
ConcJUnit: Unit Testing for Concurrent Programs
Mathias Ricken

Dept. of Computer Science
Rice University

Houston, TX 77005, USA
+1-713-348-3836

mgricken@rice.edu

Robert Cartwright
Dept. of Computer Science

Rice University
Houston, TX 77005, USA

+1-713-348-6042

cork@rice.edu

ABSTRACT
In test-driven development, tests are written for each program unit
before the code is written, ensuring that the code has a
comprehensive unit testing harness. Unfortunately, unit testing is
much less effective for concurrent programs than for conventional
sequential programs, partly because extant unit testing
frameworks provide little help in addressing the challenges of
testing concurrent code. In this paper, we present ConcJUnit, an
extension of the popular unit testing framework JUnit that
simplifies the task of writing tests for concurrent programs by
handling uncaught exceptions and failed assertions in all threads,
and by detecting child threads that were not forced to terminate
before the main thread ends.

Categories and Subject Descriptors
D.1.3 [Programming Techniques]: Concurrent Programming;
D.2.5 [Software Engineering]: Testing and Debugging –
abstract data types, polymorphism, control structures.

General Terms
Reliability, Languages.

Keywords
Java, JUnit, unit testing, concurrent programming.

1. INTRODUCTION
Incremental, test-driven development is the most distinctive
feature of agile approaches to software development such as
Extreme Programming [1]. Tests are written for a unit of code
before the code itself is written, and all tests must succeed before
a new revision can be committed to the code base, facilitating the
early detection and repair of program bugs.

Unfortunately, unit testing is much less effective for programs
with multiple threads of control because program execution
becomes non-deterministic, subject to variations in thread
scheduling. Extant unit testing frameworks provide little support
for testing concurrent code. In fact, they (perhaps unwittingly)
facilitate the writing of bad unit tests. In JUnit [2] and

TestNG [3], concurrent unit tests that should fail often report
success for a variety of reasons: They silently ignore uncaught
exceptions and failed assertions that occur in threads other than
the main thread, and they do not provide any warnings when
spawned child threads fail to terminate before the test is declared
a success.

Contributions Our contributions are as follows.

We present ConcJUnit, a unit testing framework for Java that
revises and extends JUnit.

• Uncaught exceptions and failed assertions are detected
in all threads, not just in the test’s main thread, and
cause the unit test to fail (Section 2).

• Child threads are required to end before the test result is
determined. ConcJUnit emits a warning if a child thread
outlives the test or ended in time but was not forced to
do so (Section 3).

Our implementation is backward-compatible to JUnit in single-
threaded execution and introduces negligible overhead
(Section 4).

Comparisons The two most widely used unit testing
frameworks for Java are JUnit and TestNG. While TestNG
provides some features that JUnit does not offer, such as
dependent and data-driven tests, neither of the two frameworks
includes any additional support for addressing the problems posed
by concurrency.

Recently, both JUnit and TestNG gained the ability to run
multiple tests, or multiple instances of the same test, in parallel.
The libraries jconch [4] and parallel-junit [5] add this feature to
older versions of JUnit. Running tests in parallel can shorten the
testing time on multi-core machines and in some cases reveal bugs
that only occur during concurrent execution. These parallel
extensions, however, still ignore the fundamental flaws of JUnit
and TestNG in detecting errors in multi-threaded code, such as
uncaught exceptions in spawned threads.

2. UNCAUGHT EXCEPTIONS
When a Java program throws an exception, the Java Virtual
Machine (JVM) unwinds the stack of the thread in which the
exception was thrown until a suitable catch block is found. If no
such catch block exists and the stack unwinds completely, the
thread is terminated. Unit testing frameworks for Java employ a
catch(Throwable t) block to detect uncaught exceptions in
the main test thread and report failure. Since test assertions in
these frameworks are implemented using exceptions, our
discussion of uncaught exceptions also covers failed assertions.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
PPPJ '09, August 27-28, 2009, Calgary, Alberta, Canada.
Copyright 2009 ACM 978-1-60558-598-7 ...$10.00.

129

This catch block only applies to the test’s main thread. Since Java
threads by default do not have uncaught exception handlers
installed, exceptions thrown in other threads are ignored. Listing 1
contains a JUnit 3.8.2 test case that demonstrates this.

