1):
... r.send(i)
...
T-minus 5
T-minus 4
T-minus 3
T-minus 2
T-minus 1
>>> r.close()
Kaboom!
>>>

Note: must call .send(None) here

Copyright (C) 2018, http://www.dabeaz.com

Co-routines

• This form of a generator is a "co-routine"

• Also sometimes called a "reverse-generator"

• Python books (mine included) do a pretty poor
job of explaining how co-routines are supposed
to be used

• I like to think of them as "receivers" or
"consumer". They receive values sent to them.

 133

Copyright (C) 2018, http://www.dabeaz.com

Setting up a Coroutine
• To get a co-routine to run properly, you have to

ping it with a .send(None) operation first

 134

def recv_count():
 try:
 while True:
 n = yield # Yield expression
 print("T-minus", n)
 except GeneratorExit:
 print("Kaboom!")

• Example:
r = recv_count()
r.send(None)

• This advances it to the first yield--where it will
receive its first value

Copyright (C) 2018, http://www.dabeaz.com

@consumer decorator

• The initialization can be handled via decoration

 135

def consumer(func):
 def start(*args,**kwargs):
 c = func(*args,**kwargs)
 c.send(None)
 return c
 return start

• Example:
@consumer
def recv_count():
 try:
 while True:
 n = yield # Yield expression
 print("T-minus", n)
 except GeneratorExit:
 print("Kaboom!")

Example File: consumer.py

Copyright (C) 2018, http://www.dabeaz.com

@consumer decorator

• Using the decorated version

 136

>>> r = recv_count()
>>> for i in range(5,0,-1):
... r.send(i)
...
T-minus 5
T-minus 4
T-minus 3
T-minus 2
T-minus 1
>>> r.close()
Kaboom!
>>>

• Don't need the extra .send(None) step here

Copyright (C) 2018, http://www.dabeaz.com

Coroutine Pipelines

• Co-routines also set up a processing pipeline

• Instead of being defining by iteration, it's
defining by pushing values into the pipeline
using .send()

 137

.send() .send() .send()

• We already saw some of this with broadcasting

Copyright (C) 2018, http://www.dabeaz.com

Broadcasting (Reprise)

• Consume a generator and send items to a set
of consumers

 138

def broadcast(source, consumers):
 for item in source:
 for c in consumers:
 c.send(item)

• Notice that send() operation there

• The consumers could be co-routines

Copyright (C) 2018, http://www.dabeaz.com

Example

 139

@consumer
def find_404():
 while True:
 r = yield
 if r['status'] == 404:
 print(r['status'],r['datetime'],r['request'])

@consumer
def bytes_transferred():
 total = 0
 while True:
 r = yield
 total += r['bytes']
 print("Total bytes", total)

lines = follow(open("access-log"))
log = apache_log(lines)
broadcast(log,[find_404(),bytes_transferred()])

Example File: logcoroutine.py

Copyright (C) 2018, http://www.dabeaz.com

Discussion

• In last example, multiple consumers

• However, there were no threads

• Further exploration along these lines can take
you into co-operative multitasking, concurrent
programming without using threads

• But that's an entirely different tutorial!

 140

Copyright (C) 2018, http://www.dabeaz.com

Wrap Up

 141

Copyright (C) 2018, http://www.dabeaz.com

The Big Idea

• Generators are an incredibly useful tool for a
variety of "systems" related problem

• Power comes from the ability to set up
processing pipelines

• Can create components that plugged into the
pipeline as reusable pieces

• Can extend the pipeline idea in many directions
(networking, threads, co-routines)

 142

Copyright (C) 2018, http://www.dabeaz.com

Code Reuse

• I like the way that code gets reused with
generators

• Small components that just process a data
stream

• Personally, I think this is much easier than what
you commonly see with OO patterns

 143

Copyright (C) 2018, http://www.dabeaz.com

Example

 144

import socketserver
class HelloHandler(socketserver.BaseRequestHandler):
 def handle(self):
 self.request.sendall(b"Hello World\n")

serv = SocketServer.TCPServer(("",8000),HelloHandler)
serv.serve_forever()

• SocketServer Module (Strategy Pattern)

• A generator version

for c,a in receive_connections(("",8000)):
 c.send(b"Hello World\n")
 c.close()

Copyright (C) 2018, http://www.dabeaz.com

Pitfalls

 145

• Springing this programming style on the
uninitiated might cause their head to explode

• Error handling is tricky because you have lots of
components chained together

• Need to pay careful attention to debugging,
reliability, and other issues.

Copyright (C) 2018, http://www.dabeaz.com

Thanks!

 146

• I hope you got some new ideas from this class

• Please feel free to contact me

Web: http://www.dabeaz.com

Twitter: @dabeaz

Take a Course
Come to Chicago for a week and take a
course in-person with Dave and a small
group of enthusiastic learners. You'll learn
programming with interesting group
discussion, coding projects, and insights that
will change your thinking.

http://www.dabeaz.com/courses.html

Books/Video

https://www.safaribooksonline.com

