

Processing XML with Java – A Performance Benchmark

Bruno Oliveira1,Vasco Santos1 and Orlando Belo2
1CIICESI, School of Management and Technology, Polytechnic of Porto

Felgueiras, PORTUGAL
{bmo,vsantos}@estgf.ipp.pt

2Algoritmi R&D Centre, University of Minho
4710-057 Braga, PORTUGAL

obelo@di.uminho.pt

ABSTRACT
Over time, XML markup language has acquired a
considerable importance in applications development,
standards definition and in the representation of large
volumes of data, such as databases. Today, processing
XML documents in a short period of time is a critical
activity in a large range of applications, which imposes
choosing the most appropriate mechanism to parse
XML documents quickly and efficiently. When using a
programming language for XML processing, such as
Java, it becomes necessary to use effective
mechanisms, e.g. APIs, which allow reading and
processing of large documents in appropriated manners.
This paper presents a performance study of the main
existing Java APIs that deal with XML documents, in
order to identify the most suitable one for processing
large XML files.

KEYWORDS

XML, XML Markup languages, XML Documents, Java
API, Performance Analysis.

1 INTRODUCTION

Due to the simplicity of its hierarchical structure,
XML (Extensible Markup Language) is widely
used for data representation in many applications.
As a result of its portability, XML is used to
ensure data interchanging among systems with
high heterogeneous natures, facilitating data
communication and sharing, it’s platform
independent, which makes it quite attractive for the
majority of applications. Associated with the XML
format there are other languages that complement
the application area of this format, such as XSD,
XSLT or XQuery. Currently, XML format is used
in the development of several types of software,

including web pages, web services, network
applications, and fully based XML databases.
Access and modification operations are essential to
XML files manipulation once they are affected by
any increasing amount of data, by the complexity
of those operations, and by shorter periods of time
needed to process them. Coupled with this data
growing, XML documents can reach large number
of megabytes (or even gigabytes), limiting and
conditioning the technology used for development
of applications appealing for XML data
processing. Also coupled with the concept of
portability, Java programming language provides a
set of interfaces allowing for the manipulation of
structured documents according to the XML
format. Due to their portability, Java and XML are
commonly used in application development and in
native XML databases for data manipulation [1].

The main focus of this paper was to conduct a
study of the various parsing models and APIs
(Application Programming Interfaces) for XML
processing using Java programming language, with
the purpose to supply a refresh benchmark to the
available representation models, identifying which
is the most suitable for access and transformation
of large XML documents. We also refer the main
advantages identified for each representation
model, always keeping the performance factor in
mind. In the next section we will examine some
interesting related work about studies and
evaluations between several Java APIs across time.
Later, in section 3, we will discuss some other
operational characteristics for memory and
streaming representation models, identifying how
documents are processed according to each parsing
model. Section 4 and section 5, respectively,

72

International Journal of New Computer Architectures and their Applications (IJNCAA) 3(1): 72-85
The Society of Digital Information and Wireless Communications (SDIWC) 2013 (ISSN: 2220-9085)

presents some memory-based APIs and streaming-
based APIs and their main features. After, in
section 6, a brief comparison between performance
and memory consumption of memory-based APIs
and streaming-based APIs will be done. We used
specific XML instances with different sizes and we
tested selected APIs (memory and streaming
based) for execution time and memory
consumption. We also developed a specific unary
and binary transformation operations, and tested
them for execution time using best memory and
streaming APIs selected from previous tests. Next,
in section 7, we compare modification
performance of the best memory-based APIs
studied previously, exploring some configurations
in each of them that influences execution time and
memory consumption. We finish the paper in
section 8 summarizing results and presenting
conclusions.

2 RELATED WORK

In [2] the process of handling XML documents
was described in four phases: Parsing, that is
considered a critical step in performance, Access,
Modification and Serialization (figure 1), whose
performance is directly affected by the parsing
models.

Figure 1. Example of a XML memory tree representation

As the most critical factor of performance, parsing
is characterized by the conversion of characters,
mainly related to the conversion of characters into
a format that a programming language
understands, lexical analysis which is the process
that identifies XML elements, e.g. start node, end
node or characters, applying regular expressions
defined by World Wide Web Consortium (W3C)1.
The last step of the parsing phase is the syntactic
analysis of the document, where it is checked if the
document complies with the rules of construction

1http://www.w3.org/

of an XML document. Finally, the API implements
access and modification operations on the data
resulted from the parsing process.

Due to its complexity and importance, the parsing
process is the most critical operation in XML
processing, directly conditioning processing time
and memory consumption. Several studies [3–9]
have been conducted with the goal to test, improve
representation models and APIs in XML
processing [10]. As Java and other technologies
evolve, it is necessary to review the new
approaches and improvements provided by several
XML parsers available.

In 2001 Sosnoski condutes [11] a detailed study
with the main parsers that existed at the time. The
author tested DOM2, JDOM3, dom4j4, Electric
XML (no longer supported), and XML Pull Parser
- XPP (no longer supported), using small files with
diverse data structures. The benchmark consists in
document build time (construct XML document
based on text file), document navigation, modify
time, output XML document representations as
text documents, amount of memory needed for
document representation, execution time and
output document size for Java serialization step.

