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Abstract

Computing optimal routes in road networks is one of the slieegs of real-
world applications of algorithmics. In principle, we coulde Dijkstra’s
algorithm—the ‘classic’ solution from graph theory. But farge road net-
works this would be far too slow. Therefore, there is considke interest
in speedup techniques, which typically invest some time @npreprocess-
ing step in order to generate auxiliary data that can be usaddelerate all
subsequent route planning queries.

Following the paradigm o&lgorithm engineeringwe design, imple-
ment, and evaluate three highly-efficient and provably eateupoint-to-
point route planning algorithms—all of which with differelbenefits—and
one generic many-to-many approach, which computes fongigle sets
S and T the optimal distances between all node pairs) € S x T in
a very efficient way. The evaluation is done in an extensiygegrmental
study using large real-world road networks with up to 33 728 finctions.

Highway hierarchiesexploit the inherent hierarchical structure of road
networks and classify roads by importance. A point-to-pguery is then
performed in a bidirectional fashion—forwards from the reeuand back-
wards from the target—, disregarding more and more lessritapiostreets
with increasing distance from source or targétighway-node routings
a related bidirectional and hierarchical approach. ltsceptual simplicity
and fast preprocessing allows the implementation of updatines that are
able to react efficiently to unexpected events like trafflrngaTransit-node
routing provides extremely fast query times by reducing most regues
a few table lookups, exploiting the observation that whewiray to some-
where ‘far away’, the current location is always left via arfeonly a few
‘important’ traffic junctions. Our generimany-to-manyalgorithm can be
instantiated based on certain bidirectional route plagnachniques, for
example, highway hierarchies or highway-node routingoiputes a com-
plete|S| x |T'| distance table, basically performing orjly| forward plus
|T'| backward queries instead [#f| times|T'| bidirectional queries.

Among all route planning methods that achieve considersyiedups,
we currently provide the one with the fastest query times,ahe with the
fastest preprocessing, and the one with the lowest memquyjresnents.
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1

Introduction

1.1 Motivation

Computing best possible routes in road networks from a gsamce to a
given target location is an everyday problem. Many peogmguently deal
with this question when planning trips with their cars. Tare also many
applications like logistic planning or traffic simulatiohat need to solve a
huge number of such route queries.

Current commercial solutions usually are slow or inaceurdthe gath-
ering of map data is already well advanced and the availaialé networks
get very big, covering many millions of road junctions. Thas the one
hand, using simple-minded approaches yields very slowygii@es. This
can be either inconvenient for the client if he has to waittf@ response
or expensive for the service provider if he has to make a |aoofiputing
power available. On the other hand, using aggressive liiesrgelds inac-
curate results. For the client, this can mean a waste of tideveoney. For
the service provider, the developing process becomes autlifialancing
act between speed and suboptimality of the computed roes.to these
reasons, there is a considerable interest in the develdppharoreefficient
andaccurateroute planning techniques.

1.1.1 The Shortest-Path Problem

A road network can easily be represented gsaph, i.e., as a collection of
nodesl” (junctions) and edgek (road segments) where each edge connects
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two nodes. Each edge is assigned a weight, e.g. the lengtle obad or an
estimation of the time needed to travel along the road. Iplgtheory, the
computation ofshortest pathsbetween two nodes is a classical problem.
Actually, we can distinguish between several variants isfphoblem:

point-to-point compute the shortest-path length from a given source node
s € V to a given target nodec V;

single-sourcefor a given source node € V, compute the shortest-path
lengths to all nodes € V;

many-to-manyfor given node sets, 7" C V, compute the shortest-path
length for each node pafs,t) € S x T

all-pairs: a special case of the many-to-many variant vith=T := V.

In this thesis, we concentrate on the point-to-point (Chig3, 4, and6) and
the many-to-many variant (Chapt&y. Optionally, we might want to com-
pute not only the shortest-path length, but also a desonpif the shortest
path itself.

From a worst-case perspective, the problem has largely $&lead in
1959 by Dijkstra 0], who gave an algorithm that solves the single-source
shortest-path problem usirig(m -+ n) priority queue operations for a graph
G = (V, E) with n nodes andn edges.

1.1.2 Speedup Techniques

In practice, when we deal with very large road networks armdpiint-to-
point problem, the running times of Dijkstra’s algorithmearot satisfying.
There are several aspects that suggest that we can do better:

1. Inasense, Dijkstra’s algorithm is an overkill since itrqmutes the short-
est paths from a given nodeto all nodesv € V' and not only toone
given nodet. For the point-to-point problem, this can be improved by
stopping Dijkstra’s algorithm as soon as the shortest pathig found,
but still the shortest paths fromto all nodesv that are closer te thant
are determined (Figurg.1).

INote that, depending on the chosen edge weights, ‘shocastefer not only to ‘spatial
distance’, but also, for instance, to ‘travel time’.
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Figure 1.1: Schematic representation of the search spdgiksfra’s algo-
rithm.

2. In many applications, we have to compute a lot of poinpagit queries
on thesameroad network. Therefore, it can pay to invest some time
for a preprocessingtep that generates auxiliary data that can be used to
accelerate all subsequent queries.

3. We do not deal with general graphs, but with road netwarksch have
certain properties. For instance, it is quite unusual foodenin a road
network to have degree five or more, i.e., a road network is\asparse
graph. Furthermore, road networks are alnpahar (because there are
only a few bridges and tunnels in comparison to the total remobroad
segments) and usuallylayoutis given, i.e., the geographic coordinates
of each node are known. Moreover, road networks exlhiigitarchical
properties for example, there are ‘more important’ streets (e.g. moto
ways) and ‘less important’ ones (e.g. urban streets).

These observations can be exploited to desgeedup techniquethat
achieve considerably better query times than Dijkstraj@@hm when ap-
plied to real-world road networks. There are several regouénts that such
a speedup technique should ideally fulfil:

e The query times should be as fast as possible.

e The result should baccurate i.e., a provably optimalpath should be
computed.

e The method should bscale-invariant i.e., it should be optimised not
only for long paths. In other words, the running time of thenpaitation

2w.r.t. the available data
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of a shortest path (e.g. from Karlsruhe to Saarbrucken) argelgraph
(e.g. Western Europe) should be not much higher than tharmgrime
of the same computation in a smaller graph (e.g. Germany).

o If the approach uses some preprocessing, it should be sufficifast so
that we can deal with very large road networks.

e Precomputed auxiliary data should occupy only a moderateuatmof
space.

e Updating some edge weights (e.g., due to a traffic jam) oaocépd the
entire cost function (e.g., switching to a different speedfife yielding
different travel time estimates) should be supported.

Often these requirements are at conflict with each otherekample, faster
query times might require larger preprocessing times arzget memory
consumption. The challenge is to find a method that represegbod com-
promise between all these requirements.

1.2 Related Work

1.2.1 Classical Results and Simple Techniques

Dijkstra’s Algorithm  [20] maintains an array ofentative distanceor
each node. The algorithwisits (or settle$ the nodes of the road network
in the order of their distance to the source node and mamtaminvariant
that the tentative distance is equal to the correct distémcesited nodes.
When a nodex is visited, its outgoing edgé€s:, v) arerelaxed the tentative
distance ofv is set to the length of the path frosnvia « to v provided that
this leads to an improvement. Dijkstra’s algorithm can lopged when the
target node is visited. The size of the search spac¥is andn/2 nodes
on the average. We will assess the quality of route planniggrithms by
looking at theirspeedupcompared to Dijkstra’s algorithm, i.e., how many
times faster they can compute shortest-path distances.

Priority Queues. The main focus otheoreticalwork on shortest paths
has been how to reduce or avoid the overhead of priority qugesa-
tions. The original version of Dijkstra’s algorithr2Q] runs inO(n?). This
bound has been improved several times, e.g@te:logn) using binary



1.2. Related Work 17

heaps 99, O(m + nlogn) using Fibonacci heap24], O(mloglogn)
[84, 87], andO(m+n log log n) using a sophisticated integer priority queue
[89, 91] that supportsdeleteMinoperations inO(loglogn) and all other
operations in constant time. For integer edge weights inngedrom 0

to C, Dial proposed arO(m + nC') algorithm using bucketslp]. This
bound has been improved @(m log log C) [93], O(m + n\/log C) [2],
andO(m + nloglog C) [89, 91]. Linear time algorithms for the single-
source shortest-path problem have been presentguaioar [48] and undi-
rectedgraphs 85, 86]. Meyer [59] gives an algorithm that works in linear
time with high probability on an arbitrary directed graphiwiandom edge
weights uniformly distributed in the intervél, 1]. Similar results have been
obtained by Goldberd[7], whose algorithm is superior w.r.t. the worst-case
bound for integer edge weights.

Experimental studieslp] indicate that inpracticeeven very simple pri-
ority queues like binary heaps only induce a factor 2—3 ea&dhcompared
to highly tuned ones. In particular, it does not pay to ace¢delecreaseKey
operations since they occur comparatively rarely in the cdsparse road
networks. In addition, our experiments indicate that thpant of priority
gueue implementations diminishes with advanced speedbpitgies since
these techniques at the same time introduce additionaheads and dra-
matically reduce the queue sizes.

Bidirectional Search executes Dijkstra’s algorithm simultaneously for-
wards from the sourceand backwards from the targefFigure1.2). Once
some node has been visited from both directions, the shoaéscan be de-
rived from the information already gatheretb]. In a road network, where
search spaces will take a roughly circular shape, we cancexpspeedup
of around two—one disk with radiugs, ) has twice the area of two disks

Figure 1.2: Schematic representation of the search spdhe bfidirectional
version of Dijkstra’s algorithm.
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with half the radius. Many more advanced speedup technigsedidirec-
tional search as an optional or sometimes even mandatorgdiemt.

Complete Distance Table. An extreme case would be to precompute all
shortest paths. This allows constant time queries, bubisipitive for large
graphs due to space and time constraints. Still, it turnsthaittfor some
hierarchical approaches, this simple technique can beussful when ap-
plied to the highest level of a hierarchy of networks.

1.2.2 Goal-Directed Search

Geometric A* Search. A* Search 85], a technigue from the field of Arti-
ficial Intelligence, is ayoal-directedapproach, i.e., it adds a sense of direc-
tion to the search process. For each vertex, a lower bounteodistance
to the target is required. In each step of the search protesapdev is se-
lected that minimises the tentative distance from the soupius the lower
bound on the distance to the targefThis approach can be combined with
bidirectional searchg]. The performance of thel* search depends on a
good choice of the lower bounds. If the geographic coordmaft the nodes
are given and we are interested in 8tertest(and not in the fastest) path,
the Euclidean distance fromto ¢ can be used as lower bound. This leads to
a simple, fast, and space-efficient method, which, howewezs only small
speedups. It gets even worse if we want to compute fastdst.pahen, we
have to use the Euclidean distance divided by the fastestigp@ssible on
anyroad of the network as lower bound. Obviously, this is a venyserva-
tive estimation. Goldberg et al29] even report alow-downof more than a
factor of two in this case since the search space is not signify reduced
but a considerable overhead is added.

Heuristic A* Search. In the last decades, commercial havigation systems
were developed which had to handle ever more detailed g¢iscis of road
networks on rather low-powered processors. Vendors reddty heuristics
still used today that do not give any performance guaran@as heuristic

is A* search withestimateson the distance to the target rather than lower
bounds.
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Landmark-Based A* Search. In [28, 29, 32], the ALT algorithm is pre-
sented that is based ofi* searchLandmarks and the Tiangle inequality.
After selecting a small number of landmarks, for all nodethe distances
d(v, L) andd(L,v) to and from each landmark are precomputed. For
nodesv andt, the triangle inequality yields for each landmatkwo lower
boundsd(L,t) — d(L,v) < d(v,t) andd(v, L) — d(t, L) < d(v,t). The
maximum of these lower bounds is used during4insearch. For random
queries, using 16 landmarks suffices to achieve a speedtqy tfcaround
27 in the Western European road network consisting of ab8unillion
nodes. However, the landmark method needs a lot of space-gitstance
values for each node-landmark pair. It is also likely thatrial applica-
tions each node will need to store distances to differerst setandmarks
for global and local queries. Hence, landmarks have fagirpoessing and
reasonable speedups, but consume too much space for \geynketworks.
In Section1.2.4 we will see that there is a way to reduce the memory con-
sumption by storing landmark distances only for a subsdt@hbdes.

In [28] it is briefly mentioned that in case of an edge weigitrease
the query algorithm stays correct even if the landmarks aedandmark
distances are not updated. To cope with drastic changesger wdight
decreases, an update of the landmark distances is suggbs{dd], these
ideas are pursued leading to an extensive experimentgl sfudndmark-
based routing in various dynamic scenarios.

Precomputed Cluster Distances. The Recomputed @ister Dstances
(PCD) technique 7] also uses precomputed distances for goal-directed
search, yielding speedups comparable to ALT, but usingdpase. The
network is partitioned into clusters and the shortest cotiore between any
pair of clusters is precomputed. Then, during a query, upper lower
bounds can be derived that can be used to prune the search.

Signposts. Another goal-directed technique is to precompute for each
edge ‘signposts’ that support the decision whether thestargn possibly

be reached on a shortest path via this edge. During a qudyypgymising
edges have to be considered.
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Geometric Containers. A concrete instantiation of this general idea
is the geometric containersipproach T8, 79, 94, 98]. For each edge,
the setS(e) is determined that contains all nodes that can be reached on a
shortest path starting with Then, a simple geometric contair€fe) (e.g.,

a rectangular bounding box) is computed that contains at Edbhelements
of S(e). During the execution of Dijkstra’s algorithm, an edgean be
ignored if the target node lies outsidge). While this approach exhibits a
good query performance, the preprocessing step requiresysexpensive
all-pairs shortest-path computation so that no experiaigatults for the
largest publicly available road networks have been pubtish

In [96], it is discussed how to modify geometric containers in oftde
react to edge weight changes.

