
1

Projective Mappings for Image Warping

Paul Heckbert

Rendering, 15-862
26 Sept 1995

Excerpted from pages 17-21 of Fundamentals of Texture Mapping and Image Warping, Paul Heckbert,
Master’s thesis, UCB/CSD 89/516, CS Division, U.C. Berkeley, June 1989,

URL=http://www.cs.cmu.edu/˜ph.

1 Homogeneous Notation

The homogeneous representation for points provides a consistent notation for affine and projective
mappings. Homogeneous notation was used in projective geometry [Maxwell46], [Coxeter78]
long before its introduction to computer graphics [Roberts66]. The homogeneous notation is often
misunderstood so we will take a moment to clarify its use and properties.

In familiar Euclidean geometry we represent points of the real plane
� 2 by vectors of the

form �������	� . Projective geometry deals with the projective plane, a superset of the real plane,
whose homogeneous coordinates are ����
����
������ . In projective geometry the 2-D real point �������	�
is represented by the homogeneous vector �������
 ���
 ������������������������� , where � is an arbitrary
nonzero number. Vectors of the form ����������������� for � �� 0 form the equivalence class of
homogeneous representations for the real point �������	� . To recover the actual coordinates from a
homogeneous vector, we simply divide by the homogeneous component; e.g., the homogeneous
vector ���������������������� ����
����
������ represents the actual point �������	�!� ����
#"$������
%"$��� . This
division, a projection onto the �&� 1 plane, cancels the effect of scalar multiplication by � . When
representing real points with homogeneous notation we could use any nonzero � , but it is usually
most convenient to choose ��� 1 so that the real coordinates can be recovered without division.
Projective space also includes the points at infinity: vectors of the form ���'
�����
�� 0 � , excluding � 0 � 0 � 0 � .
The points at infinity lie on the line at infinity. We will see later how augmentation of the real plane
by these points simplifies projective geometry.

In homogeneous notation, 2-D points are represented by 3-vectors and 3-D points are represented
by 4-vectors. For affine and projective mappings, we denote points in source space by �)(*�
��+�
���,
��.-/� and points in the destination space by �102�3����
�����
%����� .

2 Projective Mappings

The projective mapping, also known as the perspective or homogeneous transformation, is a projec-
tion from one plane through a point onto another plane [Maxwell46]. Homogeneous transformations
are used extensively for 3-D affine modeling transformations and for perspective camera transforma-
tions [Foley-van Dam82]. The 2-D projective mappings studied here are a subset of these familiar
3-D homogeneous transformations.

Rendering, 26 Sept 95 2

The general form of a projective mapping is a rational linear mapping:

�2��� + ��� , ���� + ��� , �	� � � �

 + ��� , ���� + ��� , �	� (1)

Manipulation of projective mappings is much easier in the homogeneous matrix1 notation:

� 0 � � (� (0
���$��
���
 ��� ��� +�
 ,
 -��

�������� �
 �� � �� � �
� �������

where �������	� �3���
 "$�����
 "$��� for ���� 0, and ��+���, �)�3��+
 " -���,
 " -/� for -��� 0.
Although there are 9 coefficients in the matrix above, these mappings are homogeneous, so

any nonzero scalar multiple of these matrices gives an equivalent mapping. Hence there are only
8 degrees of freedom in a 2-D projective mapping. We can assume without loss of generality that� � 1 except in the special case that source point � 0 � 0 � maps to a point at infinity. A projective
mapping is affine when � � � � 0.

Projective mappings will in general map the line at infinity to a line in the real plane. We can
think of this line as the horizon line of all vanishing points, by analogy to the perspective projection.
Affine mappings are the special case of projective mappings that map the line at infinity into itself.
By defining the projective mapping over the projective plane and not just the real plane, projective
mappings become bijections (one-to-one and onto), except when the mapping matrix is singular.
For nondegenerate mappings the forward and inverse transforms are single-valued, just as for an
affine mapping.