Later in 2002, Oren [5] proposes Piccolo XML
parser presenting a comparative study between
parsers, which implements SAX (Simple API for
XML Processing)5 interfaces. Although outdated,
these study provided interesting guidelines related
to the test methodology and conclusions about the
overall best API, which changes in subsequent
studies [6] for similar tests. Another interesting
study was realized by Perksins et al. [9], where
authors use a small (less than 1 KB) XML
representing a typical purchase order structure to
test transcoding impact and object creation of
DOM, SAX and JAX-RPC. The authors also
explore the navigation costs of each API and
compare the results with a specific XPath parser.
In [6], authors provide a detailed study about
performance of VTD (Virtual Token Descriptor6)
(with and without buffer reuse), SAX (Piccolo and

2 http://download.oracle.com/javase/6/docs/ technotes/guides/xml/
3 http://www.jdom.org
4 http://dom4j.sourceforge.net/dom4j-1.6.1
5 http://www.saxproject.org
6 http://vtd-xml.sourceforge.net

73

International Journal of New Computer Architectures and their Applications (IJNCAA) 3(1): 72-85
The Society of Digital Information and Wireless Communications (SDIWC) 2013 (ISSN: 2220-9085)

Xerces implementation), XML Pull Parser and
DOM (with and without deferred node expansion).
In order to provide a benchmark of each one of
APIs tested the authors used a set of XML
example files, which represents typical real-world
applications. These files have several sizes
categorized as Small (between 1,6 ~ 6,8 KB),
Medium (10 ~ 1 MB) and Big (between 1 ~ 15
MB). Tests were conducted with files in memory
(same as [5]), with the purpose of reducing I/O
costs. XML parsing performance was conducted
for testing latency, memory usage and navigation
performance. Further, Haw and Rao [3] provided a
comparative study and benchmarking between
SAX, StAX (Streaming API for XML7), DOM and
Electric XML, proposing a new SAX
implementation called xParse. In that work,
authors compared SAX and DOM for Xerces Java
and .NET implementations using specific
operations based on small XML files.
More recently, VTD website [12] conducted a
benchmark between Xerces DOM (with defered
and non-defered mode), SAX, Piccolo, XML Pull
Parser (XPP3) and VTD, showing the global
superiority of VTD. Authors use four
benchmarking processes, the first one, tests VTD
and DOM for indexing-related performance using
a XML data structure from a typical selling
application with sizes between 6 KB and 9 MB.
The tests apply specific XPath expressions to these
files in order to test a variety of scenarios based on
filter and select operations. Initially, XML index
files are loaded into memory, in order to remove a
specific node from the result set, generated by the
application of XPath expressions. Consequently,
the result sets are written to the output document.
Next, authors test the parsing process, XPath
evaluation and XML modification, using the same
files and XPATH expressions for VTD (with
buffer and without buffer reuse), and DOM. For
this benchmark, XML files are loaded into
memory and after the parsing of the document,
XPath expressions are evaluated, a specific node is
removed from the result set that is then written to
an output document. The third test compares
performance of XPath expressions for a large

7 http://stax.codehaus.org/Home

number of iterations for VTD, Jaxen and Xalan.
Finally, the last test compares VTD
implementation in Java (with and without buffer
reuse) and C language to SAX, DOM, Piccolo and
XPP3 for performance and memory usage. For
that, authors use diverse XML data structure files
with a size between 1 KB and 26 MB
(approximately). The overall results show a clear
superiority of VTD in relation to other approaches.
This last test is the most interesting for us, since
we will focus on the similar topics in this article.

However being very detailed, the benchmark from
VTD website did not focus in all topics that we
want to test (e.g. big files with more than 1GB),
and some of the other benchmarks already focused
were outdated or did no use Java programming
language. This is mainly caused by miscellaneous
updates and improvements in the execution
environment, particularly in the Java Virtual
Machine, which affects, as we know, runtime and
effectiveness of the operations.

3 MEMORY AND STREAMING-BASED
REPRESENTATION MODELS

Most memory-based APIs use a common model in
data processing, where XML documents are
entirely stored in memory in a tree format with
multiple nodes, descending all from a single node
representing the root of the tree. This kind of
schema allows the use of different methods to
locate and manipulate data contained inside the
nodes. Using memory-based models implies that
the parser partially or totally allocates memory for
data tree (figure 2) from specific XML file,
making data ready for using in navigation methods
in order to process required data.

Figure 2. Parsing step for memory-based models

74

International Journal of New Computer Architectures and their Applications (IJNCAA) 3(1): 72-85
The Society of Digital Information and Wireless Communications (SDIWC) 2013 (ISSN: 2220-9085)

For each search or other kind of manipulation, it is
necessary to start processing by the root element
continuing in the structure hierarchy to access the
remaining data (figure 3). Since all the information
is available in memory, we can traverse the tree in
random order, changing the positioning of the
nodes and performing data transformations in a
very simple and accessible way. Considering its
memory structure representation, these APIs
facilitate the process of application development,
providing a wide range of search methods that
allow you to easily perform operations on the
constituent nodes of the tree. However memory-
based APIs consume, in average, four to five times
more memory than the document’s size. For
example, a 20 megabytes document needs,
depending on the representation model,
approximately 100 megabytes in order to be stored
in memory, which may represent a problem in
processing large documents.
Streaming-based APIs perform a sequential scan of
the document using minimum memory resources.
Typically, this type of APIs use the depth of the
XML document (number of nested elements) and
the maximum data stored in XML attributes on a
single XML element. Both of these are always
smaller than the size of the memory-based parsing
tree approach. Then, a small portion of the
document is extracted sequentially without the
need to load the whole document structure.
Usually, the parser reads the XML document
calling a specific method for each type of event to

process its object. Figure 4 presents the SAX
conceptual model for XML processing, which is
similar to other streaming-based APIs.