Concurrency is ubiquitous in Java programs because multiple
threads are required to support responsive user interfaces. Nearly
all non-trivial applications with a GUI (graphical user interface)
involve multi-threading. GUI frameworks like AWT/Swing and
SWT rely on an event-handling thread to process all GUI input
events and to access and update GUI components. The contracts
for most AWT/Swing and SWT methods stipulate that the method
must be executed in the event-handling thread. Hence, unit tests
that manipulate GUI components (e.g., creating and modifying
Swing documents) must run some code in the event-handling
thread. In fact, essentially all non-trivial method calls on these
objects must run in the event thread. If a call on a GUI component
method in the event thread is erroneous, the method may throw an
exception indicating an error, but JUnit completely ignores this
exception and reports success as long as no exceptions are thrown
in the main thread. Similarly, a JUnit test may attach a listener to a
GUI component (e.g., add a DocumentListener to a Document)
to perform tests whenever the listener is fired. Even when such a
listener explicitly calls the fail method, JUnit will not report
failure because the exception generated by the call is not thrown
in the main thread. (The listener is executed as a postlude to
calling a method in the corresponding GUI component, which
must be done in the event thread.)

Our modified ConcJUnit framework creates a new thread group
with an overridden uncaughtException method, and then
creates a thread in this group. The test is executed in the new
thread while the framework waits for it to finish. If an exception is
thrown in the test’s main thread or any of its child threads, the test
group’s uncaughtException method is invoked. It stores
information about the uncaught exception and makes it available
to ConcJUnit. When the test has ended, ConcJUnit retrieves the
information from the thread group and declares the test a failure if
any thread was terminated by an exception.

The use of a thread group is essential because a new child thread
inherits its parent’s thread group (unless a specific thread group is
passed to the child’s constructor); therefore, uncaught exceptions
in child threads also invoke the overridden uncaughtException
method, recording an error that will force the test to fail.

Java 5.0 introduced the setDefaultUncaughtException-
Handler method, a mechanism for defining a default exception
handler method that is associated with every thread. We decided
to use thread groups nonetheless as they offer backward
compatibility and robustness: Since thread groups in Java are
hierarchical, we can still test programs that use thread groups
themselves. On the other hand, there is only one default uncaught
exception handler, and if a program removes ConcJUnit’s
handler, uncaught exceptions would no longer be processed
correctly.

3. ENFORCED JOINS
3.1 Child Thread Outlives Test
Listing 1 exhibits another flaw, one that can also lead to a
successful test, even though an uncaught exception is thrown:
There is no guarantee that the child thread will reach the point of

import junit.framework.TestCase;

public class TestInOther extends TestCase {
 public void testException() {
 new Thread(new Runnable() {
 public void run() {
 // should cause failure but does not
 throw new RuntimeException();
 }
 }).start();
 }
}

Listing 1: Uncaught exception in other thread

Figure 1: Child thread CT outlives test’s main thread MT

(“no join” warning)

Figure 2: Main thread MT joins with child thread CT

Figure 3: Child thread CT ends before main thread MT, but

without join (“lucky” warning)

import junit.framework.TestCase;

public class TestInOther extends TestCase {
 public void testException() {
 Thread child = new Thread(new Runnable() {
 public void run() {
 // exception detected with ConcJUnit
 throw new RuntimeException();
 }
 });
 child.start();
 while(child.isAlive) {
 try {
 child.join(); // wait until child done
 }
 catch(InterruptedException ie) {
 // interrupted while waiting
 // child may not be done yet
 }
 }
 }
}

Listing 2: Main thread waits for child thread to complete

130

failure before the main thread has finished and the test ends. This
situation is depicted in Figure 1.

A correctly written test ensures that all child threads have
terminated before the test ends, guaranteeing that the test is aware
of any uncaught exceptions thrown in child threads before the test
result is determined. Java’s Thread.join method can be used to
suspend the test’s main thread until a spawned child thread has
finished executing. Figure 2 displays the behavior of a correctly
written test. The source code for such a test can be found in
Listing 2.