Edge Flags (also calledarc flagg [54, 52, 60, 61, 53, 55, 36] repre-
sent a different instantiation of the general ‘signposaide The graph is
partitioned intok regions. For each edgeand each regiom, one flag is
computed that indicates whetheties on a shortest path to some node in
regionr. Dijkstra’s algorithm can take advantage of the edge flagges
have to be relaxed only if the flag of the region that the tangele belongs
to is set. Obviously, inside the target region, the ‘signgogrovided by
the edge flags get less useful. This problem can be avoide@rfiyrming
a bidirectional query so that forward and backward searchnoeet some-
where in the middle.

While the query algorithm is very simple, the preprocesginacess is
more challenging. A naive procedure would have to perfornal&pairs
shortest-path computation in the complete graph. A coralidye better
method reduces this effort to performing Dijkstra searcimdg from nodes
that are adjacent to some node in a different region. A fuithprovement
gets by with only one (though comparatively expensive)defor each re-
gion. Using this most advanced preprocessing techniqugei{B6] is able
to preprocess the Western European road network with at®umillion
nodes in about 17 hours achieving query times that are dethenasands
times faster than Dijkstra’s algorithm. Note that an alirpaomputation,

3Note that geometric containers and edge flags have beerogedeindependently of
each other. However, since they share a common idea, weedetidsubordinate both
methods to a more general ‘signpost approach’.
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which would be required for the naive procedure (or for prepoting geo-
metric containers), would take more than six years on theesatwork.

The space consumption of the edge flag method can be reduaed by
tending it to a multi-level approaclé(, 61] or by exploiting the fact that
many edges are associated with the same flags (already lniefitfoned in
[54] and extensively studied ir8p]).

Particular advantages of the edge flag approach are theisimmf
the query algorithm, the good query performance, the low orgmrequire-
ments, and the fact that a complete description of the sttgoth can be
derived for free (while some other approaches including dave to un-
pack a contracted representation of the shortest path)adiasmtages are
the still comparatively slow preprocessing times, whichkenattempts to
deal with changing edge weights difficult, and the somehanitéid query
performance in case of medium-range queries (e.g., betnedes that are
not very close, but still in the same region or in adjaceniomes).

A comparison with our approaches can be found in Sectidf.1 Very
recent developments cover combinations of edge flags wahatghical
approaches—see Secti@r?2.4 Moreover, using ideas from the edge flag
method could be used to further speed up our transit-nodegoapproach
(Section6.5).

1.2.3 Hierarchical Approaches

Separators. Road networks are almost planar: compared to the total num-
ber of road segments, the number of bridges and tunnels yssveall?
Therefore, techniques developed for planar graphs wiiroétlso work for
road networks. Such techniques often partition the givaplgrexploiting
the Planar Separator TheoreB6], which states that for any planar graph
with n nodes, there is a node set of si2¢,/n)—a so-called separator—
whose deletion leaves two components consisting of at @t nodes
each.

Various approaches use the following basic idea: They saely parti-
tion the graph into several pieces. For each piece, they gtaipe shortest

40One widely used test instance, the US road network baseddHGER/Line Files$2]
(cp. Sectiory.2.29), is even planarised, i.e., the data set wrongly containgetipn at points
where a bridge/tunnel crosses over/under a street.
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paths between all border nodes. Then, a shortest path sewichasses
through a certain piece need not consider all nodes witlgipigce, but can
directly jump from border to border. For example, this idea be recog-
nised in R5], where Fuchs et al. distinguish between a fine and a coarse
network representation. Another example is the constmdaind usage of
the so-calleddense distance graptusingO(n log? n) preprocessing time,
query timeO(y/nlog® n) can be achievedfl, 22, 49 for directed planar
graphs with nonnegative edge weights; in a dynamic scenguieries can
be performed and edge weights can be updatéi(it?/?’ log5/3 n) time per
operation. A third example i2B], where Flinsenberg relies on the same
basic idea and introduces modified versions of Afiealgorithm in order to
compute routes for time-independent, time-dependentstowhastic time-
dependent scenarios.

The Separator-Based Multi-Level Method [78, 79, 80, 77, 37, 3§]
is a fourth example for an approach that uses the above mentibasic
idea. Out of several existing variants, we mainly refer3g pasic variant].
For a graphG = (V, E) and a node se¥’ C V, ashortest-path overlay
graphG’ = (V', E’) has the property thdt’ is a minimal set of edges such
that each shortest-path distanée:, v) in G’ is equal to the shortest-path
distance fromu to v in G. In the separator-based approakth,s chosen in
such a way that the subgraph inducedby, V' consists of small compo-
nents of similar size. The overlay graph can be construcyepkebforming
a search inG from each separator node that stops when all neighbouring
separator nodes have been found. In a bidirectional quegoyritin®, the
components that contain the source and target nodes aohsdaronsider-
ing all edges. From the border of these components, i.e., from pazaer
nodes, however, the search is continued considering ogigedf the over-
lay graph. By recursing oy’ this idea is generalised to multiple levels.
Speedups around ten are reported for railway transpantatioblems 80|
and for road networks9g] that contain mostly nodes with degree two. In
a more recent papeB8§], speedups up to a factor of 52 are obtained for a

®In [37], the query algorithm is presented in two stages: first, rdgitee the subgraph
that should be searched; second, perform the search. Wer poefive a description with
only one stage, which is simpler and virtually equivalenatfully bidirectional variant of
the original algorithm. Furthermore, analogies to highwagle routing (Chaptef) will
become more visible.
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medium-sized road network. A limitation of this approacthit the graphs
at higher levels become much more dense than the input gréguisslimit-
ing the benefits gained from the hierarchy. Also, computmglkseparators
can become quite costly for large graphs. Closely relatpdoaghes have
been suggested id4, 45, 46, 47].

Bauer p] observes that if the weight of an edge within some compo-
nentC' changes, we do not have to repeat the complete constructicegs
of G’. Itis sufficient to rerun the construction step only from soseparator
nodes at the boundary 6f. No experimental evaluation is given.

In a theoretical study on the dynamisation of shortest-patérlay
graphs 12], an algorithm is presented that requi@$|V’|(n + m)logn)
preprocessing time ar@d(|V'|(n+m)) space, which seems impractical for
large graphs.

One major part of this thesis lsighway-node routingChapter4), a
route planning technique that is related to the separatsed multi-level
method.

Thorup’s Oracle [88, 90| is a different separator-based and hierar-
chical approach. In a planar graph with integer edge weights range
from O to C, queries accurate within a factét + ) can be answered
in time O(loglog(nC) + 1/¢) using O(n(logn)(log(nC))/c) space and
O(n(logn)3(log(nC))/e?) preprocessing time. Recently, this approach has
been efficiently implemented and experimentally evaluated road net-
work with one million nodesg4]. While the query times are very good
(less than 2@s fore = 0.01), the preprocessing time and space consump-
tion are quite high (2.5 hours and 2 GB, respectively).

Reach-Based Routing. Let R(v) := max,cy R (v) denote theeach
of nodewv, where Ry (v) := min(d(s,v),d(v,t)). Gutman B4] observed
that a shortest-path search can be pruned at nodes with la teasmall
to get to source or target from there. Speedups up to ten posted for
graphs with about 400 000 nodes using more than two hoursquessing
time. The basic approach was considerably strengthenedlup&rg et al.
[26, 30, 31], in particular by a clever integration shortcuts[69, 7Q], i.e.,
single edges that represent whole paths in the originahgrap

A dynamic version that handles a set of edge weight changpeeis
sented in §]. The basic idea is to rerun the construction step only from
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nodes within a certain area, which has to be identified firstfag the con-
cept of shortcuts, which is important to get competitive starction and
query times, has not been integrated in the dynamic verdlorexperimen-
tal evaluation for the dynamic scenario is givenéh [

Heuristic Approaches. As an alternative to heuristicl* search (Sec-
tion 1.2.2, commercial navigation systems often use heuristic htara
cal approachesafl, 43|, which perform bidirectional searches: While the
forward/backward search is inside soloeal areaaround source/target,
all roads of the network are considered. Outside these dneagver, the
search is restricted to sonméghway networlkconsisting of the ‘important’
roads. This general idea can be iterated and applied toatigrconsisting
of several levels. The crucial point is the definition of thghway network.
The heuristic approaches use a definition that is based @ssifatation of
the streets according to their type (motorway, nationatl yoegional road,
...). Such a classification requires manual tuning of the datisaagtelicate
trade-off between speed and suboptimality of the compuietes.

Highway Hierarchies. Inspired by the just mentioned heuristic ap-
proaches, we developed exddghway hierarchieg75, 69. Instead of
blindly relying on the road types, we classify nodes and sdg#y au-
tomatically in a preprocessing step in such a way that alitekbpaths are
preserved. By this means, we win not only exactness, bugatsaier speed
since we can build high-performance hierarchies congigifmany levels
without worrying about the quality of the results.

The local area is defined to consist of tHeclosest nodes, whe® is
a tuning parameter. Then, an edgev) € E has to belong to the highway
network if there are nodesandt such that(u, v) is on some shortest path
from s to ¢, v is not within theH closest nodes from, andw is not within
the H closest nodes from The resulting highway network can be pruned
by removing isolated nodes and trees attached to a bicaetheomponent,
and by replacing paths consisting only of nodes with degmee($o-called
‘lines’) by single shortcut edges. After that, the condiiart process can
be iterated. A schematic representation of the search spgieen in Fig-
urel.3
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Figure 1.3: Schematic representation of the search spatiee diighway
hierarchies approach.

Highway hierarchies are the first speedup technique thaablago han-
dle the largest available road networks giving query timeasared in mil-
liseconds. There are two main reasons for this success; fhiesroad net-
work shrinks in a geometric fashion from level to level anchaéns sparse,
i.e., levels of the highway hierarchy are in some sesedé similar Sec-
ond, preprocessing can be done very efficiently, usingdidilibcal searches
starting from each node. Preprocessing is also the mostiviahaspect
of highway hierarchies. In particular, long edges (e.g.gidistance ferry
connections) make simple-minded approaches far too shwstead, we use
fast heuristics that compute a supergraph of the highwayarkt

In this thesis (Chaptes), we present a greatly improved version of high-
way hierarchies.

Jacob and Sachdevédd experimented with different node numberings
in order to obtain an 1/O-efficient layout. They achieved aespup fac-
tor of around 1.3 compared to the default layout. In an expental study
[8], Bauer et al. apply highway hierarchies (and many otheedpge tech-
niques) to various types of graphs and not only to road nétsvoil heir
results indicate that highway hierarchies work (reasonabkll on con-
densed and time-expanded long-distance railway networlsdisk graphs,
and 2-dimensional grid graphs, while they fail on some lafic railway
networks, higher dimensional grid graphs, and small woréphs.

A heuristic approach to dealing with dynamic scenarioscWis based
on highway hierarchies, has been developed by Nannicini g3%.

Transit-Node Routing is based on two key observations: First, there is a
relatively small set ofransit nodes—about 10 000 for the Western European
or the US road network—with the property that for every péinades that
are ‘not too close’ to each other, the shortest path betwieem tpasses
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through at least one of these transit nodes. Second, foy eoele, the set

of transit nodes encountered first when going far—so-caltadss nodes

is small. When distances from all nodes to their respecticess nodes and
between all transit nodes have been precomputed, a ‘naifi-lsicortest-

path query can be reduced to a few table lookups. An impoitgnédient

is alocality filter that decides whether source and target are too close so that
a special treatment is required to guarantee the corregli.rds order to
handle such local queries more efficiently, further levels be added to the
basic approach.

A generic framework for transit-node routing and a concrestantia-
tion based on highway hierarchies have been introducedlird] 5]. The
generic framework is also a part of this thesis (Chaf}eaccompanied by
an instantiation based on highway-node rotfting addition to the already
mentioned instantiations, there are two other implememtat

Separator-Based Transit-Node Routing. Using more space and pre-
processing time, the separator-based multi-level methade extended to
implement transit-node routing: The separator nodes bedoansit nodes
and the access nodeswhre the border nodes of the component of.o-
cal queries are those within a single component. Anothesl lef/transit
nodes can be added by recursively finding separators of eanpanent.
Independently from our work, Miiller et al. have essentidkyeloped this
approach, using different terminology Note that their first results6p]
were published before any other implementation of tramsite routing.
However, it took some time till reliable measurement dataevavailablé

®Highway hierarchies (Chapt&) and highway-node routing (Chaptérare two related
route planning techniques. When we implemented transierrouting for the first time,
highway-node routing was not available yet. Thereforentkationed publications/[L, 4, 5]
are based on highway hierarchies. After highway-node mgutias been developed, we
reimplemented transit-node routing since by this meangtbprocessing times could be
considerably reduced. We decided to include the most re@ston (based on highway-
node routing) in this thesis.

"We chose to interpret their work using the transit-node ieotogy in order to point out
similarities to our work.

8In their implementation, the preprocessed data is storeal loard disk. Using a more
compact representation, the data would fit into main memoherefore, when measuring
query times, it is justifiable to assume that the require@ deds in main memory. This
situation makes performing experiments more difficult.
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[16]. An interesting difference to generic transit-node rogtis that the re-
quired information for routing between any pair of compadsds arranged
together. This takes additional space but has the advatitage informa-
tion can be accessed more cache efficiently (it also allolwsexuent space
optimisations).