The parser is configured as an input source, which
is associated with a set of content management
methods that identify, for example, the beginning
or the end of the document and elements of data
that might contain errors that occurred during the
parsing step. When the parser runs, some event
triggers are captured by content management
methods. Each time the parser detects an important
part of the XML document it triggers the
appropriate method in order to read the respective
data block.
Conceptual model from figure 4 represents push
model that is used by SAX API. Basically, in push
model parser checks for each event type retrieve
by source XML file. With this approach, the parser
handles all XML events making uninterested
events impossible to avoid, and as consequence
access applications must handle all events
provided from parser. In other way, StAX
implements pull model, which events are handled
by access applications that are responsible to
invoke specific events, avoiding non-necessary
events (figure 5).
Essentially, taking into account its operational
characteristics, the push model is more suitable
when we need to read all XML file, since the
parser will read all XML event tokens. However
when user applications need, for some reason, to

Figure 3. Example of a XML memory tree representation

75

International Journal of New Computer Architectures and their Applications (IJNCAA) 3(1): 72-85
The Society of Digital Information and Wireless Communications (SDIWC) 2013 (ISSN: 2220-9085)

skip parts of XML file, then the pull model should
be used [2].

Figure 4. SAX parsing model8

Streaming-based APIs are more suitable for
processing large XML documents, because, in
theory, they can process documents of infinite size.

Figure 5. Push vs pull model

4 MEMORY-BASED APIS

Included in JAXP package, DOM API is a
collection of classes that has a set of Java methods
that allows XML processing in memory with a
structure similar to figure 3. In several cases, the
DOM API is the basis for the construction of new

8 Image Source:
http://www.inf.ufrgs.br/gppd/disc/inf01008/trabalhos/sem01-
1/t2/apis_xml_java/

APIs that revise some of its characteristics, with
the aim of serving specific requirements.
For instance, the JDOM API allows the
manipulation of XML documents with Java via a
tree structure representation, thus being similar to
DOM. However, this API has been developed
specifically for Java language, making it much
more intuitive for a typical Java programmer. For
example, there is no Text class [13], since Java
programming language provides its own class
(String class). JDOM takes advantage of Java
features such as: creating methods with the same
name, reflection9, weak references10, and the use of
collections such as List and Iterator [14]. JDOM
API differs from DOM API in the use of classes
instead of interfaces, simplifying the API but
limiting flexibility.

For his part, the dom4j is an open-source API
based on DOM and JDOM concepts, using an
interface and abstract base class approach, with
extensive use of the Collection classes. dom4j is a
more complete solution than JDOM, which gives
more emphasis to the use of the interfaces, adding
more flexibility at the cost of a little added
complexity [11, 12].

Inspired by DOM and JDOM, the XOM API was
designed to be the best of both worlds. In Harold’s
presentation [16], XOM is classified as an easy to
use API, fast and simple. XOM makes use of
existing Java mechanisms (like JDOM), revealing
a far more restricted API that does not allow
creation of malformed documents, forcing
validations through the use of inheritance. In such
overview some disadvantages of JDOM were
presented, namely the one that considers it
inconsistent since there are several ways to
accomplish the same tasks (like reading a child
element) and due to some gaps in the use of Java
convention (e.g. set methods not always return
void).
Another disadvantage listed, refers to elements of
an XML document that are represented using
objects, which produces small memory overheads.
In addition, a comparison is also provided with the

9http://java.sun.com/developer/technicalArticles/ALT/Reflection/
10http://weblogs.java.net/blog/2006/05/04/understanding-weak-
references

76

International Journal of New Computer Architectures and their Applications (IJNCAA) 3(1): 72-85
The Society of Digital Information and Wireless Communications (SDIWC) 2013 (ISSN: 2220-9085)

dom4j that uses interfaces instead of classes
resulting in a more complex API. Briefly, we can
say that dom4j is an API based on DOM (and
extended), and the XOM API based on the
principles of DOM with the main goal of
simplifying XML processing. JDOM, dom4j and
XOM have the advantage of being specifically
developed for the Java language, unlike other APIs
(like DOM), which were developed in a generic
way for several programming languages [11].
XQuery is a language for extracting data from an
XML document that allows the creation of a high-
level code for extraction of data, similar to what
happens with SQL language for relational
databases. This language will require native
support from the API that should interpret
commands produced from XQuery language.
OJXQI (Oracle Java XQuery API) is an API
proposed by Oracle which is incorporated into its
database with support for XQuery language,
simplifying XML transformations through the use
of a simple language, which is very similar in
construction to SQL language.

Oracle supports XQuery in two different levels:
database and mid-tier. The first one applies queries
in the database environment and the second one
run queries on sources, which are not databases.
Thus, it is possible to compile several clauses
allowing XQuery execution, and consequently lead
to a new set of results. Data from OJXQI API is
entirely processed in memory, allowing the
creation of DOM objects in order to represent the
data.

