
SIAM J. COMPUT.
Vol. 4, No. 1, March 1975

FINDING ALL THE ELEMENTARY
CIRCUITS OF A DIRECTED GRAPH*

DONALD B. JOHNSON

Abstract. An algorithm is presented which finds all the elementary circuits-of a directed graph in
time bounded by O((n + e)(c + 1)) and space bounded by O(n + e), where there are n vertices, e edges
and c elementary circuits in the graph. The algorithm resembles algorithms by Tiernan and Tarjan,
but is faster because it considers each edge at most twice between any one circuit and the next in the
output sequence.

Key words, algorithm, circuit, cycle, enumeration, digraph, graph

1. Introduction. Broadly speaking, there are two enumeration problems on
sets of objects. The one, which we call counting, is determining how many objects
there are in the set. The other, which we call finding, is the construction of every
object in the set exactly once. Indeed, objects may always be counted by finding
them if a method to do so is at hand. But knowing the count is usually of little aid
in finding the objects.

We give an algorithm for finding the elementary circuits of a directed graph
which is faster in the worst case than algorithms previously known. As far as we
know, it is also the fastest method known for the general enumeration problem as
well (see 1, p. 2263). Specific counting problems are, of course, solved. For example,
there are exactly

i=1 n-i+
(n i)!

elementary circuits in a complete directed graph with n vertices. Thus the number
of elementary circuits in a directed graph can grow faster with n than the exponen-
tial 2". So it is clear that our algorithm, which has a time bound of O((n + e)(c + 1))
on any graph with n vertices, e edges and c elementary circuits, is feasible for a
substantially larger class of problems than the best algorithms previously known
[2], [3], which realize a time bound of O(n. e(c + 1)).

A directed graph G (V, E) consists of a nonempty and finite set of vertices
V and a set E of ordered pairs of distinct vertices called edges. There are n vertices
and e edges in G. A path in G is a sequence of vertices Pv, (v v 1, v2, "", vk u)
such that (vi, vi+ 1)e E for _< < k. A circuit is a path in which the first and last
vertices are identical. A path is elementary if no vertex appears twice. A circuit is
elementary if no vertex but the first and last appears twice. Two elementary
circuits are distinct if one is not a cyclic permutation of the other. There are c
distinct elementary circuits in G. Our definitions exclude graphs with loops (edges
of the form (v, v)) and multiple edges between the same vertices. It is obvious that
for any circuit qv, there exists a vertex u such that q is composed of a path
followed by edge (u, v). If qv is elementary, then pu is also elementary.

Received by the editors December 10, 1973, and in final revised form June 10, 1974.
-Computer Science Department, Pennsylvania State University, University Park, Pennsylvania

16802.

77

78 DONALD B. JOHNSON

F is .a subgraph of G induced by W if W
_

1/and F (I/V, {(u, v)lu, v W and
(u, v) El). An induced subgraph F is a (maximal) strong component of G if for all
u, v W there exist paths P,v and pv, and this property holds for no subgraph of G
induced by a vertex set W such that W c W

_
1/.

The literature contains several algorithms which find the elementary circuits
of any direct graph. In the algorithms of Tiernan [4] and of Weinblatt [5], time
exponential in the size of the graph may elapse between the output of one circuit
and the next [2]. Tarjan [2] presents a variation of Tiernan’s algorithm in which at
most O(n. e) time elapses between the output of any two circuits in sequence,
giving a bound of O(n. e(c + 1)) for the running time of the algorithm on an entire
graph in the worst case. Ehrenfeucht, Fosdick, and Osterweil [3] give a similar
algorithm which realizes the same bound.