Although separators of road networks have much better piiepghan
the worst case bounds for planar graphs would suggest, stepaased
transit node routing needs about 4-8 times as many access agdour
scheme (depending on the used metric) leading to much hjgbprocess-
ing times. The main reason for the difference in number oéssnodes is
that the separator approach does not take the ‘sufficiesatigvfay’ criterion
into account that is so important for reducing the numbercoéas nodes in
our implementations, in particular in case of the travektimetric.

Grid-Based Transit-Node Routing. Bast, Funke and Matijevic pro-
posed the transit-node routing approach based on a georggtti[3]: The
network is subdivided into uniform cells. Border nodes adsh cells that
are needed for ‘long-distance’ travel are used as accegsndtie union of
all access nodes forms the transit-node set. As a localigy filis sufficient
to check whether source and target lie a certain number Isf apart.

They were the first to explicitly formulate the central ohsgions and
concepts of transit-node routifig Our work was completed a few weeks
later and has been accomplished largely independently frains except
for the fact that their observation that about ten accesespdr node were
sufficient motivated us to rethink our access node definigading to a con-
siderable reduction from around 55 to about ten, which madmalemen-
tation for large graphs much more practicable, acceleratedevelopment
process significantly and yielded very good query times. [§\vimiost algo-
rithms described inJ] cater to the specific grid-based approach, we prefer
a more generic notion of transit-node routing and regardiroptementa-
tions based on highway hierarchies and highway-node rutity as two
possible (and very successful) instantiations of tramsite routing.

®In particular, they introduced the term ‘transit node’. ljoit paper f], we adopted
some formulations and terms fror][to describe the generic approach. For the sake of
simplicity, we decided to keep these phrases in this thesis.
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In a joint paper 4], the grid-based implementation and the one based
on highway hierarchies are contrasted. One noticeablerdiite is that the
variant based on highway hierarchies deals with all typequafries in a
highly efficient way, while the grid-based variant only amssvnon-local
queries very quickly (which, admittedly, constitute a véayge fraction
of all queries if source and target are picked uniformly aidam). The
grid-based variant is designed for comparatively modesnhang require-
ments, while our highway-hierarchy-based implementatassignificantly
smaller preprocessing and average query times. Note thatnplementa-
tion would need considerably less memory if we concentratdg on undi-
rected graphs and non-local queries as it is done in thebgsed implemen-
tation. Sectiory.10.1contains some concrete figures on the performance of
grid-based transit-node routing.

1.2.4 Combinations

Many of the above techniques can be combined7 @, [a combination of a
special kind of geometric container, the separator-basdd-lavel method,
and A* search yields a speedup of 62 for a railway transportatioblpm.

In [39, 98], combinations ofd* search, bidirectional search, the multi-level
method, and geometric containers are studied: Dependititeagraph type,
different combinations turn out to be best. For real-wontdpds, a com-
bination of bidirectional search and geometric contaireasls to the best
running times.

REAL. Goldberg et al. 26, 30, 31] have successfully combined their ad-
vanced version of R&ch-based routing with landmark-basétisearch (the
ALt algorithm), obtaining the REAL algorithm. Its query parftance is
similar to our highway hierarchies, while the preproceggimes are usu-
ally worse. In the most recent versio80] 31], they introduce a variant
where landmark distances are stored only with the more itapbnodes,
i.e., nodes with high reach valu&s By this means, the memory consump-
tion can be reduced significantly. Note that we developedyasimilar idea
independently when we combined highway hierarchies wighAhT algo-
rithm [17] (Section3.6). A comparison between REAL and our approaches
is included in Sectio.10.1

1%They have already briefly mentioned this idea26][
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SHARC [7] extends and combines ideas from highway hierarchies
(namely, the contraction phase, which produce®®tdits) with the edge
flag (also called ARQlag) approach. The result is a fastidirectional
query algorithm, which is advantageous in scenarios whtieebtional
search is prohibitive. In particular, using an approxin&atvariant allows
dealing with time-dependent networks efficiently. Evendaguery times*

can be obtained when a bidirectional variant is applied. die@rocessing
times are slower than those of highway hierarchies, butiderably faster
than those of the pure edge flag method.

Highway-Node Routing and Edge Flags. In his diploma thesis 73],
Schieferdecker combines highway-node routing (Chaftevith the edge
flag approach. Similarly to ideas used in other combinatimia hierar-
chical with a goal-directed approach (e.g., REAL (see apov&H* (Sec-
tion 3.6)), preprocessing time and memory consumption can be kept lo
when the edge flags are computed not for the complete graplonbufor
some level of the hierarchy. Query times of less than;i9@re obtained
for the Western European road network. Schieferdeckerstlgties various
other combinations, for example graph contraction with At Feach-based
routing with edge flags.

1.2.5 Many-to-Many Shortest Paths

So far, the related-work section concentrated on the go#pbint prob-
lem. In this subsection, we deal with the many-to-many variaf the
shortest-path problem, where we want to compute$nx |T'| distance
table. As a naive solution, we can either sol$¢ single-source problems
using Dijkstra’s algorithm or we can empl@ny point-to-point speedup
techniquelS| x |T'| times. There are results that accelerate many-to-many
shortest paths for rather dense graphs witte> n (e.g., P7]), which, how-
ever, are not useful for road networks (or any other kind afs@ graphs).
In his diploma thesisg0], Knopp adapted bidirectional search, geometric
A* search, and the ALT algorithm to the many-to-many casediyiglin
the first two cases speedup factors up to 2 or 3 and in the tasd factors
up to 3 or 4 (depending on the type of input).

\We do not quote exact numbers since the final version of therpamot ready yet.
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1.2.6 Further Remarks

Some approaches (e.g. geometric containers) require ¢orrezde its geo-
graphic coordinates, which might not always be availableweler, there
are studies that indicate that it is possibleyémerate a layoubf a graph so
that speedup techniques can be applied successfully. I sases (where
an original layout is available), generated layouts evenlten a slightly
higher speedup than the original layout doek), [L1] deals with the spe-
cial case of a timetable information system; a more gengyptaach is
presented in95].

1.3 Main Contributions

1.3.1 Overview

We present three different point-to-point route plannieghhiques that
compute provably optimal results. Our approaches exhdniious bene-
fits and provide different kinds of trade-offs between poepssing time,
space consumption and query times. In addition, we intredut algo-
rithm that deals with the many-to-many variant. In an extenexperimen-
tal study, we evaluate our algorithms using real-world roatiorks with
up to 33726 989 nodes. We do not only give average query timgsglso
detailed analyses of queries with different degrees ofcdiffy, per-instance
worst-case upper bounds, and comparisons to other speszhupques. For
our standard test case, a network of Western Europe witht a®umil-
lion nodes, our lowest observed average query time igglé a 2.0 GHz
machine, which corresponds to a speedup ofdillon compared to Dijk-
stra’s algorithm. Our fastest preprocessing time is 13 temand the lowest
memory overhead is 0.7 bytes per nddeBy setting a few tuning parame-
ters appropriately, we can provide several good compranbséveen fast
preprocessing, low memory consumption, and fast querystimbich seem
very reasonable for a wide range of practical applicatitmselected cases,
we also deal with a distance and a unit metric (instead of thmlutravel
time metric), turning restrictions, and outputting conelpath descriptions.

12Note that these optima w.r.t. query time, preprocessing,tamd memory consumption
cannot be reached at the same time.
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Moreover, we can handle dynamic scenarios: we can replacerth
tire cost function typically in less than two minutes or we agpdate only
affected parts of the precomputed data structures if urdedesvents like
traffic jams occur: such an update operation takes about 40 wase of
a single traffic jam on a motorway. Alternatively, we can edenwithout
updating the data structures and instead perform a ‘prutiemt somewhat
slower) query that takes the changed situation into accsarihat it still
computes an optimal path.

Our many-to-many algorithm can compute a 10000 times 10 @30 d
tance table in 23 seconds. Using Dijkstra’s algorithm, trae task would
take more than one day.

All algorithms that we present in this thesis are closelytesl. Fig-
ure 1.4 gives an overview of the various relations.

! Transit-Node Routing (TNR)
Landmark-Based!* Search, very fast queries

1

I

: ! Chapters
L

instantiates instantiates
4[ TNR based on HH] [TNR based on HNﬂ—

*based on *based on
Highway Hierarchies (HH) uses| Highway-Node Routing (HNR)
—€> well-balanced l-@—— can handle dynamic scenarios
Chapter3 Chapterd
*based on *based on

&% MtoM based on Hl—q [MtoM based on HNM
. instantiates instantiates
combines

Highway Hierarchies Star Many-to-Many (MtoM)
slightly faster queries computes distance tables
Section3.6 Chapters

Figure 1.4: Overview of the relations between the routermptamnalgorithms
presented in this thesis. (Note that the landmark-baseskarch isiot part
of this thesis.)
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1.3.2 Highway Hierarchies

The first version of highway hierarchiegd, 69] (Section1.2.3 was a pro-

totype, where we made several simplifying assumptions,antiqular we

dealt only with undirected graphs. While keeping the basiinition of the

highway network and the idea to alternate between an edgetied step

(construction of the highway network) and a node reducttep &emoving

nodes of small degree), in this thesis, we greatly improvegameralise the
highway hierarchies approach:

1. We fully support directed graphs. We even did some prakmyi experi-
ments where we also support turning restrictions.

2. The definition of the ‘local area’ has been generalisedy,N can pick
for each node an arbitrary individual neighbourhood radhias defines
the neighbourhood (i.e., the local area) of that node.

3. We generalised the node reduction phase, extending thizess-and-
lines concept. The new method is not only simpler and diyeaytplica-
ble to directed graphs, but also more flexible and more éffeactt has
been successfully adopted by other route planning tecksjceig. 31].

4. We give a simpler and more precise formulation of the qaéggrithm.
It is very similar to bidirectional Dijkstra search with tdédference that
certain edges need not be expanded when the search is stiffidar
from source or target.

5. We present a complete proof of correctness that alsootgdy handles
the case that the shortest paths in the graph are not unique.

6. An all-pairs distance table for the topmost levebf the hierarchy is
introduced. Forward and backward search can be stoppedoasaso
all entrance points to level have been found. Then, the remaining
gap can be bridged by performing a moderate number of sinaplie t
lookups. By this means, the query times are considerablyaveul.
Furthermore, this optimisation can be seen as a pre-stagansft-node
routing (Sectiorl.2.3.

7. Atthe same time, we achieve an improvement w.r.t. preggsing times,
memory consumptionand query times. Using somewhat more mem-
ory, we obtain average query times below one millisecond 210 &Hz
machine—even for a road network with more than 30 millione®d
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8. We still cannot give a general worst-case bound betterEijistra’s. So
far, this drawback applies to all other exact speedup tegciasi where an
implementation is available as well. However, in contrasttost of
them, we can provideer-instance worst-case guaranteé®., we can
give an upper bound for the search space sizargisource-target query
in a given graph without performing aif possible queries, which would
be prohibitive in a large road network. This is feasible sifarward and
backward search can be run independently from each othars, Tie
performn forward andn backward searches and combine the observed
search space sizes in an appropriate way.

9. The shortest paths that are determined by our query #igotypically
contain shortcut edges that have been created during tleereddction
phase; each shortcut represents a path in the original gifaph are in-
terested not only in the shortest path length, but in thetsbbpath itself,
we have to unpack the contained shortcuts, i.e., we havadondiee the
represented subpaths. We introduce space-efficient datdwses that
accomplish this task in a highly efficient manner.

Combination with Goal-Directed Search. Since highway hierarchies
lack any sense of goal direction, a combination with a ga®leted ap-
proach suggests itself. We went for a combination with laadkbasedA*
search, which we caltighway hierarchies starNote that in case of high-
way hierarchies—in contrast to plain bidirectional Dijlesbr reach-based
routing—, we are not allowed to abort the search as soon asfdrand
backward search meet. This fact turned out to be problerfatia combi-
nation with A* search. Still, we managed to achieve a slight improvement
w.r.t. query times. When using a distance metric (insteatiefisual travel
time metric) or when dealing with approximate queries, weneget con-
siderable improvements. Furthermore, we introduce tha idaeletermine
the landmarks not in the original graph, but in some levelhef highway
hierarchy. Since already the first node reduction phasedjlpileads to
a network with less than one sixth of the original nodes, #tselerates
the landmark selection considerably without observinggaitant loss in
quality of the selected landmark set. We can also computestord the
landmark distances only in some leweabf the highway hierarchy, which re-
duces the memory consumption. When we use this optimisatienquery
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works in two phases: in an initial phase, we perform a norl-doacted
highway query until all entrance points to levehave been discovered; for
the remaining search, the landmark distances are avagabthat we can
use the combined algorithm in the main query phase. Note3bktberg et
al. [30, 31] have independently applied similar ideas to their comimeof
reach-based routing with landmark-basé&dsearch (Sectiof.2.4).