The last API that was analyzed, representing XML
data in an object tree structure, is named
Xerces211, and consists in a set of parsers that use
DOM and SAX data models. We tested the DOM
implementation, which naturally follows the same
guidelines in terms of architecture as the previous
APIs presented.
On the other hand, VTD (Virtual Token
Descriptor) API uses a different approach, having
the premise that the creation of objects is the main
factor of low performance. VTD API implements
arrays of integers based structure to represent data

11 http://xerces.apache.org/xerces2-j/index.html

in memory, eliminating the cost of object creation
resulting from the extraction process, through the
use of arrays of 64-bit integers called VTD records
(figure 6).

Figure 6. Representation of a VTD record12

A VTD record is a binary encoding format that
specifies how to assign tokens (identification codes
composed by length, offset, nesting depth and type
of XML tokens) in a non-extractive method. The
concept of parsing "non-extractively" [12] means
that XML text remains intact in memory while the
tokens are represented exclusively by using ranges
and sizes in bits (the contents of the string is not
copied) [2]. The process contrasts with the method
used by other extractive XML processing models
(such as DOM and SAX), which allocate blocks of
memory for document contents allocation,
manipulating data directly. This manipulation can
only be performed after the parsing process has
finished with document size as the largest
bottleneck in XML data access performance.

5 STREAMING-BASED APIS

Streaming-based APIs do not maintain long-lived
structures of documents in memory. This type of
APIs read data as a series of events representing
them in a form of objects (like the DOM API),
using a small portion of memory to process the
document in a sequential way. Objects are
associated with different types of events and are
not maintained too long in memory unlike the
approach of memory-based APIs.

The JSR (Java Specification Request) 17313
defines Streaming API for XML (StAX14), that
allow parsing elements in streaming mode, and the

12 Figure extracted from http://vtd-xml.sourceforge.net/
13 http://jcp.org/en/jsr/detail?id=173
14 http://stax.codehaus.org/Home

77

International Journal of New Computer Architectures and their Applications (IJNCAA) 3(1): 72-85
The Society of Digital Information and Wireless Communications (SDIWC) 2013 (ISSN: 2220-9085)

extraction of information through events controlled
by the application (pull model), differing from
SAX API of JAXP package, that has a manager
that takes events as convenience of the parser
(push model). While StAX API allows you to
discard information in the document’s parsing as
appropriate (invoking the nextEvent method), SAX
parser extracts all elements even if you don’t need
them.

In addition, StAX has two integrated APIs with
different levels of abstraction: the cursed-based
API, which is a lower-level API, focused on
efficiency and simplicity of use, that works like a
stream of events, and the iterator based API that
offers a higher level of abstraction allowing
pipelining, and representing the events through
objects. This implementation allows the
programmer to ask (peek() method) without
reading the event.
It is possible to skip the input of both the Cursor
and Event approaches. In this study we focus on
cursed-based API because it is the most efficient
way to read XML data [17]. In addition to SAX
and StAX, we also tested XOM API with
NodeFactory implementation. NodeFactory allows
parsing the XML document as Streaming like SAX
and StAX.

SAX, StAX and XOM (streaming mode
implementation) allow access to data before the
parsing process is completed.

Table 1. APIs analysis summary

API Parsing Model
JAXP: Sax Streaming events: push model

JAXP: StAX Streaming events: pull model
JAXP: DOM Memory: tree object

XOM Memory: tree object
OJXQI Memory: tree object
jDOM Memory: tree object
dom4j Memory: tree object

Xerces2 Memory: tree object
VTD Memory: array of integers

This feature allows memory consumption to
remain low because processed data, and no longer
in need, might be released from memory, thus
keeping memory usage low as the parsing process

proceeds. Table 1 summarizes all APIs described
before.
In order to test memory usage and execution time
for each API, we used two different families of
XML documents:

1) one representing sales orders of a particular
company (SalesOrderDetail), which was
taken from the Microsoft Data Warehouse
samples: Adventure Works15;

2) an other generated by xmlgen16 tool which
aims to represent information about a bidding
web site, from an e-commerce17 typical
application.

6 PERFORMANCE ANALYSES OF APIS

Table 2 presents the size of the documents and the
properties used on tests for each API. We used
three instances of different sizes for each
document type in order to test not only the size of
in-memory representation, but also the elapsed
time of parsing each document.

Table 2. Documents used on tests

File File size Number of
nodes18

SalesOrderDetail1 9,9 MB 20213

SalesOrderDetail2 60,8 MB 121317

SalesOrderDetail3 145,5 MB 304688

AuctionWebSite1 11,7 MB 2175

AuctionWebSite2 58,0 MB 10875

AuctionWebSite3 163,4 MB 30444

6.1 Memory-based APIs

The study consisted in measurements of memory
consumption in megabytes (MB) - (figure 7), and
execution time in milliseconds (ms) - (figure 8)

15 http://msftdbprodsamples.codeplex.com/
16 http://www.xml-benchmark.org
17 Tests realized in 2.53 Ghz Intel Core 2 Duo, 4 GB 1067 Ghz
DDR3, Mac OS X 10.6.4, hard drive with 5400 RPM, 1.6.0_20 –
Open JDK Runtime Environment with 455 megabytes of memory
available
18 In this particular scenario, a node represents a data record. For
example, in the SalesOrderDetail document, one node represents
one sales record.

78

International Journal of New Computer Architectures and their Applications (IJNCAA) 3(1): 72-85
The Society of Digital Information and Wireless Communications (SDIWC) 2013 (ISSN: 2220-9085)

used by each memory-based API for the
replication of the respective XML file.
Results are based on an arithmetic average resulted
from five executions for each API for each
document (without considering the time of the first
execution).