To increase the framework’s ability to detect badly written tests,
ConcJUnit enumerates all living threads in the test’s thread group
when the test has ended. If threads are still found to be alive, a
“no join” warning is emitted. Some system threads and daemon
threads are excluded from this check, permitting them to outlive
the test’s main thread. These threads may have been created
without the developer’s knowledge and are terminated
automatically at the end of the application’s runtime. They only
remain alive in a unit test because unit tests are executed in series
within the same JVM.

3.2 Child Thread Terminates Without Join
The check for living threads described in the previous section
only emits warnings for a faulty test whose main tread terminates
before all child threads have finished. A more common problem is
that a test may fortuitously succeed even though it did nothing to
enforce that the main thread finishes last. A test exhibiting this
behavior is depicted in Figure 3.
A fork/join design in which each parent thread has to join with all
of its child threads solves this problem. Figure 4 demonstrates this
scheme: The main threat MT spawns a child thread CT1; CT1
itself spawns another child thread CT2. CT1 cannot terminate

before CT2 has terminated, and MT cannot end before CT1 has
ended. Therefore, MT cannot end before all of its ancestor threads
have finished executing.
This simple model is common in the parallel algorithms literature,
but it may be too restrictive for general-purpose Java programs.
For example, it should be permissible for the main thread to join
directly with all of its ancestor threads, whether it started them
itself or not. This is illustrated in Figure 5. Another scenario
ensuring that all ancestor threads terminate before the main thread
is to spawn a chain of helper threads, each guaranteed to outlive
the previous thread, and force the main thread to join with the last
helper thread. This situation is shown in Figure 6.
The concept of a chain can be generalized into a directed acyclic
graph called “join graph”, initially just consisting of a node for the
main thread. Each time a new child thread is spawned, a new node
is added to the graph, and every time a thread A joins with
another thread B, an edge from A to B is added. Such an edge
indicates that B terminated before A. Therefore, to ascertain that
all child threads have terminated before a test’s main thread ends,
we only need to verify that all nodes are reachable from the main
thread’s node in the join graph. Note that in Figure 4, Figure 5
and Figure 6 all nodes of the join graphs are reachable from the
main thread’s node MT. In Figure 7, however, where no thread
joins with CT2, the node for CT2 is not reachable from MT,
indicating that a “lucky” warning should be issued, asserting that
the proper termination order is not guaranteed.

While the improvements described in the previous two sections
only require changes to the JUnit framework, detecting child
threads that were not targets of a join operation requires
modifying the Java Runtime Environment (JRE). The bytecode of
the java.lang.Thread class must be augmented to perform the
necessary bookkeeping at the end of the Thread.start and
Thread.join methods.

Figure 5: Main thread joins with both child threads

(MT joins with CT1, MT with CT2)

Figure 4: Each parent thread joins with its child thread

(MT joins with CT1, CT1 with CT2)

Figure 6: Main thread joins with last thread in chain

(MT joins with CT2, CT2 with CT1)

Figure 7: CT2 not reachable in join graph

(MT joins with CT1, CT2 not joined by any thread)

131

ConcJUnit includes a tool that processes the rt.jar file (or
classes.jar file on Mac OS X) of the JRE the user has installed,
generating a replacement rt.jar file containing the modified
java.lang.Thread class and its helpers. During testing, this
replacement rt.jar is put on Java’s boot classpath using the
-Xbootclasspath/p:rt.jar command line option.

Similar to the way we construct the join graph, we also create a
“start graph” that records the child threads spawned by each
thread. The bookkeeping required to maintain the join and start
graphs is performed using lock-free data structures to minimize
the impact on the thread scheduling of the test.

At the end of a test, ConcJUnit attempts to retrieve the contents of
these graphs using reflection. The library is not hard-linked
against the modified java.lang.Thread class and therefore also
works without it on the boot classpath; in that case, ConcJUnit
just does not emit “lucky” warnings. Checking whether all child
threads ended without being joined is efficiently implemented
using set differences. ConcJUnit computes S, the set of threads
reachable from MT in the start graph, and J, the set of threads
reachable from MT in the join graph. If the difference S – J is
non-empty, then some child threads were not required to end
before the main thread ended, and a “lucky” warning is generated.

4. ANALYSIS
To test the effectiveness and performance of ConcJUnit, we
replaced JUnit with ConcJUnit and executed the unit test suites
for DrJava [6] (revision 4918), an integrated development
environment for Java, and JFreeChart [7] (1.0.13), an open-source
library to display data visually. The extensive JFreeChart tests
were not concurrent, but they all passed, demonstrating the
compatibility of ConcJUnit with existing code.