1.3.3 Highway-Node Routing

Currently, highway hierarchies can handle osigiticroad networks: when
some edge weights change (e.g., due to a traffic jam), themmaed hi-
erarchy becomes obsolete. Since the procedure that cosstrthighway
network consists only dbcal searches, we anticipate that a highway hier-
archy can be efficiently updated when edge weight changes sttce we
need to repeat only the local searches that are potentifdigted. Never-
theless, a proper realisation of this idea is nontriviale@eason is that we
would have to take care of two concepts, the edge reductidrtrennode
reduction. Therefore, we aimed at the development of an svepler route
planning technique by factoring out some of the complicetiof highway
hierarchies into a pre-preprocessing step. The result &proach, called
highway-node routingthat is useful both in static and in dynamic scenarios.
Highway-node routing is a generalisation of the separassed multi-
level method 87] (Sectionl.2.3: we define overlay graphs using arbitrary
node sets// C V rather than separators. New preprocessing and query
algorithms are required since removihg will in generalnot partition the
graph into small components. To deal with this problem, wstesyatically
investigate the graph theoretical problem of finding allemftomV’ that
can be reached on a shortest path from a given node withasingaenother
node fromV’. The resulting algorithms form the crucial part of highway-
node routing. The main remaining difficulty is to choose tlghtvay nodes
V. The idea is thamportantnodes used by many shortest paths will lead to
overlay graphs that are more sparse than for the sepamtedkapproach.
This will result in faster queries and low space consumptibime intuition
behind this idea is that the number of overlay graph edgedatkcketween
the separator nodes bordering a region grows quadratieéltythe number
of border nodes (see als8d]). In contrast, important nodes are uniformly
distributed over the network and connected to only a smatlber of nearby
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important node$® While there are many ways to choose important nodes,
we capitalise on previous results and use highway hierasdioi define the
required node set<.

Our method is so far the most space-efficient speedup tashiigt al-
lows query times several thousand times faster than Dglesadgorithm. A
direct comparison to the separator-based variant is diffsince previous
papers use comparatively small graphand it is not clear how the origi-
nal approach scales to very large graphs. Compared to hjghieearchies,
highway-node routing has only slightly higher preprocegsimes and sim-
ilar query times.

Note that highway-node routing is conceptually simplemthaghway
hierarchies. In particular, we have only one constructiep goverlay graph
construction) instead of two (edge reduction and node temhjc This
greatly simplifies dealing witkdlynamic scenariosThe idea is that in prac-
tice, a set of nodes important for one weight function wilatontain most
of the important nodes for another ‘reasonable’ weight fiemc The ad-
vantage is obvious when the cost function is redefined: alhaxe to do
is to recompute the edge sets of the overlay graphs, which farkfaster
than recomputing the underlying highway hierarchy. We dlisguss two
variants of the scenario when a few edge weights change:drvarssetting,
the affected parts of the overlay graphs are updated so ftieatvards the
static query algorithm will again yield correct results. dmobile setting,
the data structures are not updated. Rather, the queryithlgosearches
at lower levels of the node hierarchy, (only) where the infation at the
higher levels might have been compromised by the changessedg

Together with L8], we were the first to present an approach that tackles
such dynamic scenarios and to demonstrate its efficiency iaxéensive
experimental study using a real-world road network.

13This observation is also relevant for transit-node roum Sectiori..2.3.

¥Thus, the construction of a highway hierarchy constitutgseapreprocessingtep of
highway-node routing.

SFor a subgraph of the European road network with about 100n@@@s, 8] gives
a preprocessing time of “well over half an hour [plus] seleninutes” and a query time
22 times faster than Dijkstra’s algorithm. For a comparjsee take a subgraph around
Karlsruhe of a very similar size, which we preprocess in s@gronds. Then, we obtain a
speedup of 94.
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1.3.4 Many-to-Many Shortest Paths

In order to solve the many-to-many shortest-path problem,present a
generic algorithm that can be instantiated on the basis pbatirectional
and non-goal-directed point-to-point algorithm. The mde®r is to perform
only |S|+|T’| unidirectional queries instead [#f| x |T'| bidirectional queries
in order to compute anS| x |T'| distance table. Basically, this is done
in the following way: We associate with each node in the gragiucket
that can store the distances to all reachable targets (@&ndatie IDs of
the corresponding targets). We perfo(| backward searches: during a
backward search frome T, we store the distance tat each visited node.
Then, we perform for each nodec S a forward search: at each visited
nodeu, we scan its bucket and for each entry, we sum up the just cadpu
distance frons to v and the stored distance framto ¢; if applicable, we use
the resulting sum to improve the minimum distance freno ¢ computed
so far.

In order to get an efficient approach, we instantiate the riemégo-
rithm using highway hierarchies and highway-node routiMgreover, we
introduce several optimisations; in particular, it turng that a consider-
able asymmetry between forward and backward search isluseéucan
accept larger forward search spaces if we can, in exchaadece the back-
ward search space sizes because this decreases the nuimibekaifentries,
which is advantageous since bucket scanning can becomettienkck for
large distance tables.

1.3.5 Transit-Node Routing

As already mentioned in Sectidn2.3 the central ideas of transit-node rout-
ing appear in three different realisations that have beewldped largely
(but not completely) independently of each other. Our istgrpoint has
been our highway hierarchies enhanced with an all-paitamte table for
the topmost level (Sectioh.3.2). Sufficiently long shortest paths are com-
posed of three parts: from the source to the forward entrangd to the
topmost level, from the forward to the backward entrancetpa@ind from
the backward entrance point to the target. The distancdedfrst and the
third part are computed during the query, the distance oféoend part is
looked up in the distance table. The essential step thas leatansit-node
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routing is to precompute also the distances of the first amdhtind part. We
had to tackle three problems that remained:

1. We need to decide whether we can use the precomputed atistaif
source and target are too close, we have to fall back to somaatp
treatment, e.g., a local query. We implement sudbcality filter using
geometric disks that have the property that the disks ofcgoaind target
overlap if the nodes are too close.

2. Originally, when we constructed a highway hierarchy of @estern
European road network with a topmost level consisting ofiadal 0 000
nodes, we observed about 55 entrance points to the topnvest Ksl-
though we consider this as an already quite small numbeingtthe
distances from each node to all entrance points would hayeéresl so-
phisticated compression techniques to obtain data stesthat still fit
into main memory. Motivated by the results by Bast et3l.\ve realised
that it is possible to jump to the topmost level earlier yieddfewer ‘en-
trance points’ (around 10), which we call ‘access nodes’istirdjuish
them from the original entrance points. The reduced memexuire-
ments simplified the implementation of transit-node rayitbased on
highway hierarchies.

3. The redefinition of the access nodes requires that theaah- distance
table contains the correct distances w.r.t. the originaplgrand not only
w.r.t. the topmost level® Computing the desired distance table can be
done efficiently using our many-to-many algorithm (Sectiod.4).

In addition to our concrete realisation based on highwayahihies, one
of our main contributions is to formulategeneric frameworKor transit-
node routing that covers all existing implementations &ad ¢an be used as
starting point for future instantiations. In particulaurdramework extends
transit-node routing to hierarchical approachthat consists of several lev-
els: each level can have its own access nodes, an (only filketly distance
table, and a locality filter. This way, all types of queries ¢ge answered
very efficiently.

8Note that in contrast to highway-node routing, a level of ghlaiay hierarchy is not
necessarily an overlay graph, i.e., it is not guaranteetththdistances in a highway network
agree with the corresponding distances in the originallgrap
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After highway-node routing has been developed, we added @nstan-
tiation of transit-node routing based on highway-nodeingutIt provides
considerably smaller preprocessing times. Since bothrtistions are con-
ceptually very similar, in this thesis, we concentrate anrifalisation based
on highway-node routing since its performance is superior.

At the 9th DIMACS Implementation Challeng#][ our implementation
based on highway hierarchies was the fastest participajiegdup tech-
nique. The current version presented in this thesis is elgntly faster.

1.4 Outline

In Chapter2, we present basic concepts from graph theory, priority gsgeu
and Dijkstra’s algorithm. The terminology and notatiorraatuced in that
chapter will be used throughout this thesis.

The arrangement of the main chapters of this thesis (Clapté) re-
flects the dependencies that are shown in FigudeWe start withhighway
hierarchies(Chapter3) that all other methods (more or less) rely on. In or-
der to be self-contained, we give a complete account thatcgers parts
that have already been included 5] and, thus, are not an official part of
this thesis due to formal reasons.

Highway-node routings presented in Chaptér followed by themany-
to-manyapproach (Chaptes). Transit-node routingsomehow employs all
other techniques. Itis presented in Chapteln spite of the existing depen-
dencies, the main chapters are written in such a way thatdhebe read
largely independently of each other.

In Chapter7, we present an extensive experimental study that covers all
route planning techniques introduced in this thesis. We islude some
remarks on the implementation—more details concerningntipdementa-
tion can be found in Appendik.

This thesis is concluded in Chapt&grwhich also contains some notes
on possible future work.
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Preliminaries

In this chapter, we introduce basic data structures, dlgos, and some no-
tation that is used throughout this thesis. The presenteckgis are covered
in more detail by virtually any textbook on algorithms, d.14, 83].

2.1 Graphs and Paths

We expect airectedgraphG = (V, E) with a node set” of sizen and an
edge set C V x V of sizem as input. A weight functionv : E — R{
assigns aonnegativeveightw((u, v)) to each edgéu, v). We usually just
write w(u, v) instead ofw((u, v)).

A path P in G from a nodeu; to a nodeu; is a sequence of edges
(u1,u2), (ug,us), ..., (ux—1,ux). We often interpret such a path as a node
sequencéu;, usg, . .., ug) Or as a node sdtu, us, . .., ux } if this simplifies
the notation. Théengthw(P) of a pathP is the sum of the weights of the
edges that belong tB. P* = (s,...,t) is ashortest patif there is no path
P’ from s to ¢ such thatw(P') < w(P*). Thedistanceds(s,t) from s to
t in G is the length of a shortest path frogmo ¢ or oo if there is no path
from s to t. We just writed(s, t) instead ofdg (s, t) if G is clear from the
context. IfP = (s,...,s  uy,ug,...,ug,t',... t) is a path froms to ¢,
thenP|y_» = (s',u1,usg,...,u,t') denotes thesubpathof P from s to
t'. We useu <p v to denote that a node precedesa nodev on a path

This doesot necessarily mean thatis thedirect predecessor af.
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P={(..,u,...,v,...); wejustwriteu < v if the pathP that is referred to
is clear from the context. An example for these concepts/sgn Fig.2. 1

P*
a node 6 .
3 an edge with weight 6 6
3 P 1 2
3 (SD\Z‘ 4 ( >_5 >
P‘S/*}t/

Figure 2.1: A directed graph with = 10 nodes andn = 10 edges. There
are two pathsP and P* from nodes to nodet. The lengthw(P) of P
is 22; w(P*) = 15. P* is a shortest path. The distance fronto ¢ is
d(s,t) = w(P*) = 15. The edges of the subpatfy_.,» of P from s’ to ¢/
are represented by thick arrows.precedesi; on P, i.e.,s’ <p us.

2.2 Priority Queues

A priority queue@ manages a set of elements with associated totally or-
dered priorities and supports the following operations:

e insert—insert an element into the priority queue,

e deleteMin- retrieve the element with the smallest priority and remibve
from the priority queue,

e decreaseKey set the priority of an element that already belongs to the
priority queue to a new value that is less than the old value.

There are various ways to implement a priority queue (see Sksc-
tion 1.2.1), for example using a simpleinary heapthat supports all oper-
ations inO(log(|Q|)) or a considerably more complicat€ibonacci heap
[24] that supportsnsertanddecreaseKein constant time andeleteMinin
logarithmic amortised time.
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2.3 Dijkstra’s Algorithm

Single-Source Shortest-Path Problem. Dijkstra’s algorithm RQ] can be
used to solve thsingle-source shortest-path (SSSP) prohlem, to com-
pute the shortest paths from a single source notieall other nodes in a
given graph. Starting with the source naglas root, Dijkstra’s algorithm
grows ashortest-path treethat contains shortest paths framo all other
nodes. During this process, each node of the grapimisachedreached
or settled A node that already belongs to the treeséttled If a nodew
is settled, a shortest path* from s to u has been found and the distance
d(s,u) = w(P*) is known. A node that is adjacent to a settled node is
reached Note that a settled node is also reached. If a nodereached, a
path P from s to «, which might not be the shortest one, has been found and
atentative distancé(u) = w(P) is known. A nodeu that is not reached is
unreachedfor such a node, we havgu) = co. The nodes that are reached
but not settled are managed in a priority queue. The priaftsg nodeu
in the priority queue is/'s tentative distancé(u). Reached but not settled
nodes are also calleglieued

Initially, sisinserted into the priority queue with the tentative dis&0.
Thus,s is reached, all other nodes are unreached. While the priguicue
is not empty, the node with the smallest tentative distance is removed
(deleteMin) and added to the shortest-path tree, udbecomes settled. Fur-
thermoreu’s outgoing edges amelaxed

e if an edge(u, v) leads to an unreached nodgv is added to the priority
queue inserd); now, v is reached;

e if an edge(u, v) leads to a queued nodev’s key in the priority queue is
updated decreaseKéyprovided that the length of the path frostvia u
to v is less thanv's old key;

e if an edge(u, v) leads to a settled node it is ignored.

In case that the shortest paths in a graph are not uniquestiiik algo-
rithm can be easily modified to determia# shortest paths betweerand

any nodeu € V. This means that not a shortest-path tree is grown, but a
shortest-pathirected acyclic grapl{DAG).

2When we consider variants of Dijkstra’s algorithm that avdonger guaranteed to only
find shortest paths, we use the tesearch trego denote the tree that the algorithm grows.
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Dijkstra’s algorithm involves: insert n deleteMin and at mosin de-
creaseKeyperations, yielding a runtime complexity ©6f(m + nlogn) if,
for example, Fibonacci heaps are used.