!"

#!"

$!!"

$#!"

%!!"

%#!"

&!!"

&#!"

!
"#
$%

&'
"(
)

*$+$),-.()

'()*+,-.*-/*0(1)$"

'()*+,-.*-/*0(1)%"

'()*+,-.*-/*0(1)&"

2345678*9'10*$"

2345678*9'10*%"

2345678*9'10*&"

Figure 7. Memory consumption in megabytes of memory-

based APIs

The results shows the gain of VTD in relation to
other memory-based APIs, either in terms of
memory usage or at runtime, showing that VTD
representation model of data is much superior than
other APIs representation.

!"
#!!!"
$!!!"
%!!!"
&!!!"

'!!!!"
'#!!!"
'$!!!"
'%!!!"

!
"#

$%&%#'()"#

()*+,-./+.0+1)2*'"

()*+,-./+.0+1)2*#"

()*+,-./+.0+1)2*3"

456789:+;(21+'"

456789:+;(21+#"

456789:+;(21+3"

Figure 8. Execution time in milliseconds of memory-based

APIs

With the exception of VTD, no other memory-
based API was able to perform the parsing of the
biggest documents with the amount of memory
available on Java Virtual Machine (Sales
OrderDetail3 - green bar and AuctionWebSite3 –
orange bar). Noteworthy is the good performance
in parsing time of DOM in relation to other
memory-based APIs. Although the representation

of a DOM document in memory is higher than the
XOM and OJXQI representation. When large
XML files are used, the memory-based approach is
not feasible due to inherent memory limitations.

6.2 Streaming-based APIs

Once memory consumption of streaming-based
APIs is reduced, not representing a critical point in
terms of processing, we only tested parsing speed
in milliseconds for each API: SAX, StAX (was
deemed the cursor-based API) and XOM
(streaming-based approach) (figure 9) for each of
the documents presented earlier.
SAX and StAX are very similar in time
consumption, which is easily expected, since the
main point that distinguishes these two APIs is
how the parser handles the events processed.
Considering the entire document, the results are
quite similar, nevertheless XOM has a much lower
performance compared to other streaming-based
APIs.

0"

2000"

4000"

6000"

8000"

10000"

12000"

StAX" SAX" XOM"

m
s#

Java#APIs#

SalesOrderDetail1"

SalesOrderDetail2"

SalesOrderDetail3"

Auc9onWebSite1"

Auc9onWebSite2"

Auc9onWebSite3"

Figure 9. Execution time in milliseconds from streaming-

based APIs

As we stated before, StAX provides two main
approaches for XML handling: Cursor API with
XMLStreamReader method and Event API with
XMLEventReader. Event API differ from Cursor
API in accessibility and flexibility, however
performance between the two approaches are very
distinctive since Cursor API is a lower level API
that processes XML files as a stream of events.
On the other way, Event API allows the processing
of XML files as a series of event objects,
supporting a more abstract way to handle XML

79

International Journal of New Computer Architectures and their Applications (IJNCAA) 3(1): 72-85
The Society of Digital Information and Wireless Communications (SDIWC) 2013 (ISSN: 2220-9085)

files through the use of XMLEvent objects.
However, the overhead related to the use of
XMLEvent objects make this implementation
slower as we can see in figure 10. Results show a
huge difference for files tested between the two
approaches, mainly related to the overhead of
object creation for Event base API.

0"

5000"

10000"

15000"

20000"

25000"

30000"

35000"

StAX"cursor"API" StAX"iterator"
API"

m
s#

StAX#APIs#

SalesOrderDetail1"

SalesOrderDetail2"

SalesOrderDetail3"

Auc9onWebSite1"

Auc9onWebSite2"

Auc9onWebSite3"

Figure 10. Execution time in milliseconds from StAX cursor

and Iterator API

Memory consumption is relevant between the two
approaches. Event API consumes practically the
same memory for AuctionWebSite instances, and
for SalesOrderDetail instances consumes at most
43% more memory when compared to Cursor API.

6.3 Comparative analysis of two types of APIs

Memory-based APIs are widely used due to the
fact that, in most cases, documents being
processed are small enough to fit in memory.
However, in cases where memory availability is
limited, or the size of the XML document to be
processed is large, streaming-based APIs are the
most suitable. Project requirements are crucial to
determine the most suitable type of API used. The
need to apply document transformation is also a
considerable factor for API selection, once
memory-based APIs are much more suitable for
this type of operation, while streaming-based APIs
are more used for forward-only applications.

In order to test API performance in document
transformations we considered SalesOrderDetail
documents for the following APIs: SAX, StAX
and VTD. Two operations were developed for each
API:

• Selection: an operation that selects a set of
elements based on a given predicate,
representing forward-only access to data.

• Difference: an operation that removes from
the first document all the elements that are
in common with the second document,
representing a random access to data.

A selection operation, based on a predicate, selects
all elements where SalesOrderID has a value of
43,659, producing a new document. The difference
operation checks if an element, immediately below
the root node of a document R, exists in a
document S thus disregarding it and keeping it
only if he doesn’t exists if document S. For the
difference operation we considered
SalesOrderDetail for both arguments in order to
produce an empty document so we could
extensively use the algorithm and disregard the
size of the result document, since it will be null.