Projective mappings share many of the desirable properties of affine mappings. Unlike bilinear
mappings, which preserve equispaced points along certain lines, the projective mappings do not
in general preserve equispaced points. Instead they preserve a quantity called the “cross ratio” of
points [Coxeter78]. Like affine mappings, projective mappings preserve lines at all orientations.
In fact, projective mappings are the most general line-preserving bijective mappings. Projective
mappings may be composed by concatenating their matrices.

Another remarkable property is that the inverse of a projective mapping is a projective mapping.
This is intuitively explained by reversing the plane-to-plane mapping by which a projective mapping
is defined. The matrix for the inverse mapping is the inverse or adjoint of the forward mapping. (The
adjoint of a matrix is the transpose of the matrix of cofactors [Strang80]; �� 1 � �
�� �� ��"
 ��� ��3�).In homogeneous algebra, the adjoint matrix can be used in place of the inverse matrix whenever an
inverse transform is needed, since the two are scalar multiples of each other, and the adjoint always
exists, while the inverse does not if the matrix is singular. The inverse transformation is thus:

� (� � 0 0 (
��� +�
�,
 -������ ��
��
 ���

�������� ! "# $ %& ' (
� �������

��� ��
��
 ���
�������� ���*)+�,� � �)
 �
 �-)+� ����.)+�/� � �0)1� � � �) � ��2�3)1��� �
) � � � �4)+�

� �������
1Note that this document uses a row vector / post-multiplication convention for transformations, while many graphics

textbooks use a column vector / pre-multiplication convention. Just transpose everything to change conventions.

Rendering, 26 Sept 95 3

When mapping a point by the inverse transform we compute ��+ ��, � from �������	� . If � �� 0 and -��� 0
then we can choose �&� 1 and calculate:

+��
 � � # � � &" � � % � � (� , �

! � � $ � � '" � � % � � ((2)

3 Inferring Projective Mappings

In an interactive image warper one might specify the four corners of source and destination quadri-
laterals with a tablet or mouse, and wish to warp one area to the other. This sort of task is an ideal
application of projective mappings, but how do we find the mapping matrix?

A projective mapping has 8 degrees of freedom which can be determined from the source and
destination coordinates of the four corners of a quadrilateral. Let the correspondence map ��+�����,�� �
to ����� ����� � for vertices numbered cyclically

� � 0 � 1 � 2 � 3. All coordinates are assumed to be
real (finite). To compute the forward mapping matrix (0 , assuming that

� � 1, we have eight
equations in the eight unknowns � - � :

����� � +�� ��� ,�� ���� +�� ��� ,�� � 1
� +�� � � ,�� ���	�) +�� ��� �) ,��$��� � � ���

�����

 +�� ��� ,�� ���� +�� ��� ,�� � 1

� +��
 � ,�� � ���) +�� ��� �) ,��$��� � � ���
for

� � 0 � 1 � 2 � 3. This can be rewritten as an 8 	 8 system:������������������������������

+ 0 , 0 1 0 0 0
) + 0 � 0

) , 0 � 0

+ 1 , 1 1 0 0 0
) + 1 � 1

) , 1 � 1

+ 2 , 2 1 0 0 0
) + 2 � 2

) , 2 � 2

+ 3 , 3 1 0 0 0
) + 3 � 3

) , 3 � 3

0 0 0 + 0 , 0 1
) + 0 � 0) , 0 � 0

0 0 0 + 1 , 1 1
) + 1 � 1) , 1 � 1

0 0 0 + 2 , 2 1
) + 2 � 2) , 2 � 2

0 0 0 + 3 , 3 1
) + 3 � 3) , 3 � 3

� �����������������������������

������������������������������

� ��
 �� ��

� �����������������������������
�

������������������������������

� 0

� 1

� 2

� 3

� 0
� 1
� 2
� 3

� �����������������������������
This linear system can be solved using Gaussian elimination for the forward mapping coefficients

� - � . If the inverse mapping is desired instead, then either we compute the adjoint of (0 or we
follow the same procedure, starting from equation (2) instead of (1), and solve an 8 	 8 system for
coefficients

-
%

.
In speed-critical special cases, there are more efficient formulas for computing the mapping

matrix. The formula above handles the case where the polygon is a general quadrilateral in both
source and destination spaces. We will consider three additional cases: square-to-quadrilateral,
quadrilateral-to-square, and (again) the general quadrilateral-to-quadrilateral mapping.