In the case of Tarjan’s algorithm, the worst-case time bound is realized, for
instance, on the graph shown in Fig. 1. We assume that the algorithm begins with
vertex and, in any search from vertices through k + 1, it visits vertices k + 2
through 2k + before a first visit to vertex 2k + 2. In the course of finding each of
the k elementary circuits which contain vertex 1, the subgraph on vertices 2k + 2
through 3k + 3 will be explored k times, once for each of the vertices k + 2 through
2k + 1. Thus exploration from vertex alone consumes O(k3) time. Since there are
exactly 3k elementary circuits in the entire graph, the running time is at least
O(n.e(c + 1)).

The worst-case time bound for Tarjan’s algorithm is also realized on the
graph in Fig: 2. Assuming a start at vertex 1, the algorithm takes O(k) time to find
the one elementary circuit of the graph. Then the fruitless searches from vertices 2
through k take O(k2) time, which is O(n. e(+ 1)). So we see that there are two
ways in which the time bound is realized in Tarjan’s algorithm. One is through
repeated fruitless searching of a subgraph while seeking circuits with a certain
least vertex; the other is through fruitless searches from many vertices which are
least vertices in no elementary circuit.

The graphs of Figs. and 2 are strongly connected, and their undirected
versions are biconnected. On such graphs, obvious preprocessing techniques, such
as reducing the graph to its strong components (as Weinblatt does [5]) or to com-
ponents which in addition to strong connectivity have biconnected undirected
versions, do not improve the performance of Tarjan’s algorithm. Stronger tech-
niques are needed to get a better asymptotic running time in the worst case.

2k+5

k+2 2k+4,

:

2k+l
FIG. |. A worst-cse cxmH [or Trj’s lgorith

FINDING ELEMENTARY CIRCUITS 79

2 3 k-I k

FIG. 2. A second worst-case example for Tarjan’s algorithm

2. The algorithm. In our algorithm, the time consumed between the output of
two consecutive circuits as well as before the first and after the last circuits never
exceeds the size of the graph, O(n + e). We employ the basic notion of Tiernan’s
algorithm. Elementary circuits are constructed from a root vertex s in the sub-
graph induced by s and vertices "larger than s" in some ordering of the vertices.
Thus the output is grouped according to least vertices of the circuits.

To avoid duplicating circuits, a vertex v is blocked when it is added to some
elementary path beginning in s. It stays blocked as long as every path from v to s
intersects the current elementary path at a vertex other than s. Furthermore, a
vertex does not become a root vertex for constructing elementary paths unless it
is the least vertex in at least one elementary circuit. These two features avoid much
of the fruitless searching of Tiernan’s, Weinblatt’s and Tarjan’s algorithms and of
the algorithm of Ehrenfeucht, Fosdick, and Osterweil.

The algorithm accepts a graph G represented by an adjacency structure AG
composed of an adjacency list AG(v) for each v V. The list A(v) contains u if and
only if edge (v, u) E. The algorithm assumes that vertices are represented by inte-
gers from to n.

The algorithm proceeds by building elementary paths from s. The vertices
of the current elementary path are kept on a stack. A vertex is appended to an ele-
mentary path by a call to the procedure CIRCUIT and is deletbd upon return from
this call. When a vertex v is appended to a path it is blocked by setting blocked
(v) true, so that v cannot be used twice on the same path. Upon return from the
call which blocks v, however, v is not necessarily unblocked. Unblocking is always
delayed sufficiently so that any two unblockings of v are separated by either an
output of a new circuit or a return to the main procedure.

CIRCUIT-FINDING ALGORITHM
begin

integer list array A(n), B(n); logical array blocked (n); integer s;
logical procedure CIRCUIT (integer value v);

begin logical f;
procedure UNBLOCK (integer value u);

begin
blocked (u):= false;
for wB(u) do

begin
delete w from B(u);
if blocked(w) then UNBLOCK(w);

end
end UNBLOCK

f :: false;

8O

end;

DONALD B. JOHNSON

stack v;
blocked(v):- true;

L for wAK(v) do
if w- s then

begin
output circuit composed of stack followed by s;

f :- true;
end

else if--blocked(w) then
if CIRCUIT(w) thenf true;