Point-to-Point Queries. If we are interested only in the shortest path(s)
from the source nodeto a single target nodg Dijkstra’s algorithm can be
stopped as soon ahas been settled.

A bidirectionalversion of Dijkstra’s algorithm can be used to accelerate
a shortest-path query from a given nod& a given node. Two Dijkstra
searches are executed in parallel: one searches from theesoodes in
the original graphG = (V, E), also calledforward graphand denoted as
G = (V, E'); another searches from the target nedeackwards, i.e., it
searches in theeverse graphG = (V,F), E = {(v,u) | (u,v) € E}.
The reverse grapf@ is also calledbackward graph When both search
scopes meet, a shortest path freto ¢ can be easily derived by considering
all elements that are currently queued.

Dijkstra Rank. Let us fix any rule that decides which element Dijkstra’s
algorithm removes from the priority queue in the case thexigtlis more than
one queued element with the smallest key. Then, during sségksearch
from a given nodeu, all nodes are settled in a fixed order. Thgkstra
rank rk, (v) of a nodev is the rank ofv w.r.t. this order. has Dijkstra rank
rk,(u) = 0, the closest neighbour, of u has Dijkstra rank rk(v,) = 1,
and so on.
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Highway Hierarchies

3.1 Central Ideas

Let us consider the following naive route planning method:

1. Look for the next reasonable motorway.
2. Drive on motorways to a location close to the target.

3. Leave the motorway and search the target starting frormibtrway
exit.

Of course, it is true that this fast method does not alwayisl yree optimal

solution, but, in many cases, we obtain a reasonable appatixin (pro-

vided that source and target are not too close together ahdéhtravel in a
country whose motorway network is well developed). Thiseaoute plan-
ning method is based on a simple rule of thumb: when we are oway

to a remote target and pass by a city on a motorway, it usuakg dot pay
to leave the motorway and look for a faster way through thg @it other

words, usually, we can safely ignore all ‘less importanty ctreets and
stick to the ‘more important’ motorway since vikaowthat the motorway
provides the fastest way. The approach that is used by somenetcial

route planning systems is based on the above idea:

1. Search from the source and target nothéd{fectional) within a certain
radius (e.g. 20 km), considail roads

2. Continue the search within a larger radius (e.g. 100 kom)sicler only
national roads and motorways
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3. Continue the search, consider omptorways

Note that the actual implementations of this approach are saphisticated
than our simplified presentation suggests. Again, we gettaadevhich is
fast, but still returns inaccurate results—albeit bett®esthan those of the
naive route planning method. We cannot guarantee exadtyéscause we
cannot exclude that sometimes it actually might be bettégase a ‘more
important’ road (e.g. a motorway) and use some ‘less imptrsireet (e.g.
a local road) that provides some kind of shortcut. In otherdspa street
that we considered to be ‘less important’ might turn out tonbere impor-
tant’ than its category suggests. This observation is gmist) point of our
approach.

Similar to the commercial approach, we first perform a seardome
local areaaround source and target; then, we switch to searchindnigha
way networkthat is much thinner than the complete graph. The crucial
distinction of our approach is the fact that we define theamotif local area
andhighway networlappropriately so thaxactshortest paths can be com-
puted. This is quite simple. For each nadewe set somaeighbourhood
radius and we define the neighbourhood ©f(i.e., the local area around
u) to consist of all nodes whose shortest-path distance fralnes not ex-
ceed the neighbourhood radius. In our experiments, we dogethe same
neighbourhood radius for each node, but we determine fdr pade its in-
dividual neighbourhood radius so that each neighbourhoodams theH
closest nodes, whel# is a tuning parameter. This is reasonable since road
networks typically are quite heterogeneous: it would hals possible to
pick a fixed neighbourhood radius that is suitable for boéhdity centre of
Berlin and a rural area in Norway.

Our objective to obtain an exact algorithm requires theofwihg defi-
nition of the highway network: An edge:, v) € E belongs to the highway
network if there are nodesandt such that(u, v) is on some shortest path
from s to ¢ and not entirely within the neighbourhood ©br t. When we
recall the intended query algorithm and consider the exanmmgFigure3.1,
it gets obvious that this definition makes sense: During tinevdrd search
in the local area arouns, we reach the node; during the corresponding
backward search, we reaeh Then, the search is continued only in the
highway network. Thus, in order to guarantee that the skbpath can be
found, all edges betweanandv must belong to the highway network.



3.1. Central Ideas 45

Figure 3.1: A shortest path from a noddo a nodet. Edges that are not
entirely within the neighbourhood afor ¢ are highway edges.

At first glance it might appear that a (prohibitively expemsiall-pairs
shortest-path computation is needed to find the highwayar&twowever,
we will see that each highway edge is also within some locaitshkt-path
tree B rooted at some € V such that all leaves aB are ‘sufficiently far
away’ froms.

Typically, a highway network contains a lot of nodes of snu&gree.
For example, consider a motorway, which consists of a lobafirsegments.
The motorway is usually more important than the associateess ramps so
that only the motorway might belong to the highway netwodqstituting a
path of degree-2 nodes. In order to reduce the number of nagesontract
the highway network byypassingnodes with a small degree, introducing
new shortcut edges, as illustrated in Fig@r& The result is aontracted
highway networkalso calleccore

contracted network ("core")
= non-bypassed nodes
+ shortcuts

bypassed s
nodes

\
\

Figure 3.2: The core of a highway network consists of the sy in-
duced by the set of non-bypassed nodes (solid) and addisbogcut edges
(dashed).
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Both concepts, the construction (which we also edtje reductiopand
the contraction (which we also calbde reductiopof the highway network,
can be iterated, i.e., on the first core, we define local amdsanstruct a
second highway network, contract it to obtain the second,cand so on.
We arrive at a multi-level highway network—@ghway hierarchy The
example in Table.1illustrates the interaction of edge and node reduction.
Each node reduction step increases the average node debikeean edge
reduction step decreases it again. All in all, the degredstém go up from
level to level, but the growth rate is very small. It is img@ort to note that
the shrinking factors do not change significantly from leeelevel (except
for the very first and last level, perhaps).

Table 3.1: Construction of a highway hierarchy of the Westeuropean
road network with neighbourhood siZzé = 70, starting with a node reduc-
tion step. Note that the edge counters also include edgesahabe only
used in a backward search.

reduction shrink shrink average
#nodes #edges
type factor factor  degree
18029721 44448388 2.5
node 2739750 6.6 21311324 2.1 7.8
edge 1672200 1.6 5376800 4.0 3.2
node 327493 5.1 3766415 1.4 11.5
edge 270606 1.2 1109315 3.4 4.1
node 72787 3.7 981297 1.1 135
edge 58008 1.3 248142 4.0 4.3
node 14791 3.9 212427 1.2 14.4
edge 11629 1.3 53744 4.0 4.6
node 2941 4.0 46632 1.2 15.9
edge 2452 1.2 12340 3.8 5.0
node 647 3.8 10844 1.1 16.8
edge 569 1.1 3076 3.5 5.4
node 163 35 2808 1.1 17.2
edge 160 1.0 798 3.5 5.0
node 31 5.2 574 1.4 18.5

The query algorithm basically works in the following waysfirperform
a local search in the original graph (level 0); second, switcthe highway
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network (level 1) and perform a local search in the highwaynoek; then,
switch to the next level of the highway hierarchy, and so oiguie 3.3
gives a real-world example.

Figure 3.3: Search space for a query from Limburg (a Germig) t© a

location 100 km east of the source node. Source and targehaneed by
a circle. The thicker the line, the higher the search levedteNhat edges
representing long subpaths are not drawn as direct shertauitby showing
the actual geographic route taken.

3.2 Definition

A highway hierarchy of a graph G consists of several levels
Go,G1,Go, . ..,G, where the number of levels + 1 is given. We will
provide an inductive definition of the levels:

e Base case(,, Gy): level 0 Gy = (W, Ey)) corresponds to the original
graphG; furthermore, we defin&’, := G.

e First step ¢, — G¢41,0 < ¢ < L): for given neighbourhood radjiwe
will define thehighway networlG,, of a graphG,.

e Second step(f, — G,1 < ¢ < L): for a given setB, C V; of bypass-
ablenodes, we will define theore G, of level £.
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First step (highway network). For each node;, we choose nonnegative
neighbourhood radii;” (u) andr;~ (u) for the forward and backward graph,
respectively. To avoid some case distinctions, wersgiu) andr; (u) to
infinity for u ¢ V; (Radius Property R1) and fdr= L (R2). In all other
cases, neighbourhood radii have tobec (R3).

The level/ neighbourhoodbf a nodeu € V/ isN;” (u) := {v € V/ |
de(u,v) < r;7(u)} with respect to the forward graph and, analogously,
N7 (u) :=={v e V] | d; (u,v) < r; (u)} with respect to the backward
graph, wherel,(u, v) denotes the distance fromto v in the forward graph
Gy andd; (u,v) := dy(v, ) in the backward grap(ng.

The highway networkG,.1 = (Viy1, Eeq1) Of a graphG), is defined
by the setf);;; of highway edgesan edggu, v) € Ej; belongs toF,. iff
there are nodes, ¢t € V// such that the edge:, v) appears in some shortest
path(s,...,u,v,...,t) fromstotin G}, with the property that & N, (s)
andu ¢ N;~(t). The setl;;, is the maximal subset df; such thatG,,
contains no isolated nodes.

Second step dore). For a given setB, C V, of bypassablenodes, we
define the sef, of shortcut edgethat bypass the nodes By: for each path
P = (u,by,ba,..., bk, v) withu,v € V,\ Byandb; € By,1 < i < k, the set
Sy contains an edgeu, v) with w(u,v) = w(P). Thecore G} = (V/, E})
of level/ is defined in the following way:

V/:=V,\ B, and E,:=(E,n(V/xV/))US,.

Removing all core nodes frod, yields connectedomponents of bypassed
nodes

Thelevel/(e) of an edges ismax{¢ | e € E,U S,}. For an edgéu, v),
we usually write just/(u,v) instead of¢((u,v)). The highway hierarchy
can be interpreted as a single graph= (V, EU Ule S;) where each node
and each edge has additional information on its memberahipei various
setsV/, Vel, By, By, EZ, Sp.
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3.3 Construction

3.3.1 Computing the Highway Network

Neighbourhood Radii. We suggest the following strategy to set the
neighbourhood radii. For this paragraph, we interpret ttaplgG’, as an
undirected graph, i.e., a directed edgev) is interpreted as an undirected
edge{u,v} even if the edggv,u) does not exist in the directed graph.
Let d;”(u,v) denote the distance between two nodesndv in the undi-
rected graph. For a given paramefdy, for any nodeu € V/, we set
r; (u) = r; (u) := d;” (u,v), wherev is the node whose Dijkstra rank
rk,(v) (w.r.t. the undirected graph) i§,. For any nodeu ¢ V/, we set
r; (u) :=r; (u) := oo (to fulfil R1).

Originally, we wanted to apply the above strategy to the #oovand
backward graph one after the other in order to define the fahamad back-
ward radius, respectively. However, it turned out that gshre same value
for both forward and backward radius yields a similar goodgrenance,
but needs only half the memory.

Fast Construction: Outline. Given a graphG’,, we want to construct a
highway networkG,, 1. We start with an empty set of highway eddés ;.

For each nods, € V/, two phases are performed: the forward construction
of a partial shortest-path directed acyclic graph (DA)containingall
shortest paths from, to any nodeu € B) and the backward evaluation
of B. The construction is done by an SSSP search fsgmduring the
evaluation phase, paths from the leave#£3db the roots, are traversed and
for each edge on these paths, it is decided whether to add:it;tp or not.
The crucial part is the specification of an abort criteriontfee SSSP search
in order to restrict it to a ‘local search’.

Phase 1: Construction of a Partial Shortest-Path DAG. A Dijkstra
search froms is executed. In order to keep track of all shortest paths, for
each node in the partial shortest-path DAGwe manage a list of (tentative)
parents: when an edge, v) is relaxed such thal, (sg, u)+w(u,v) = §(v),
thenw is added to the list of tentative parentsof During the search, a
reached node is either in the statetive or passive The source node is
active; each node that is reached for the first timegf) and each reached
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node that is updatedi¢creaseKeyis set to active iff any of its tentative par-
ents is active. When a nodgeis settled, we consider all shortest paffs
from sq to p as depicted in Figurd.4. The state op is set to passive if

V shortest path$’ = (so,...,p) :

s1 <P APENT(s1) Aso @ N (p) AP AN (s1) NN (p)] <1
(3.1)

Figure 3.4: Abort criterion.

When no active unsettled node is left, the seardibi@rtedand the growth
of B stops.

An example for Phase 1 of the construction is given in FiguBe The
intuitive reason fors; (which is the first successor f on the pathP’) to
appear in the abort criterion is the following: When we dirat¢ a nodey
during the search from,, we decide to ignore everything that lies behind
p. We are free to do this because the abort criterion ensuags;tiban take
‘responsibility’ for the things that lie behing i.e., further important edges
will be added during the search frog. (Of course,s; will refer a part of
its ‘responsibility’ to its successor, and so on.)

Phase 2: Selection of the Highway Edges.During Phase 2, exactly all
edges(u, v) are added tdvy,, that lie on pathssg,...,u,v,...,p) in the
partial shortest-path DA® with the property that ¢ N, (s¢) andu ¢
N, (p). The example from Figurg.5is continued in Figuré.6.