Of the 900 unit tests contained in the DrJava test suite, 880 tests
passed without any warnings. A single test emitted a “no join”
warning, and 18 tests issued “lucky” warnings regarding their join
behaviors. There were no tests that failed as a result of replacing
the unit testing libraries, but one test timed out.

Upon examination of the source code, the 18 “lucky” warnings
and the single “no join” warning all turned out to be legitimate.
The “no join” warning was issued during a test that created a
remote process which did not terminate during the test, causing
the thread waiting for the termination to outlive the test.

The “lucky” warnings were emitted by tests that in fact did not
join with all the child threads they had spawned. Instead, they
used a wait-notify scheme to ensure that the child threads
terminate before the tests end. In all of these cases, the developers
had taken care that there were no more lengthy operations after
the notifications, and that an uncaught exception after the call to
notify was unlikely. This practically makes the wait-notify scheme
equivalent to a join. However, if additional work were to be
performed after the notification, and if one of the operations were
to fail, such a test could be incorrectly declared a success.

We did not discover any tests that ignored uncaught exceptions or
failed assertions in spawned threads, but for DrJava, a mature
project built with test-driven methods, this was expected. Using
ConcJUnit allowed us to replace the handler for uncaught
exceptions that was custom-built for DrJava with the general one

found in ConcJUnit. Doing this also made a test of the exception
handler redundant, eliminating one of the “lucky” warnings.

The overhead, introduced by ConcJUnit to handle uncaught
exceptions in all threads and to detect the “no join” and “lucky”
conditions, was negligible. The total slowdown for ten runs of the
entire test suite was 55.2 seconds, or 1.1 percent of the 5252.4
seconds it took to run the entire suite ten times using JUnit.

5. FUTURE WORK
Our improvements to JUnit will not detect all uncaught exceptions
that could occur; only the uncaught exceptions thrown in the
chosen thread schedule are found. Similarly, ConcJUnit will not
report all threads that could end without being joined by the main
thread; it will only emit warnings for those threads that actually
ended in such a way. Even if the test suite passes ConcJUnit
without failures or warnings, it is still possible that the unit tests
fails during the next run.
Unit testing requires that known input generates known output,
and that the entire computation is deterministic, and ConcJUnit
does not address the important issue in potential non-determinism
in multi-threaded unit tests. A truly comprehensive unit testing
framework should provide practical tools for assuring that
concurrent unit tests are deterministic. One possible approach is
to provide tools for generating and replaying representative
schedules for each test method in a test class while running a data
race detector such as Eraser [8] in parallel.

6. CONCLUSION
Unit testing concurrent programs is difficult for two reasons:
inadequate existing frameworks and non-deterministic thread
scheduling. ConcJUnit, the extension of JUnit introduced in this
paper, improves JUnit by detecting uncaught exceptions and
failed assertions in all threads and by warning the developer if a
child thread could outlive the test’s main thread because no join
operation was performed. While this does not lead to
deterministic unit test results for concurrent programs, ConcJUnit
remedies two of the most serious problems in existing
frameworks. Designed as drop-in replacement for JUnit, our
framework is immediately applicable for Java programs and
provides important foundations for future extensions.

ConcJUnit is compatible with all three major platforms:
Windows, Linux, and Mac OS X. The project is open source and
available at http://www.concutest.org/

7. REFERENCES
[1] Jefferies, Ron. http://www.xprogramming.com/
[2] JUnit Project. JUnit, http://junit.org/
[3] TestNG Project. TestNG, http://testng.org/
[4] Fischer, Robert. jconch, http://code.google.com/p/jconch/
[5] Kawaguchi, Kohsuke. Parallel-JUnit,

https://parallel-junit.dev.java.net/
[6] Rice JavaPLT. DrJava, http://drjava.org/
[7] JFree.org Project. JFreeChart,

http://www.jfree.org/jfreechart/
[8] Savage, Stevan, et al. Eraser: A Dynamic Data Race

Detector for Multithreaded Programs, ACM Trans. Comput.
Syst., 15, ACM Press, New York, 1997. No 4, p. 391-41

132