In memory-based APIs, documents are fully
loaded into memory allowing access to the whole
XML structure. In our tests the result is
immediately written to disk without creating an in-
memory structure. For streaming-based APIs,
transformations are performed in a sequential way;
i.e. as data is read from, changes are reflected in
the outcome document. According to results
(figure 11 and figure 12) we can see that StAX is
the API that has the better performance, followed
by VTD.

0"

1000"

2000"

3000"

4000"

5000"

6000"

7000"

StAX" SAX" VTD"

m
s#

APIs#

SalesOrderDetail1"

SalesOrderDetail2"

SalesOrderDetail3"

Figure. 11. Execution time in milliseconds for selection

operation

80

International Journal of New Computer Architectures and their Applications (IJNCAA) 3(1): 72-85
The Society of Digital Information and Wireless Communications (SDIWC) 2013 (ISSN: 2220-9085)

However, VTD consumes a considerable amount
of memory. Memory consumption can be a
bottleneck for environments that provide limited
capabilities. We used a new document:
SalesOrderDetail0 with 2,9 megabytes in order to
reduce execution time of the test. Considering the
selection operation, StAX is slightly faster, with
the advantage of lower memory consumption
compared to VTD.

0"
10"
20"
30"
40"
50"
60"
70"
80"

StAX" VTD"

m
in
ut
es
(

Java(APIs(

SalesOrderDetail0"

SalesOrderDetail1"

Figure 12. Performance test for the difference operation in

minutes (m)

This increase in memory usage occurs mainly due
the cost of rebuilding the entire structure of
document in memory, which also implies a higher
execution time. Only after the correct
representation of the document in memory the
processing phase starts. Streaming-based APIs do
not have this procedure, starting transformation
immediately, obtaining results faster and with less
computational resources.

For the difference operation, memory-based APIs
are faster than streaming-based APIs. The
difference operation requires that for each element
of R, a verification process be done that uses
multiple comparisons in order to verify if it exists
in document S.

With streaming-based APIs it is necessary to
perform a large number of I/O (input/output)
operations, because for every element of R it might
parse the entire document S (at worst). In case of
memory-based APIs, since both documents are
fully represented in memory, the comparisons do
not have to do any I/O thus reducing execution
time. Due to memory limitations, if we need to
work over several documents at the same time

their size is even more restricted since they all
need to be in memory to be processed.
It was also found that the first run of the operations
is slower than subsequent runs. Therefore, we
conducted a study (figure 13) for the selection
operation with StAX and VTD with
documents:SalesOrderDetail1, SalesOrderDetail2
and SalesOrderDetail3 in order to evaluate the
impact of the first run.
The first-run impact has more emphasis on VTD,
and speed execution increases considerably as the
size of documents increases, influencing runtime
speed between StAX and VTD.

0"
1000"
2000"
3000"
4000"
5000"
6000"
7000"
8000"

StAX" VTD"

m
s#

Java#APIs#

SalesOrderDetail1"

SalesOrderDetail2"

SalesOrderDetail3"

Figure 13. Elapsed time in milliseconds (ms) for the selection

operation first run

7 MODIFYING PERFORMANCE

An important feature that appeared in the analysis
of the APIs was the ability to manipulate elements
of an XML document, i.e., insert, delete or update
information. Streaming-based APIs are not
adequate to this kind of operations because they
process documents in a sequential way, which
complicates the implementation of the previous
operations without apparent benefit since
transformations are not performed by the order of
elements presented in document. In this case, it
would be necessary to perform multiple I/O
operations.
For memory-based APIs, we tested DOM and
VTD, mainly because almost all other APIs tested
are based on the same model of DOM and the
performance differential between them is not very
relevant. VTD uses much less memory than DOM

81

International Journal of New Computer Architectures and their Applications (IJNCAA) 3(1): 72-85
The Society of Digital Information and Wireless Communications (SDIWC) 2013 (ISSN: 2220-9085)

and performs document parsing in less time. The
cost of object creation in DOM API is the main
factor for the different performance. VTD is
immune to this cost due to its inherent
representation structure. However, tree structured
manipulation for DOM allows a fairly trivial
manipulation of data, since adding or removing a
node in the tree is done by a manipulation of
pointers between nodes. On the other hand, VTD
needs to rebuild VTD records for processing next
update. We built a test scenario that changes the
content of AuctionWebSite documents.
The structure of such documents consists in the
following elements: regions, categories, catgraph,
people, open_auctions, and closed_auctions. Each
of these elements contains a set of lines with
information relating to an auction site. The tests
change data on persons and consist of three steps:

1) adding an element nationalidnumber with

unknown content;
2) renaming creditcard element for cc; and

changing gender element content of each
person,

3) replacing male for M and female for F.

In both APIs, documents are loaded into memory
and scanned in order to scroll through the contents
of each person, making modifications at the same
time. After performing all transformations, the
document is written to a file using DOM
Transformer class and VTD XMLModifier class
respectively. For performance analysis we
measured APIs with four smaller AuctionWebSite
documents. Each document contains the following
number of persons:

• AuctionWebSite1 – 2550 persons
• AuctionWebSite2 – 7649 persons
• AuctionWebSite3 – 12750 persons
• AuctionWebSite4 – 20400 persons

In figure 14 we can see the results of the tests for
each of the documents processed. Note that for
large documents we had to increase the Java
Virtual Machine memory available in order to
process them. Results show a clear superiority of
VTD for data insertions and updates. For this
scenario, object manipulation of DOM has no

advantages in relation to the array of integers’
structure used by VTD.
These two APIs have specific features with respect
to memory usage. For example, for DOM API we
can set deferred node expansion option (used by
default in JAXP DOM implementation) that
enables lazy loading, and full node expansion.
With deferred node expansion, objects are not
allocated until we need to navigate the tree for the
corresponding node position. In our tests, shown
before, we used a deferred DOM tree, making
parsing time faster and the tree navigation slower
than using full mode [18].