Theorem 1 An edge(u,v) € Ej is added toE,.; by the construction al-
gorithm iff it belongs to some shortest path= (s,...,u,v,...,t) and
v € N, (s)andu & N, (t).
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Figure 3.5: An example of Phase 1 of the construction. Thehtef an
edge is the length of the line segment that represents treiediis figure.
The neighbourhood siz#, is 3. An SSSP search is performed from

The abort criterion applies three times, at noges, andp”. All edges that
belong tosy’s partial shortest-path tree are drawn as thick lines.

Figure 3.6: An example of Phase 2 of the constructigys partial shortest
path tree (thick lines) has five leaves t), ¢, to, andi,. The edges that are
added taF,; are represented as solid thick lines.
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Proof. In this proof, we will refer to the following Wighbourhood Prop-
erty N1 that follows directly from the neighbourhood defimit Consider a
shortest pathis, ..., u,...,t)in G} Thent € N, (s) impliesu € N, (s)
ands € N, (t) impliesu € N, (t).

<) Consider the node, on P|,_.,, such thav ¢ N, (so) anddy(so,v)
is minimal. Such a node, exists because the conditien¢ N, (s) is
always fulfilled forsy = s. The direct successor of, on P is denoted by
s1. Note thatv € N, (s1) [*]. We show that the edgéu, v) is added to
Ey,1 when Phase 1 and 2 are executed frggmDue to the specification of
Phase 2, it is sufficient to prove that after Phase 1 has bewpleted, the
partial shortest-path DA@ contains a node € P|s,—; such thaty < p
andu & N, (p).

If t € B, this statement is obviously fulfilled fgr:= ¢ sincev < ¢t and
u & N, (t). Otherwise{ ¢ B), the search is not continued from some node
to < tonP|s,—¢. We can conclude tha is passive because, otherwise, its
successor oP|s,—.; would adopt its active state and the search would not
be aborted at that time. Singgis active and is passive, eithet or one of
its ancestors must have been switched from active to padsate) denote
the first passive node af|;,—; = (so, s1,..-,p,.-.,%o,...,t). Duetothe
definition of the abort condition, we have < p Ap & N, (s1) A so &
N (p) AP NN (s1) NN (p)| < 1[*], where P/ = P|y,—,,. The
facts thatv € N;”(s1) [see *] andp & N, (s1) [see **] imply v < p due
to N1. In order to obtain a contradiction, we assume N, (p). Since
so & Ny~ (p) [see **], this impliessy < u by N1. Hences; < u. Because
v € N, (s1) [see *], we obtainu € N, (s1) due to N1. Similarly, we get
v e N, (p) sincev < pandu € N, (p). Thus,{u,v} € P"NN,7(s1) N
N, (p). Therefore|P' NN, (s1) NN~ (p)| > 2, which is a contradiction
to [**]. We can conclude that: ¢ N, (p).

=) Since each patliso,...,u,v,...,p) in B is a shortest path, the
claim follows directly from the specification of Phase 2. O

Algorithmic Details: Phase 1. For an efficient implementation, we keep
track of aborder distancé(z) and areference distance(x) for each node
x in B. Along a pathP’ as depicted in Figur8.4, we assigrb(z) the dis-
tance from the root to the border of the neighbourhood;cds soon as;

is settled. This value is passed to all successors on thewhith allows to
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determine the first node outside,;”(s1), i.e., its direct predecessoris
the last node insid&/,” (s1). In order to fulfil the abort condition, we have
to make sure that is the only node o’ within NV, (s1) "N, (p). There-
fore, we want to check whethets direct predecessar belongs taV,~ (p).
To allow an easy check, we determine, store, and propageateetbrence
distance fromsy to @ as soon as is settled. Knowing the reference dis-
tanced,(so, ), the current distancéy(sg, p) andp’s neighbourhood radius
r,” (p), checkingu ¢ N;~(p) is then straightforward. If there are several
shortest paths from, to some noder, we determine appropriate maxima
of the involved border and reference distances.

More formally, for any node: in B, o(z) denotes the set of parent nodes
in B. To avoid some case distinctions, we géty) := {so}, i.e., the root
is its own parent. For the roat, we setb(sg) := 0 anda(sg) := oco. For
any other node: # s, we define’(x) := dy(so, z) + 1,7 () if 59 € p(z),
and 0, otherwiseb(z) := max({V/(x)} U {b(y) | v € p(x)}); d'(z) =
max{a(y) | y € p(x)}; anda(z) = max{d¢(so,u) | y € p(x) Au €
o(y)}if d'(x) = 0o A dy(sp, z) > b(x), anda’(z), otherwise.

Then, we can easily check the following abort criterion atettlesd
nodep:

a(p) + i (p) < de(s0,p) (3.2)
Lemma 1l (3.2) implies @.1).

Proof. We prove the contraposition-*(3.1) implies - (3.2)", i.e., we as-
sume that there is some shortest pBtlirom sy to p such thap < s1 Vp €
N7 (s1) Vso € N (p) VI[P NN, (s1) NN, (p)| > 2 and show that
a(p) + 1y (p) = de(s0,p)-

Case 1:p =< s1. If p = s, thena(p) = oo, which yields— (3.2). Otherwise
(p = 1), b(p) > di(s0,p) + 17 (p), @'(p) = o0, anda(p) = d/(p) since
dy(s0,p) < b(p), which implies— (3.2).

Case 2:s1 < p/Ap € N; (s1). Due to N1 (see proof of Theoreft), we
haveVr,s; <z < p:x € N, (s1). HenceVzx : dy(so, z) < de(so,s1) +
r; (s1) < b(x). By an inductive proof, we can show thafp) = oo, which
yields— (3.2).

Case 3:s1 < pAp € N7 (s1) Asop € N (p). We haved,(sg, p) < r; (p),
which directly implies— (3.2).
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Case 4:s1 < pAp & N, (s1)Aso € N, (p) NP ON (s1)NN; (p)] >
2. The assumption of Case 4 implies that there are two nadasd v,
s1 2 u < T = p, that belong ta?’ NN, (s1) NN, (p). If a(p) = oo, we
directly have— (3.2). Otherwise, there has to be some naden P’ such
thata'(w) = oo A dy(sp, w) > b(w). Obviously,w # sy. Consider such a
nodew that maximisesl,(sp, w), i.e., for all nodes: > w the above stated
condition does not hold, which impliegx) = o’(x) > a(w). In particular,
a(p) > a(w). We haveb(w) > dy(so,s1) + ;" (s1). We can conclude that
de(so,w) > dy(so,s1) + 1,7 (s1) and, thusw ¢ N, (s1). We obtain, by
N1,u7 <7 < w. Hencea(w) > dy(so,w), which impliesa(p) > dy(so,u).
Furthermore, sinca € N, (p), we haver; (p) > d,(u, p). Adding up the
last two inequalities yields(p) + 7, (p) > d¢(so, p), which corresponds to
- (3.2. O

Algorithmic Details: Phase 2. For a nodeu € B, we defineB(u) :=
{u} U {v | v is a descendant of. in B} and theslack A(u) :=
min,, gy (1, (w) — de(u,w)). For a leafb, we haveB(b) = {b} and
A(b) = r;7(b). The slack of an inner node can be computed using only
the slacks of its childrery(u): A(u) = min (r; (u), mince, () Ac(w)),
whereA.(u) := A(c) — dg(u,c). This leads to an equivalent, recursive
definition.

The tentative slacks\(v) of all nodesu in B are set tor;~(u). We
process all nodes in the reverse order as they were settlbis. gliaran-
tees that all descendants of some nadeave been processed befaras
processed. We can stop as soon as a node N, (so) is encountered.
We maintain the invariant that the tentative slasku) of an element
that is processed is equal to the actual slAgk). When a node: is pro-
cessed, for each parentf u in B, we perform the following steps: compute
Ayu(p) = A(u) — do(p,u); if Ay(p) <0, the edggp, u) is added taEy,q;
if Au(p) < E(p), the tentative slacl?x(p) is settoA,(p). Figure3.7 gives
an example.

Theorem 2 An edge(u,v) is added toFE,; by theslack-based method
introduced above iff it lies on a patksg, ..., u,v,...,p) in the partial
shortest-path DA@ with the property that ¢ N, (so) andu & N, (p).
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Figure 3.7: An example of thelack-based methaithat realises Phase 2 of
the construction. The process is shown only for a part ofréne tAs before,
the weight of an edge is the length of the line that represthedge in
this figure. For the sake of transparency, the (rounded) hi®igre given
explicitly for the relevant edges. Furthermore, the slack¢he involved
nodes are given. Edges that are added'tp, are solid, edges that are not
added dotted.

Proof. <=) From the definition of the slack of a node, it follows that

Ay(u) = Aw) —dy(u,v) <y (p) — de(v,p) — de(u,v)
= 7, (p) —de(u,p) <0

because: ¢ N, (p). Sincev & N, (sg), v is processed at some point.
Then,A,(u) is computed and, since it is negative, the efige) is added
to Eg_,_l.

=) Only edges that belong to a pathihfrom s, to a nodep are con-
sidered. The conditiom ¢ A, (so) is never violated because the traver-
sal from the leaves to the root, and consequently, the adddf edges
to Eryq, is not continued when a node € N, (sg) is encountered. If
an edge(u,v) is added, the conditiom\,(u) < 0 is fulfilled. Hence,
A(u) = miny,ep) (r; (w) — de(u, w)) < Ay(u) < 0. Therefore, there is
a nodep such thatdy(u, p) > r; (p), i.e.,u & N~ (p). O
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Theorem 3 Let V3 denote the set of nodes af’s partial shortest-path
DAG B. LetGp = (Vp,Ep) denote the subgraph af, that is ver-
tex induced byp. The complexity of Phase 1 and 2 started fregnis

TDijkstra(‘GB ).

Proof. The number of nodes d¥ 5 is denoted by:’, the number of edges
by m’. The complexity of Phase 1 corresponds to the complexitySB &P

search inGp started froms, i.e., O(n’ + m') outside the priority queue
plus n’ insert and n’ deleteMinoperations plus at most’ decreaseKey
operations. During Phase 2, each node and each edge is ggdaasmost
once, i.e., Phase 2 runs@(n' +m’). O

Speeding Up the Highway Network Construction. Even a single active
endpoint of a long edge (e.g., a long-distance ferry comm@ctan cause a
large search space during construction, although mostsnoidtne search
space might already be passive. To face this undesiraldeteffie declare

an active node to be amaverickif dy(so,v) > f - r;”(s0), wheref is a
parameter. When all active nodes are mavericks, the seawhgassive
nodes is no longer continued. This way, the constructiocgs® is acceler-
ated andr,, ; becomes a superset of the highway network. Hence, queries
will be slower, but still compute exact shortest paths. mtaverick factorf
enables us to adjust the trade-off between constructiorgaer; time.

3.3.2 Computing the Core

In order to obtain the core of a highway network, we contraethich yields
several advantages. The search space during the quersesngaiter since
bypassed nodes are not touched and the construction prgetss$aster
since the next iteration only deals with the nodes that hatebeen by-
passed. Furthermore, a more effective contraction allew® wse smaller
neighbourhood sizes without compromising the shrinkinghef highway
networks. This improves both construction and query tintéswvever, by-
passing nodes involves the creation of shortcuts, i.e.eedtupt represent
the bypasses. Due to these shortcuts, the average degriee gifaph is
increased and the memory consumption grows. In particalare edges
have to be relaxed during the queries. Therefore, we havaréfidly select
nodes so that the benefits of bypassing them outweigh thebdicks.
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We give an iterative algorithm that combines the selectibthe by-
passable node®, with the creation of the corresponding shortcuts. We
manage a stack that contains all nodes that have to be coewidai-
tially all nodes fromV,. As long as the stack is not empty, we deal with
the topmost node:.. We check thebypassability criterion#shortcuts <
¢ - (degjn(u) + deggyt(u)), which compares the number of shortcuts that
would be created when was bypassed with the sum of the in- and outde-
gree ofu. The magnitude of the contraction is determined by the patam
c. If the criterion is fulfilled, the node is bypassed, i.eisiadded taB, and
the appropriate shortcuts are created. Note that the aneatithe shortcuts
alters the degree of the corresponding endpoints so thaskymm one node
can influence the bypassability criterion of another nodeeré&fore, all ad-
jacent nodes that have been removed from the stack eawmdieg, ot been
bypassed yet, and are bypassable now are pushed on the istacigain.

Theorem 4 If ¢ < 2, |Ej| isin O(|V,| + |Ey|).

Proof. If a nodew is bypassed, the number of edges in the (tentative) core
is increased byD,, := #shortcuts— degj,(u) — degoyt(u). (We have to
subtracidegin, (v) anddegqyt(u) since the edges incident tono longer be-
long to the core.) Note thatshortcuts= degjn (u) - degoyt(u) —deg., (u),
wheredeg_, (u) denotes the number of adjacent nodebat are connected
to v by both an edggu,v) and an edgdv,u). (We have to subtract
deg_, (u) to account for the fact that a ‘shortcut’ that would be a &b is
not created.) We can conclude thiaf < degjp (u) - deggoyt(uw) —degjn (u) —
degouyt(u). If degjn(u) < 1 or deggyt(u) < 1, we obtainD, < 0.
Now, we deal with the case thdtgj,(u) > 2 anddeggyt(u) > 2. Since
deg., (u) < min(degjy(u), degoyt(u)), a node that fulfils the bypassability
criterion also fulfilsdegj, (u) - degout(v) < ¢ - (degjn(u) + degout(u)) +
min(degjy(u), degoyt(w)). The inequalityr -y < ¢(z+y) +min(z,y) has
only finitely many solutiongx, y) for z,y € N, z,y > 2 if ¢ € Ris a con-
stant less than 2. Consider the solutiany) that maximises: := x - y. If
there is no solution, takk := 0. Note thatk is a constant that only depends
on the constant. We can conclude thd?,, < k.

