如何添加一个新的列到Spark DataFrame(使用PySpark)?
我有一个Spark DataFrame(使用PySpark 1.5.1),并想添加一个新的列。
我已经尝试了以下没有任何成功:
type(randomed_hours) # => list # Create in Python and transform to RDD new_col = pd.DataFrame(randomed_hours, columns=['new_col']) spark_new_col = sqlContext.createDataFrame(new_col) my_df_spark.withColumn("hours", spark_new_col["new_col"])
还有一个错误使用这个:
my_df_spark.withColumn("hours", sc.parallelize(randomed_hours))
那么如何使用PySpark将新的列(基于Python向量)添加到现有的DataFrame?
您不能将任意列添加到Spark中的DataFrame
。 新列只能通过使用文字创build(其他文字types在如何在Spark DataFrame中添加常量列中描述 )
from pyspark.sql.functions import lit df = sqlContext.createDataFrame( [(1, "a", 23.0), (3, "B", -23.0)], ("x1", "x2", "x3")) df_with_x4 = df.withColumn("x4", lit(0)) df_with_x4.show() ## +---+---+-----+---+ ## | x1| x2| x3| x4| ## +---+---+-----+---+ ## | 1| a| 23.0| 0| ## | 3| B|-23.0| 0| ## +---+---+-----+---+
转换现有的列:
from pyspark.sql.functions import exp df_with_x5 = df_with_x4.withColumn("x5", exp("x3")) df_with_x5.show() ## +---+---+-----+---+--------------------+ ## | x1| x2| x3| x4| x5| ## +---+---+-----+---+--------------------+ ## | 1| a| 23.0| 0| 9.744803446248903E9| ## | 3| B|-23.0| 0|1.026187963170189...| ## +---+---+-----+---+--------------------+
包括使用join
:
from pyspark.sql.functions import exp lookup = sqlContext.createDataFrame([(1, "foo"), (2, "bar")], ("k", "v")) df_with_x6 = (df_with_x5 .join(lookup, col("x1") == col("k"), "leftouter") .drop("k") .withColumnRenamed("v", "x6")) ## +---+---+-----+---+--------------------+----+ ## | x1| x2| x3| x4| x5| x6| ## +---+---+-----+---+--------------------+----+ ## | 1| a| 23.0| 0| 9.744803446248903E9| foo| ## | 3| B|-23.0| 0|1.026187963170189...|null| ## +---+---+-----+---+--------------------+----+
或使用function / udf生成:
from pyspark.sql.functions import rand df_with_x7 = df_with_x6.withColumn("x7", rand()) df_with_x7.show() ## +---+---+-----+---+--------------------+----+-------------------+ ## | x1| x2| x3| x4| x5| x6| x7| ## +---+---+-----+---+--------------------+----+-------------------+ ## | 1| a| 23.0| 0| 9.744803446248903E9| foo|0.41930610446846617| ## | 3| B|-23.0| 0|1.026187963170189...|null|0.37801881545497873| ## +---+---+-----+---+--------------------+----+-------------------+
性能方面,映射到Catalystexpression式的内置函数( pyspark.sql.functions
)通常优于Python用户定义的函数。
如果你想添加一个任意RDD的内容作为一个列,你可以
- 将行号添加到现有数据框
- 在RDD上调用
zipWithIndex
并将其转换为数据框 - join这两个使用索引作为连接键
使用UDF添加列:
df = sqlContext.createDataFrame( [(1, "a", 23.0), (3, "B", -23.0)], ("x1", "x2", "x3")) from pyspark.sql.functions import udf from pyspark.sql.types import * def valueToCategory(value): if value == 1: return 'cat1' elif value == 2: return 'cat2' ... else: return 'n/a' # NOTE: it seems that calls to udf() must be after SparkContext() is called udfValueToCategory = udf(valueToCategory, StringType()) df_with_cat = df.withColumn("category", udfValueToCategory("x1")) df_with_cat.show() ## +---+---+-----+---------+ ## | x1| x2| x3| category| ## +---+---+-----+---------+ ## | 1| a| 23.0| cat1| ## | 3| B|-23.0| n/a| ## +---+---+-----+---------+
对于Spark 2.0
# assumes schema has 'age' column df.select('*', (df.age + 10).alias('agePlusTen'))
你可以在添加一个column_name
时定义一个新的column_name
:
u_f = F.udf(lambda :yourstring,StringType()) a.select(u_f().alias('column_name')
from pyspark.sql.functions import udf from pyspark.sql.types import * func_name = udf( lambda val: val, # do sth to val StringType() ) df.withColumn('new_col', func_name(df.old_col))