The C++ Language

Complex

 MathematicalExpressions

Simple Mathematical Expressions

- We've seen simple mathematical expressions
- Only two operands, data being operated on
- Only one operator, denoting operation to perform
- Special rules
- Dividing integers
- Mixing floating point and integer operands
- What about more operands and operators?
- How does mixing data types work?

Complex Mathematical Expressions

- Suppose you have the statement
avgTemp = FREEZE_PT + BOIL_PT / 2.0;
- Is FREEZE_PT + BOIL_PT calculated first?
- Or, is BOIL_PT / 2.0 calculated first?
- In order to answer the question, precedence must be defined for operations.

Complex Mathematical Expressions

- Precedence rules for C++

Order of evaluation	Operations (from left to right)
1$)$	Expressions in parentheses
2$)$	Unary +, Unary -
3$)$	* \%
4$)$	+-

Complex Mathematical Expressions

- According to precedence rules, BOIL_PT / 2.0 is evaluated first.
- This probably is not what was intended. Instead, write

```
avgTemp = (FREEZE_PT + BOIL_PT) / 2.0;
```


Complex Mathematical Expression

- Using precedence, a complex expression can be evaluated as many simple expressions.
- A useful tool for evaluating complex expressions is an evaluation tree.
avgTemp = FREEZE_PT + BOIL_PT / 2.0;

Evaluation Tree (Example)

avgTemp = FREEZE_PT + BOIL_PT / 2.0;

Evaluation Tree (Example and Exercise)

int a, b, c;
double x, y;

a	b	\mathbf{x}	\mathbf{y}
7	3	1.5	0.3

Complex Expressions (Exercises)

- Write C++ expressions for

$$
\begin{aligned}
& b^{2}-4 a c \\
& a+b-c \\
& a \cdot-(b+c) \\
& \frac{a+b}{c+d} \\
& \frac{1}{1+y^{2}}
\end{aligned}
$$

Complex Expressions (Exercises)

- Draw evaluation trees for the following
int $a, b, c ;$
double $x, y, z ;$
$a=3 ; b=5 ; x=1.3 ; y=2.7$;
$z=a * a+b ;$
$c=a-x * b+y ;$
$\mathrm{c}=\mathrm{x}+\mathrm{a} \% \mathrm{~b}$;
$\mathrm{z}=(\mathrm{x}+\mathrm{y}) / \mathrm{a}-\mathrm{b}$ * -y ;