L2: iffthen UNBLOCK(v)
else for wA:(v) do

if vqB(w) then put v on B(w);
unstack v;
CIRCUIT := f;

end CIRCUIT;
empty stack;
s:=l;
while s < n do

begin
A:= adjacency structure of strong component K with least

vertex in subgraph of G induced by {s, s+ 1, n};
if A - then

begin
s := least vertex in V;
for iVu, do

begin
blocked(i) :-- false;
B(i) :-- ,;

end;
L3: dummy :- CIRCUIT(s);

s:=s+l;
end

else s n;
end

The correctness of the algorithm depends on no vertex remaining blocked
when there is a path from the vertex to s which intersects the stack only at s.
On the other hand, the bound on running time depends on all vertices remaining
blocked as long as possible, consistent with the requirements of correctness. The
following lemma establishes these properties. It will be seen that the B-lists are
used to remember information obtained from searches of portions of the graph
which do not yield an elementary circuit. The procedure UNBLOCK has the
property that if there is a call UNBLOCK(x) and vertex y is on list B(x), then there
will be a call UNBLOCK(y) following which blocked(y) will be false.

LEMMA 1. At L2,for any vertex x 4: s, there is a call UNBLOCK(v) which sets

blocked(x) false if and only if

FINDING ELEMENTARY CIRCUITS 81

(i) there is a path, containing v, from x .to s on which only v and s are on the
stack, and

(ii) there is no path.from x to s on which only s is on the stack.
Proof. Assume, to the contrary, that there is an execution of L2 at which

the lemma first fails and that the lemma fails for no vertex before it fails for
vertex y. Two cases are possible under this assumption.

Case 1. Suppose that the path conditions, (i) and (ii), hold for y at L2, but
blocked(y) is not set false. Because there is an edge (v, z) on the path from y to s,
f is true at L2. This fact is immediate if z s. If z -: s, it follows from our assump-
tion that the lemma holds for z before the return from the call CIRCUIT(z). Thus
there is a call UNBLOCK(v) and, without loss of generality, a path (y
re, "’",/)k =/)) on which only/) is on the stack and only y is not unblocked as a
result of the call UNBLOCK(v) at L2. But when y was last blocked, y was on the
stack. Since y remained blocked when y was removed from the stack, y was put
on list B(/)e). So there was a call UNBLOCK(y), a contradiction.

Case 2. Suppose that there is a call UNBLOCK(/)) at L2 and that blocked(y)
is set false, but that either (i) or (ii) is not satisfied. It cannot be that/) s because
it is clear that the lemma holds when only/) s is on the stack, and s cannot be
stacked more than once. Since f is true there is an edge (/), z) such that either
z s or f was set true when the call CIRCUIT(z) returned. It follows from our
assumption that, when f was set true, there was a path from z to s on which only s
was on the stack. It may be that several calls to CIRCUIT occur after f is set
true and before the current call UNBLOCK(/)). In any event, the current stack
(when the call UNBLOCK(/)) occurs) is identical to the stack when f was set true,
so there is a path (/), z, ..., s) on which only/) and s are on the stack. Since/) is
on the stack, (i) and (ii) would be satisfied if y

So y :/:/), and there is some vertex which is unblocked before y is unblocked
such that y is on B(t). By assumption, there is a path from to s on which only
and s are on the stack. Furthermore, when y was last put on B(t), blocked(t) was
true and y was on the stack. But blocked(t) has to remain true until the current
call UNBLOCK(/)). Otherwise y would have been removed from B(t). Since y
must have been unstacked after y was put on B(t), there was some execution of L2
where the stack was a prefix of the current stack, (i) and (ii) held for t, and blocked(t)
was not set false. But by assumption, the lemma did not fail then for t. From this
contradiction, we find that Case 2 is also impossible.

COROLLARY 1. The algorithm outputs only elementary circuits.