Each node fronl} is bypassed at most once. For each bypassed node,
the number of edges in the (tentative) core is increased mpatk. There-
fore, |E)| < k- |V, + |Ey|. O
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If we used#shortcuts< max (degjp(u), degoyt(w)) as bypassability
criterion, we would get a contraction that would be very $amtio our earlier
trees-and-lines metho®9]. Note that the general version presented above
allows a more effective contraction by settingppropriately.

Limiting Component Sizes. To reduce the observed maximum query
time, we implement a limit on the number of hops a shortcut megye-
sent. By this means, the sizes of the components of bypassisk rare
reduced—in particular, the first contraction step tendectéate quite large
components of bypassed nodes so that it took a long time Ve lsach a
component when the search was started from within it.

3.4 Query

Our highway query algorithnis a modification of the bidirectional version
of Dijkstra’s algorithm. Note that in contrast to the constion, during the
query we needot keep track of ambiguous shortest paths. For now, we
assume that the searchrist aborted when both search scopes meet. This
matter is dealt with in Sectio8.4.2 We only describe the modifications
of the forward search since forward and backward searchyanenstric.

In addition to thedistancefrom the source, each node is associated with
the searcheveland thegapto the ‘next applicable neighbourhood border’.
The search starts at the source nede level 0. First, a local search in the
neighbourhood of is performed, i.e., the gap to the next border is set to
the neighbourhood radius efin level 0. When a node is settled, it adopts
the gap of its parent minus the length of the edge:, v). As long as we
stay inside the current neighbourhood, everything workssaal. However,

if an edge(u,v) crosses the neighbourhood border (i.e., the length of the
edge is greater than the gap), we switch to a higher searehv/leVhe node

u becomes amntrance pointo the higher level. If the level of the edge
(u,v) is less than the new search le¥ethe edge isiotrelaxed—this is one

of the two restrictions that cause the speedup in compatsdijkstra’s
algorithm (Restriction 1). Otherwise, the edge is relaxeddopts the new
search level and the gap to the border of the neighbourhood wf level ¢
sincew is the corresponding entrance point to le¢eFigure3.8illustrates
this process.
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@ entrance pointto level 0
O entrance point to level 1
O entrance point to level 2

Figure 3.8: A schematic diagram of a highway query. Only thevard
search is depicted.

We have to deal with the special case that an entrance polavéb?
does not belong to the core of level In this case, the search is continued
inside a component of bypassed nodes till the |évebre is entered, i.e.,
anodeu € V; is settled. At this pointy is assigned the gap to the bor-
der of the level¢ neighbourhood ofi. Note that before the core is entered
(i.e., inside a component of bypassed nodes), the gap hadrifasty (ac-
cording to R1). To increase the speedup, we introduce anatis&iction
(Restriction 2): when a node < V; is settled, all edgeéu, v) that lead to
a bypassed node € By in search level arenotrelaxed, i.e., once entered
the core, we will never leave it again.

Figure3.9 gives a detailed example of the forward search of a highway
query. The search starts at nogle The gap ofs is initialised to the dis-
tance froms to the border of the neighbourhood ©fn level 0. Within the
neighbourhood of, the search process corresponds to a standard Dijkstra
search. The edge that leadsitteaves the neighbourhood. It is not relaxed
due to Restriction 1 since the edge belongs only to level @ohtrast, the
edge that leaves,; is relaxed since its level allows to switch to level 1 in
the search process; and its direct successor are bypassed nodes in level 1.
Their neighbourhoods are unbounded, i.e., their neighitmma radii are in-
finity so that the gap is set to infinity as well. A, we leave the component
of bypassed nodes and enter the core of level 1. Now, thelse&acontin-
ued in the core of level 1 within the neighbourhoodsf The gap is set
appropriately. Note that the edge #ds not relaxed due to Restriction 2
sincev is a bypassed node. Instead, the direct shortcuss te used. Here,
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we switch to level 2. In this case, we do not enter the next igweugh a

component of bypassed nodes, but we get directly into the ddre search
is continued in the core of level 2 within the neighbourhodd!o And so

on.

- =

~ a . a -Shortcut=. L

Restriction 2

Figure 3.9: A detailed example of a highway query. Only theverd search
is depicted. Nodes in level 0, 1, and 2 are vertically strjpsadid, and hor-
izontally striped, respectively. In level 1, dark shadgwesent core nodes,
light shades bypassed nodes. Edges in level 0, 1, and 2 dredjasolid,
and dotted, respectively.

Despite of Restriction 1, we always find the optimal path sitie con-
struction of the highway hierarchy guarantees that theldevkethe edges
that belong to the optimal path are sufficiently high so thase edges are
not skipped. Restriction 2 does not invalidate the coresgrof the algo-
rithm since we have introduced shortcuts that bypass thestidit do not
belong to the core. Hence, we can use these shortcuts irgftdaeloriginal
paths.

3.4.1 The Basic Algorithm

We use two priority queuegj and@, one for the forward search and one
for the backward search. For each search direction, a nasl@ssociated
with a triple (6(u), ¢(u),gap(u)), which we often calkey It consists of
the (tentative) distancé&(u) from s (or t) to u, the search level(u), and

the gap gafu) to the next applicable neighbourhood border. Only the first
component(u) is used to decide the priority within the quetieWe use

. 1If the search direction is not clear from the context, we wiplicitly write ?(u) and
0 (u) to distinguish between’s priority in @ andQ.
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the remaining two components for a tie breaking rule in treedhat the
same node is reached with two different kdys= (4, ¢,gap andk’ :=
(0’,¢',gap) such thaty = ¢’. Then, we prefek to £’ iff ¢ > ¢ or ¢ =
¢ A gap < gap. Note thatany other tie breaking rule (or even omitting
an explicit rule) will yield a correct algorithm. Howevehe chosen rule is
most aggressive and has a positive effect on the performdfigare3.10
contains the pseudo-code of the highway query algorithm.

input source node and target node
output distanced (s, t)

inse_r(a,s, (0,0,757(s))); inser{( @, ¢, (0,0,75()));
3 while (G U Q # () do{

4 select direction= € {—, —} such that)+ (;
5 U= deIeteMin@);
6 if u has been settled from both directichen

d = min(d, § (u) + 3 (u));
if gapu) # oo then gap := gap(u) elsegap := Té?u) (u);
8 foreache = (u,v) € E do{
[9] for (¢:= ((u), gap:= gap; w(e) > gap;

0+, gap:= 1,7 (u)); /I go “upwards”
10 if £(e) < ¢ then continue I Restriction 1
11 if u € V/ Av € B, then continue // Restriction 2
12 ko= (6(u) + wle), £, gap— w(e));
13 if v has been reachalen decreaseKe@, v, k);

elseinsert@, v, k);

14 }
15 }
16 return d’;

Figure 3.10: The highway query algorithm. Differences t bidirectional
version of Dijkstra’s algorithm are marked: additional /difeed lines have
a framed line number; in modified lines, the modificationsiarderlined.
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Remarks:

e Line 4: The correctness of the algorithm does not depend ®stthtegy
that determines the order in which the forward and the badke@arches
are processed. However, the choice of the strategy cart #ifecunning
time in the case that an abort-on-success criterion is egpffee Sec-
tion 3.4.9.

e Line 7: This line deals with the special case that the entrguint did
not belong to the core when the current search Iéweas entered, i.e.,
the gap was set to infinity. In this case, the gap is sef&g(u). This is
correct even ifu does not belong to the core, either, because in this case
the gap stays at infinity.

e Line 9: It might be necessary to go upwards more than one laval
single step.

e Line 13: In the decreaseKey operation, the old key & only replaced
by & if the above mentioned condition is fulfilled, i.e., if (a)etkentative
distance is improved or (b) stays unchanged while the tiaKing rule
succeeds. In the latter case (b), no priority queue operasianvoked
since the priority (the tentative distance) has not charged

The proof of correctness can be found in Secdn

Algorithmic Details. If we group the outgoing edgeg:,v) of each
nodewu by level, we can avoid looking at edgés, v) in levels¢(u,v) <
¢(u) since Restriction 1 would always apply to them. We can do auth
explicitly testing Restriction 2 if all edges:, v) with k := £(u,v),u € V,
andv € By, have been downgraded to level- 1. Then, the test of Restric-
tion 1 also covers Restriction 2.

3.4.2 Optimisations

Rearranging Nodes. Similar to [31], after the construction has been com-
pleted, we rearrange the nodes by core level, which improeadity for the
search in higher levels and, thus, reduces the number oécaidses.

2That way, we also avoid problems that otherwise could arisennan already settled
node is reached once again via a zero weight edge.



3.4. Query 63

Speeding Up the Search in the Topmost Level. Let us assume that we
have a distance table that contains for any node paik V] the optimal
distanceiy (s,t). Such atable can be precomputed during the preprocessing
phase byV/ | SSSP searches @, . Using the distance table, we do not have
to search in leveL. Instead, when we arrive at a node= V] that leads to
level L, we addu to the initially empty setl or T depending on the search
direction; we do not relax the edge that leads to ldvefter all entrance
points have been encountered, we consider all gairs) T x T and
compute the minimum path lengih := 7(u) + dr(u,v) + 7(,0)_ Then,
the length of the shortestt-path is the minimum o> and the lengthi’ of
the tentative shortest path found so far (in case that thelssaopes have
already met in a levek L).

Using the distance table can be seen as extreme case ofiggmed
sea}Lch: from the nodes in the s&t we directly ‘jump’ to the nodes in the
set I , which are close to the target. Thus, we can say that the faiglwery
with the distance table optimisation works in two phasestriatly non-
goal-directed phase till the set® and T have been determined, followed
by a ‘goal-directed jump’ using the distance table.

For the sake of a simple incorporation of this optimisatiato ithe high-
way query algorithm, we slightly revise the properties Ril &2: we use
two distinguishable valueso; and oo, that are larger than any real num-
ber and setr,;7(u) := ooy for any ¢ and any node: ¢ V/ (R1) and
r(u) := ooy for any nodeu € V; (R2). Then, we just add two lines
to Figure3.10and modify Line 16:

between Lines 7 and 8: L
7a if gag # oo A l(u) = L then{T:=T1 U{u}; continue;}

between Lines 11 and 12: o
11a if gap# ooy AL = L AL > ((u) then{ [:=T U{u}; continue;}

16 return min({d'} U {3 (u) + dp(u,v) + 3 (v) |ue€ T,ve T});
In Section3.5.6 we show that our proof of correctness still holds when the

distance table optimisation is applied.

Abort on Success. Inthe bidirectional version of Dijkstra’s algorithm, we
can abort the search as soon as both search scopes meetubtiely, this
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would be incorrect for our highway query algorithm. The wafor this is
illustrated in Figure3.11 In the upper part of the figure, the bidirectional

a
Level 2

P

Level 1

Level 0

Level 2
Level 1

Level 0

Figure 3.11: Schematic profile of a bidirectional highwagigu

query from a node to a nodet along a pathP is represented by a profile
that shows the level transitions within the highway hiehngrcTo get a se-
quential algorithm, at each iteration we have to decide hdred node from
the forward or the backward queue is settled. We assume #tedtagy is
used that favours the smaller element. Thus, both seardegses meet in
the middle, at node. When this happens, a path franto ¢ has been found.
However, we have no guarantee that it is the shortest onactnthe lower
part of the figure contains the profile of a shorter p@tfrom s to ¢, which

is less symmetric than the profile 6f Note that the very flexible definition
of the neighbourhoods allows such asymmetric profiles. When P is
settled from both side$, has been reached @p by the backwards search,
but not by the forward search since a search process never goes doggw
in the hierarchy: therefore, at nodethe forward search is not continued
on the pathQ. We find the shorter patty not until the backward search
has reached—which happensgfter P has been found. Hence, it would be
wrong to abort the search, wherhas been settled.

Therefore, we use a more conservative abort criterionr aftentative
shortest path”’ has been encountered (i.e., after both search scopes have
met), the forward (backward) search is not continued if theimum ele-
mentw of the forward (backward) queue has a k&y) > w(P’). Obvi-
ously, the correctness of the algorithm is not invalidatedhis abort crite-
rion. In [69] we tried using more sophisticated criteria in order to csdine
search space. However, it turned out that this simple @itesince it can
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be evaluated so efficiently, yields better query times itespi a somewhat
larger search space. Note that when the distance tableisation is used
and random queries are performed, our simple abort chitésiovery close
to an optimal criterion even with respect to the search spaee our exper-
iments indicate that less than 1% of the search space isdiafter the first
meeting of forward and backward search.

3.4.3 Outputting Complete Path Descriptions

The highway query algorithm in Figurg.10 only computes the distance
from s to ¢t. In order to determine the actual shortest path, we needate st
pointers from each node to its parent in the search tree. thatethe al-
gorithm could be easily modified to compuwaé shortest paths between
andt by just storing more than one parent pointer in case of anitiBgu
However, subsequently, we only deal with a single shortatt.p

We face two problems in order to determine a complete degumipf
the shortest path: (a) we have to bridge the gap between ithearid and
backward topmost core entrance points (in case that thendisttable opti-
misation is used) and (b) we have to expand the used shottcatgain the
corresponding subpaths in the original graph.