Case 1. The system is easily solved symbolically in the special case where the +�, quadrilateral
is a unit square. If the vertex correspondence is as follows:

x y u v
� 0 � 0 0 0
� 1 � 1 1 0
� 2 � 2 1 1
� 3 � 3 0 1

Rendering, 26 Sept 95 4

case 3

case 1case 2
3 2

1

0

3

2

1

0

1

0
10

v

u

Figure 1: Quadrilateral to quadrilateral mapping as a composition of simpler mappings.

then the eight equations reduce to

� � � 0

� �	�) � � 1 � � 1

� �����	�) � � 2
)+� � 2 � � 2� ���)+� � 3 � � 3� � � 0
 ���) � � 1 � � 1
 � � ���3) � � 2)+� � 2 � � 2� ���3)+� � 3 � � 3

If we define
∆ � 1 � � 1

) � 2 ∆ � 2 � � 3
) � 2 Σ ��� � 0

) � 1
� � 2

) � 3

∆ � 1 � � 1) � 2 ∆ � 2 � � 3) � 2 Σ � � � 0) � 1 � � 2) � 3
then the solution splits into two sub-cases:

(a) Σ �2� 0 and Σ � � 0. This implies that the ��� polygon is a parallelogram, so the mapping is
affine, and � � � 1

) � 0,
� � � 2

) � 1,
� � � 0,

 � � 1) � 0,
� � � 2) � 1,

� � � 0, � � 0,
� � 0.

(b) Σ � �� 0 or Σ � �� 0 gives a projective mapping:

� � ��
�
�
Σ � ∆ � 2

Σ � ∆ � 2
��
�
�

�
��
�
�
∆ � 1 ∆ � 2

∆ � 1 ∆ � 2
��
�
�

� � �
�
�
�
∆ � 1 Σ �
∆ � 1 Σ �

�
�
�
�

�
�
�
�
�
∆ � 1 ∆ � 2

∆ � 1 ∆ � 2
�
�
�
�

� � � 1
) � 0

� � � 1� � � 3
) � 0

��� � 3� � � 0
 � � 1) � 0 � � � 1� � � 3) � 0 ��� � 3� � � 0

Rendering, 26 Sept 95 5

This computation is much faster than a straightforward 8 	 8 system solver. The mapping above
is easily generalized to map a rectangle to a quadrilateral by pre-multiplying with a scale and
translation matrix.

Case 2. The inverse mapping, a quadrilateral to a square, can also be optimized. It turns out
that the most efficient algorithm for computing this is not purely symbolic, as in the previous case,
but numerical. We use the square-to-quadrilateral formulas just described to find the inverse of the
desired mapping, and then take its adjoint to compute the quadrilateral-to-square mapping.

Case 3. Since we can compute quadrilateral-to-square and square-to-quadrilateral mappings
quickly, the two mappings can easily be composed to yield a general quadrilateral-to-quadrilateral
mapping (figure 1). This solution method is faster than a general 8 	 8 system solver.

4 References

[Coxeter78] H. S. M. Coxeter, Non-Euclidean Geometry, U. of Toronto Press, 1978.

[Foley-van Dam82] James D. Foley, Andries van Dam, Fundamentals of Interactive Computer
Graphics, Addison-Wesley, Reading, MA, 1982.

[Maxwell46] E. A. Maxwell, The Methods of Plane Projective Geometry, Based on the Use of
General Homogeneous Coordinates, Cambridge U. Press, London, 1946.

[Roberts66] Lawrence G. Roberts, Homogeneous Matrix Representation and Manipulation of
N-Dimensional Constructs, MS-1405, Lincoln Lab, Lexington, MA, July 1966.

[Strang80] Gilbert Strang, Linear Algebra and Its Applications, 2nd ed., Academic Press, New
York, 1980.