0"

2000"

4000"

6000"

8000"

10000"

12000"

14000"

DOM" VTD"

m
s#

Java#APIs#

Auc0onWebSite1"

Auc0onWebSite2"

Auc0onWebSite3"

Auc0onWebSite4"

Fig. 14. Execution time in milliseconds of each API

VTD also has a feature (introduced in version 1.5)
called buffer reuse that makes VTD records
reusable, which means that memory buffers can be
allocated once and used many times for an
application.
In order to test both features and its respective
impact, we present a comparison between results
obtained using both features of each API in terms
of memory usage and execution time. For DOM
tests we use defer-node-expansion from Apache
Xerces2 DOM implementation19. We set this
option to true for deferred mode and false for full
mode. Figure 15 shows the comparison of parsing
time between DOM with (DOM-DEF) and without
defer-node-expansion (DOM-FULL) for
AuctionWebSite XML files described before.
Using deferred DOM mode, the parser processes
the document faster than using the full-expanded
data tree in memory. For full mode, all data objects

19 http://xerces.apache.org/xerces2-j/features.html

82

International Journal of New Computer Architectures and their Applications (IJNCAA) 3(1): 72-85
The Society of Digital Information and Wireless Communications (SDIWC) 2013 (ISSN: 2220-9085)

from the file are allocated and ready for navigation
purposes. On the other way, deferred mode only
allocates objects when it needs to navigate through
them. The results provided from figure 15 shows
that parsing performance is faster for DOM-DEF
and the benefit of its use increases along with the
increase of the file size.

0"

2000"

4000"

6000"

8000"

10000"

DOM"+"FULL" DOM"+"DEF"

m
s#

DOM##features#

Auc3onWebSite1"

Auc3onWebSite2"

Auc3onWebSite3"

Auc3onWebSite4"

Figure 15. DOM with and without defer-node-expansion for

parsing time

In order to complete our benchmark we tested
execution time (figure 16) and memory usage
(figure 17) comparison between both DOM
approaches and VTD for the same operations used
before. In this particular test scenario, we need to
traverse almost all files in order to apply the
necessary transformations. For that reason, object
allocation cost related to the navigate methods for
deferred approach implies an extra cost that affects
global performance, even if we consider that
parsing time is faster for deferred approach. When
we need to traverse the whole or almost all data
tree, DOM full-expanded approach is faster than
deferred approach [18].
For our scenario we use big XML files with a set
of transformations that traverse the majority of the
data tree. For that reason we can see in figure 16
that DOM full expanded tree has advantages
related to execution performance, since for each
node that we need to traverse, DOM deferred
approach needs to allocate additional memory,
making navigation process slower. In these results
we consider parsing time, access, modification and
serialization. As we can see the cost of navigation
is higher when compared with high parsing costs
associated to DOM full expansion node.

Figure 16 also shows a slightly faster execution
time, when using reusable buffer in VTD
configuration. For this particular scenario results
are very similar.

0"
2000"
4000"
6000"
8000"

10000"
12000"
14000"

DOM"+"
FULL"

DOM"+"
DEF"

VTD" VTD"+"
buffer"
reuse"

m
s#

APIs#tested#

Auc:onWebSite1"

Auc:onWebSite2"

Auc:onWebSite3"

Auc:onWebSite4"

Figure 16. Execution time for DOM and VTD specific

features

0"

100"

200"

300"

400"

500"

600"

DOM","
FULL"

DOM","DEF" VTD"

M
eg
ab

yt
es
)

APIs)tested)

Auc6onWebSite1"

Auc6onWebSite2"

Auc6onWebSite3"

Auc6onWebSite4"

Figure 17. Memory consumption for DOM specific features

and VTD

For memory consumption DOM full-expanded tree
consumes more memory than deferred approach.
This behavior is expected since full-expanded
approach allocates data objects for all data tree,
making it ready for the application of navigation
methods.
The choice between the two approaches mainly
depends on user requirements, i.e., the file size and
the scope of operations that will be applied in
order to produce an output document. VTD
memory consumption was included for this test for
reference purposes, since the use of reuse or non-
reuse buffers does not differ in memory
consumption.

83

International Journal of New Computer Architectures and their Applications (IJNCAA) 3(1): 72-85
The Society of Digital Information and Wireless Communications (SDIWC) 2013 (ISSN: 2220-9085)

8 CONCLUSIONS

The use of structured documents in XML has a
wide area of application in different types of fields.
In many cases it is necessary to process documents
of a considerable size where runtime is relevant
and the execution window is clearly limited. As we
saw, there are two types of XML APIs: memory-
based APIs and streaming-based APIs. Memory-
based XML APIs maintain a long lived structural
data in memory and only when the parsing process
is finished modifications are allowed, while
streaming-based APIs use small memory footprint,
allocating and freeing memory constantly,
allowing the process of infinite size XML
documents (in theory).