Proof. Certainly only circuits are output. By Lemma 1, a vertex is only un-
blocked if it will be off the stack before any call to CIRCUIT can occur. Thus no
vertex can be repeated on the stack.

LEMMA 2. The algorithm outputs every elementary circuit exactly once.
Proof. No circuit is output more than once since, for any stack (s

..,/)k) with/)k on top, once/) is removed the same stack cannot reoccur.
Let (/)1,/)e, "’",/)l,/)1) be an elementary circuit such that/)1 -</)i, _< =< I.

A first call CIRCUIT(v1) will eventually occur at L3 since there is a strong com-
ponent with least vertex/) 1. Since no vertex is blocked when this first call occurs, it
follows by induction using Lemma that whenever the stack is (s vl,/)e, "’",

for < l, the stack will later be (s vl,/)2,"’,/)i+ 1)" Thus every elementary
circuit is output.

82 DONALD B. JOHNSON

The foregoing results show that the algorithm does indeed find all the elemen-
tary circuits of a directed graph. The bound on running time follows from the
next lemma.

LFMMa 3. At most O(n + e) time can elapse in a call at L3 to CIRCUIT before
either the call returns or a circuit is output.

Proof. First we show that no vertex can be unblocked twice in succession
unless a circuit is output. Then we show that no more than O(n + e) time can elapse
before some vertex is unblocked a second time.

Suppose a circuit is output and then some vertex y is unblocked. By Lemma 1,
as soon as v is unstacked there is a path (y v,/)2, /)k S) on which only s
is on the stack. Let some vertex v, __< < k, be the first vertex on this path to be
put on the stack again. We see by induction on the execution of the algorithm that
eventually the stack will be (s, ..., v, v+, ..., v_) and a new circuit output.
Until the new circuit is output, no vertex on the path will be unstacked. Thus no
vertex can be unblocked more than once before a circuit is output.

Charge a unit of cost to a vertex if it is an argument to a procedure call and
a unit of cost to an edge if consideration of this edge by the for loop at L1 in CIR-
CUIT does not result in a procedure call. The cost of all work in the procedure
CIRCUIT will be bounded by a constant times the number of units charged. For
any vertex x, calls to CIRCUIT and UNBLOCK must alternate. Consequently,
no more than three units can be charged to each vertex before some vertex is
unblocked twice. As to edge charges, let some edge originate in vertex x. A unit
may be charged to this edge only when blocked(x) is true and, once a unit is charged,
x must be unblocked and blocked again before a second unit can be charged to
the same edge. It follows that at most two units can be charged to any edge before
some vertex is unblocked twice. [3

COlOIIAgY 2. The algorithm runs in O((n + e)(c + 1)) time and uses O(n + e)
storage space plus the space usedfor output.

Proof. The time bound follows directly from Lemma 3 and a known algorithm
[6] for finding strong components in O(n + e) time. The space bound is immediate
from the observation that no vertex appears more than once on any B-list.

3. Discussion of running time. We have shown that in the worst case, our
algorithm is asymptotically faster than algorithms previously known. With respect
to Tarjan’s algorithm, a stronger statement can be made. There is a constant
factor which bounds how much slower our algorithm can be compared to his on
any graph, provided the same adjacency structure is used as input to both algo-
rithms. Such a constant, of course, is implementation dependent. Its existence
follows from two facts. First, the time spent by our algorithm in finding the strong
component with least vertex s >= k is of no greater order than the search in Tarjan’s
algorithm for circuits with least vertex k, for =< k =< n. Second, if the calls to
UNBLOCK are ignored, on identical adjacency structures the sequence of edge
explorations generated by our algorithm is embedded in the sequence generated
by Tarjan’s. But for every edge in the sequence, for our algorithm there can occur
at most one call to UNBLOCK. Therefore, since the search time in each algorithm
is related by constant factors to the number of edge explorations, the effort spent
by our algorithm in finding circuits from a given base vertex, s, is bounded by a

FINDING ELEMENTARY CIRCUITS 83

constant factor times the effort expended by Tarjan’s algorithm for the correspond-
ing search on the same adjacency structure for any graph.