Generally, for XML handling, dom4j, and DOM
are good choices, with the preference between
them determined by Java-specific features or
cross-language compatibility, depending on project
requirements. Although less flexible in XML
transformations, OJXQI is a very good choice
when you need to do standard modifications with
good performance. VTD array of integers’
structure proves to be the best model in almost all
tests. It is a model that consumes less memory
(compared to other memory-based APIs), the
processing time is very fast and even their ability
to update a document, maintaining its structure in
memory, proved being far superior in relation to
the other memory-based APIs (for tested scenario).
The use of VTD API is more complex in
comparison to other memory-based APIs, where it
is necessary an additional effort to dominate the
API’s features.
For streaming-based APIs, StAX has proved to be
an API with better overall performance compared
to SAX and XOM. This kind of APIs do not
maintain long-lived structural data in memory, so
there are no advantages in using this type of API
when you need to perform a set of transformations
that somehow change the order of elements in the
XML hierarchy. Typically, these types of APIs are
used only for forward-only applications or simple
modifications using XSLT language.

Memory-based APIs maintain the structure of the
whole document in memory, resulting in some
overhead, however, for updates that somehow
change the document structure, this type of APIs
lead to some advantages over the streaming-based
APIs since those need to perform increased I/O
operations to do same transformation.
Manipulating a document using memory-based
APIs is much more accessible and quick, since for
streaming-based APIs we need to constantly use
temporary buffers to keep information in memory.
In summary, we can conclude that choosing from
the two approaches studied for processing XML
documents depends mostly on project’s
requirements.

REFERENCES

[1] M. Van Cappellen, Z. H. Lui, J. Melton, and Maxim
Orgiyan, “XQJ - XQuery Java API is Completed”,
SIMOD Record, vol. 38, no. 4, 2009.

[2] T. C. Lam, J. J. Ding, and J.-C. Liu, “XML
Document Parsing: Operational and Performance
Characteristics”, Computing & Processing, vol. 41,
no. 9, pp. 30–37, 2008.

[3] S. C. Haw and G. S. V. R. K. Rao, “A Comparative
Study and Benchmarking on XML Parsers”, in
Advanced Communication Technology, The 9th
International Conference on, 2007.

[4] L. L. B. Zhao, “Performance Evaluation and
Acceleration for XML Data Parsing”, in In 9th
Workshop on Computer Architecture Evaluation
using Commercial Workloads (CAECW), 2006.

[5] Y. Oren, “SAX Parser Benchmarks”, http://piccolo.
sourceforge.net/bench.html, 2002. .

[6] J. Zhang, “Simplify XML Processing with VTD-
XML”, JavaWorld.com, 2006. .

[7] R. Alnaqeib, F. H.Alshammari, M.A.Zaidan,
A.A.Zaidan, B.B.Zaidan, and Z. M.Hazza, “An
Overview: Extensible Markup Language
Technology”, Journal of computing, vol. 2, no. 6, pp.
177–181, 2010.

[8] V. Sengirova, A. Oralbekova, and N. Shah, “An
Empirical Evaluation of BFS, and DFS Search
Algorithms on J2ME Platform, and SVG Tiny
Parsing on J2ME Platform Using SAX, StAX, and
DOM Parsers”, International Journal on Advanced
Science, Engineering and Information Technology,
vol. 2, no. 5, pp. 65–70, 2012.

84

International Journal of New Computer Architectures and their Applications (IJNCAA) 3(1): 72-85
The Society of Digital Information and Wireless Communications (SDIWC) 2013 (ISSN: 2220-9085)

[9] E. Perkins, M. Kostoulas, A. Heifets, M. Matsa, and
N. Mendelsohn, “Performance Analysis of XML
APIs”, in XML 2005 Conference proceeding, 2005.

[10] F. Wang, J. Li, and H. Homayounfar, “A space
efficient XML DOM parser”, Data & Knowledge
Engineering, vol. 60, no. 1, pp. 185–207, 2007.

[11] D. Sosnoski, “XML and Java technologies:
Document models, Part 1: Performance”,
http://www.ibm.com/developerworks/xml/library/x-
injava/, 2001.

[12] J. Zhang, “VTD-XML: XML Processing for the
Future (Part I),”
http://www.codeproject.com/Articles/23516/VTD-
XML-XML-Processing-for-the-Future-Part-I, 2008.

[13] B. McLaughlin and J. Edelson, Java and XML, 3rd
Editio. O’Reilly Media, 2006, p. 480.

[14] W. Biggs and H. Evans, “Simplify XML
programming with JDOM”,

http://www.ibm.com/developerworks/java/library/j-
jdom/, 2001.

[15] D. Sosnoski, “XML and Java technologies: Java
document model usage”,
http://www.ibm.com/developerworks/xml/library/x-
injava2/, 2002.

[16] E. Harold, “XOM presentation,”
http://www.xom.nu/whatswrong/whatswrong.html,
2003.

[17] J. W. S. P. Team, “Streaming APIs for XML
Parsers,”
http://java.sun.com/performance/reference/whitepap
ers/StAX-1_0.pdf, 2005.

[18] E. Litani and M. Glavassevich, “Improve
performance in your XML applications, Part 2,”
http://www.ibm.com/developerworks/xml/library/x-
perfap2/index.html, 2004.

85

International Journal of New Computer Architectures and their Applications (IJNCAA) 3(1): 72-85
The Society of Digital Information and Wireless Communications (SDIWC) 2013 (ISSN: 2220-9085)