Experimental results are shown in Tables and 2. The algorithms were
implemented in ALGOL W [7] and were run on an IBM 370/168 with virtual
address hardware inoperative. The benefit predicted for our algorithm on worst
cases is apparent in the results in Table 1. Table 2 shows superior performance by
our algorithm on complete graphs as well. Although only a constant factor is
involved, this second result is somewhat surprising since on complete graphs, both
algorithms make the same number of edge explorations. The result, however,
appears to be explained by two features of Tarjan’s algorithm. He maintains two
vertex stacks and tests in the innermost loop for elimination of vertices less than s.
If his algorithm were redesigned to correct these problems, "he analysis of the

TABLE
Running times on the family of graphs of Fig.

Number of

vertices

5
10
20
40
60
80

Number of

circuits

(Johnson’s

algorithm)

Running time IBM 370/168,

second

(Tarjan’s

algorithm)

15
30
60
120
180
240

.03

.11

.32
1.17
2.61
4.46

.06

.27
1.67

11.51
36.89
86.66

2
2.5
5.2
9.8

14.1
19.4

Timer resolution 1/60 second. Because running times fluctuate with system load,
all data shown taken from computer Results averages of two times
rounded to the second decimal place.

Number of

vertices

2
3
4
5
6
7
8
9

TABLE 2
Running times on complete directed graphs

Number of

circuits

5
20
84

409
2365
16064

125664

Running time IBM 370/168,

seconds

(Johnson’s

algorithm)

0
0
.02
.02
.07
.35

2.43
20.17

(Tarjan’s

algorithm)

0
0
0
.02
.08
.51

3.63
30.13

1,1

1.5
1.5
1.5

Timer resolution 1/60 second. Because running times fluctuate with system load, all data
shown taken from computer Results averages of two times rounded to the
second decimal place.

84 DONALD B. JOHNSON

preceding paragraph would still hold. In both tests, the space bound of O(n + e)
was confirmed.

4. Conclusions. The algorithm we have shown is faster asymptotically in the
worst case than algorithms previously known. The algorithm appears particularly
suited for general use because of the stronger property, which we have shown in
relation to Tarjan’s algorithm, of being never slower on any graph by more than a
constant factor. In fact, in the tests run, our algorithm was always faster except on
trivially small graphs.

Acknowledgment. Credit is due to the referees for suggesting that, for compara-
tive tests, a family of graphs be found in which the members are strongly con-
nected and whose undirected versions are biconnected, and for a suggestion that
led to an improvement, by a constant factor, in running time.

REFERENCES

[1] F. HARARY AND E. PALMER, Graphical Enumeration, Academic Press, New York, 1973.
[2] R. TARJAN, Enumeration of the elementary circuits of a directed graph, this Journal, 2 (1973), pp.

211-216.
[3] A. EHRENFEUCHT, L. FOSDICK AND L. OSTERWEIL, An algorithm for finding the elementary circuits

ofa directed graph, Tech. Rep. CU-CS-024-23, Dept. of Computer Sci., Univ. of Colorado,
Boulder, 1973.

[4] J. C. TIERNAN, An efficient search algorithm to find the elementary circuits of a graph, Comm.
ACM, 13 (1970), pp. 722-726.

[5] H. WENBLAX, A new search algorithm for finding the simple cycles of a finite directed graph, J.
Assoc. Comput. Mach., 19 (1972), pp. 43-56.

[6] R. TARJAN, Depth-first search and linear graph algorithms, this Journal, (1972), pp. 146-160.
[7]. R. L. Sxa’ES, Algol W reference manual, Tech. Rep. STAN-CS-71-230, Computer Sci. Dept., Stan-

ford Univ., Stanford, Calif., 1971.