Problem (a) can be solved using a simple algorithm: We st tive
forward core entrance poiat As long as the backward entrance pairtitas
not been reached, we consider all outgoing edges) in the topmost core
and check whethetr, (u, w)+dr (w,v) = dr(u,v); we pick an edgéu, w)
that fulfils the equation, and we set:= w. The check can be performed
using the distance table. It allows us to greedily deterrttieenext hop that
leads to the backward entrance point.

Problem (b) can be solved without using any extra data (Madi For
each shortcutu,v) € S, on the shortest path, we perform a search from
u to v in order to determine the represented patl&zin This search can
be accelerated by using the knowledge that the first edgesgfdth enters
a component”' of bypassed nodes, the last edge leads, tand all other
edges are situated within the componéntThe represented path @iy may
contain shortcuts from sets,, k < ¢, which are expanded recursively. In
the end, we obtain the represented path fiota v in the original graph.

However, if a fast output routine is required, it is neceggarspend
some additional space to accelerate the unpacking proc¥és.use a
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rather sophisticated data structure to represent unpgékformation for

the shortcuts in a space-efficient way (Variant 2). In patéic we do not
store a sequence of node IDs that describe a path that congsfo a short-

cut, but we store onlyop indices for each edgéu,v) on the path that
should be represented, we store its rank within the orderedpgof edges

that leaveu. Since in most cases the degree of a node is very small, these
hop indices can be stored using only a few bits. The unpadkedcsits are
stored in a recursive way, e.g., the description of a lev&ktcut may con-

tain several level-1 shortcuts. Accordingly, the unpaghkinocedure works
recursively.

To obtain a further speed-up, we have a variant of the unpgcki
data structures (Variant 3) that caches the complete géistis—without
recursions—of all shortcuts that belong to the topmostl)ewe, for these
important shortcuts that are frequently used, we do not lause a recur-
sive unpacking procedure, but we can just append the camdspy subpath
to the resulting path.

3.4.4 Turning Restrictions

Real-world road networks can contain so-calteching re-

strictions For example, a U-turn might be prohibited at cer,

tain traffic junctions. Formally, such a turning restrictin

its simplest and most common form) can be expressed as a

edge pair((u,v), (v,w)): the edgev, w) must not be traversed if the node
v has been reached via the edgev). Dealing with turning restrictions is a
well-studied problem74, 62]. In principle, there are two basic approaches:
modifying the query algorithm or modelling the restrictoimto the graph,
which introduces additional artificial nodes and edgesfattdd road junc-
tions. The latter technique can be applied irrespectivehefused query
algorithm.

In case of highway hierarchies, we expect that modellingitgy re-
strictions into the graph only slightly deteriorates thefgenance since the
artificial nodes usually have a very small degree so that wiogtem get
bypassed in the very first contraction step. Furthermorajrg restrictions
are often encountered at local streets that are not prontotbdh levels
of the hierarchy so that the negative impact is bounded tdotler levels.
With respect to memory consumption, it is important to nbizt &fter the
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preprocessing has been completed, artificial nodes and edgead junc-
tions that only belong to level 0 can be abandoned providatdttie query
algorithm (which in level O just corresponds to Dijkstralga@ithm) is mod-
ified appropriately to handle turning restrictions.

3.5 Proof of Correctness

Difficulties. Although the basic concepts (e.g. the definition of the high-
way network) and the algorithm are quite simple, the proof@mfectness
gets surprisingly complicated. The main reason for thatésfact that we
cannot prove thathe shortest path is found since there might be several
shortest paths of the same length. We could assume that ahtesthpaths

in the input are unique or that the uniqueness can be guarhbieadding
small fractions to the edge weights as it is done by otheraaisittvho face
similar problems. However, the former would be too restrickince usu-
ally, in real-world road networks, there are at least a fewbigomous in-
stances, and a reliable realisation of the latter would theralifficult. Fur-
thermore, the introduction of shortcuts adds a lot of amibigaven if it was

not present in the input.

Therefore, if we pick any shortest path to show that it is found by
the query algorithm, it can happen that a neden P is settled from an-
other node than its predecessor BnOf course, in this case, will still be
assigned the optimal distance from the source, but thelséarel and the
distance to the next neighbourhood border may be diffefeant expected
so that we have to adapt to the new situation.

Outline. We face the above mentioned difficulties in the following way
First, we show that the algorithm terminates and deal wighsipecial case
that no path from the source to the target exists (Se@iéril). Then, we
introduce some definitions and concepts that will be useftthé main part
of the correctness proof: In Secti@rb.2 we define for a given path, a cor-
respondingcontractedpath and arexpandedpath, where subpaths in the
original graph are replaced by shortcuts or vice versagaisely. In Sec-
tion 3.5.3 we first define the concepts lafst neighbourandfirst core node
which, iteratively applied, lead to amidirectional labellingof a given path.
Figure3.12gives an example. Applying a forward and a backward lalgellin
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to the same path then allows the definition ghaeting leveind ameeting
point (Figure3.13. The latter requires a case distinction since the forward
and backward labelling may either meet in some core or in scongo-
nent of bypassed nodes. Finally, we introduce the teighway path a
path whose properties exactly comply with the two restritdi of the query
algorithm. Figure3.14gives an example.

In Section3.5.4 we deal with the reachability along a highway path.
Basically, we show that if the query has settled some nodae a highway
path with the appropriate key, thefs successor on that path can be reached

Ny~ (s0) N (1)

Figure 3.12: Example for a forward labelling of a pdth The labelssy, and
s are set tos (base case). The nodg is the last neighbour of], (denoted
by @{'(s))), the nodes), is the first level-1 core node (denoted By, (s1)),

s9 Is the last neighbour of;, and so on.

=t t=to

t # to t
/
50=5) $1 s S9 s

Figure 3.13: Example for a forward and backward labellirgp{dted below
and above the nodes, respectively). The meeting levellieanketing point

is p.

. 0 0 1 1 2 1 0
0
0 0 0 1 1 1 1 1 0 t

Figure 3.14: Example for a highway path. Each edge belongsst to the
given level, each node at least to the given core level.



3.5. Proof of Correctness 69

from u with the appropriate key as well (Lemm@sand?7, which are proved
using the auxiliary Lemma). In other words, if there is a highway path,
the query can follow the path (at least if there was no ambyjjui

In Section3.5.5 we use all concepts and lemmas introduced in the pre-
ceding sections to conduct the actual correctness proareme also deal
with ambiguous paths. The general idea is to say that at any {he query
algorithm has some validtateconsisting of a shortestt-path P and two
nodesu = w that split P into three parts such that the first and the third
part are paths in the forward and backward search tree,atbsglg, and the
second part is a contracted path. For such a valid state, wercae that
any node on the first and third part has been settled with theoppate key
(Lemma8). Furthermore, we can show thatis a highway path (Lemm@).

When the algorithm is started, the nodeandt are settled and some
shortests-t-path P in the original graph exists. (The special case that-no
t-path exists has already been dealt with.) Consequenthjiniial state is
composed of the contracted versionfoénd the nodes andt, which makes
it a valid state. Afinal state is a valid state where forward and backward
search have met, i.e., they have settled a common nodeu. Originally,
we wanted to show that a shortest path is found. Now, we se@(irmal()
that it is sufficient to prove that a final state is reached.

We have already defined the meeting pgimn a path. We fall back on
this definition and intend to prove that forward and backwsadrch meet
atp. When we look at any valid non-final state, it is obvious thaeast
one search direction can proceed to get closer, ice., we haver < p or
p < w (Lemmall). We pick such aron-blockedsearch direction. Let us
assume w.l.o.g. that we picked the forward direction. Wexkitwat« has
been settled with the appropriate key and tRas an optimal highway path
(Lemmas8 and9). Due to the ‘reachability along a highway path’ (Lemmas
6 and 7), we can conclude that’s successow can be reached with the
appropriate key as well, in particular with the optimal diste froms. A
node that can be reached with the optimal distance will aésaditled at
some point with the optimal distance. However, we cannoture thatv
is settled withu as its parent since the shortest path fremo v might be
ambiguous. At this point the state concept gets handy: wegudace the
subpath ofP from s to v with the path in the search tree that actually has
been taken, yielding a patA™; we obtain a new state that consistsrof
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and the nodes andu. We prove that the new state is valid (Lemdi3.

Thus, we can show that from any valid non-final state anothkd state
is reached at some point. We also show in Lenimathat we cannot get into
some cycle of states since in each step the length of the enfmit of the
path is decreased. Hence, starting from the initial statenteally a final
state is reached so that a shortest path is found (TheBrem

At this point, we will have proven the basic algorithm (SentB.4.1)
correct without considering the optimisations from Seco4.2 Finally,
in Section3.5.6 we show that the distance table optimisation does not in-
validate the correctness. For the other two optimisatitms,is obvious.

Additional Notations. ‘o’ denotespath concatenation succ(u, P) and
pred(u, P) denote the direct successor and predecessoroof P, respec-
tively.  We just writesucc(u) and pred(u) if the path is clear from the
context. For two nodes andv on some pathpnin(u, v) denotesu if u < v
andv otherwise.max(u, v) is defined analogouslylp (u, v) := w(P|y—y)
denotes the distance fromto v along the pathP. Note that for any edge
(u,v) on P, we havew(u,v) = dp(u,v).

3.5.1 Termination and Special Cases

Since we have set the neighbourhood radius in the topmaadt tieinfinity
(R2), we are never tempted to go upwards beyond the topmast [€his
observation is formalised in the following lemma.

Lemma 2 The for-loop in Line 9 of the highway query algorithm always
terminates witll < L and (¢ = L — gap= o).

Proof. We only consider iterations where the forward search doeds
selected; analogous arguments apply to the backward idinedBy an in-
ductive proof, we show that at the beginning of any iteratiérthe main
while-loop, we have/(u) < L and({(u) = L — gapu) = oo) for any
nodew in 6

Base CaseTrue for the first iteration, where onk/belongs toQ : we have
l(s) =0 < L and gaps) = r; (s) (Line 2), which is equal to infinity if
L =0 (due to R2).
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Induction Step:We assume that our claim is true for iteratiband show
that it also holds for iteration + 1. Due to the induction hypothesis, we
have/(u) < L and({(u) = L — gapu) = co) in Line 5. If £(u) = L, we
have gap= gap = T o) (u) = oo (Line 7 and 9, R2); thus the for-loop in
Line 9 terminates immediately with= ¢(u) = L. Otherwise {(u) < L),
the for-loop either terminates with < L or reached = L; in the latter
case, we have gap r,”(u) = oo (Line 9, R2); hence, the loop terminates.

Thus, in any case, the loop terminates with< L and (¢ = L —
gap = o). Therefore, if the node adopts the key: in Line 13 (either
by a decreaseKey or an insert operation), the new key fulfdsréquired
condition.

This concludes our inductive proof, which also shows thatdlaim of
this lemma holds during any iteration of the main while-loop O
It is easy to the see that the following property of Dijksdralgorithm also
holds for the highway query algorithm.

Proposition 1 For each search direction, the sequence of distara¢es$ of
settled nodes is monotonically increasing.

Now, we can prove that

Lemma 3 The highway query algorithm terminates.

Proof. The for-loop in Line 9 always terminates due to Lem&d he for-
loop in Line 8 terminates since the edge set is finite. The méiite-loop

in Line 3 terminates since each nodés inserted into each priority queue
at most once, namely if it is unreached (Line 13); if it is feed, it either
already belongs to the priority queue or it has already bedtfed; in the
latter case, we know tha(v) < é(u) < §(u) + w(e) (Propositionl; edge
weights are nonnegative) so that no priority queue operatigperformed
due to the specification of the decreaseKey operation. O
The special casahat there is no path fromto ¢ is trivial. The algorithm
terminates due to Lemn&and returnso since no node can be settled from
both search directions (otherwise, there would be some fpaith s to ¢).
For the remaining proof, we assume that a shortest path §ram exists in
the original graplG.
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3.5.2 Contracted and Expanded Paths

Lemma 4 Shortcuts do not overlap, i.e., if there are four nodes: v’ <
v < v" on a pathP in G, then there cannot exist both a short¢ut v) and
a shortcut(v’, v') at the same time.

Proof. Let us assume that there is a shorteutv) € S, for some level.
All inner nodes, in particular’, belong toB,. Sinceu’ does not belong to
V,, a shortcut that starts from' can belong only to some levél < 7. If
there was a shortcyt/, v) € S, the inner node would have to belong to
By, which is a contradiction since € V. O

Definition 1 For a given pathP in a given highway hierarchy, the con-
tractedpathctr(P) is defined in the following way: while there is a subpath
<u,b1,b2,... ,bk,’l)> with u,v € Vel andb; € By,1 <i < kk>1, for
some level, replace it by the shortcut edde, v) € Sy.

Note that this definition terminates since the number of addé¢he path is
reduced by at least one in each step and the definition is ugamis due
to Lemma4.

Definition 2 For a given pathP in a given highway hierarchy, the level-

¢ expandedrath exp(P, ¢) is defined in the following way: while the path
contains a shortcut edgeu,v) € S; for somek > ¢, replace it by the
represented path ify.

Note that this definition terminates since an expanded shimaa only con-
tain shortcuts of a smaller level.
3.5.3 Highway Path

Consider a given highway hierarcldyand an arbitrary patl® = (s, ..., t).
In the following, we will bring out the structure d? w.r.t. G.
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Last Neighbour and First Core Node. For any levell and any node:
on P, we define thdast succeeding levelneighbourw? (1) and thefirst
succeeding level-core node@? (u): @Y (u) is the nodev € {z € P |
u <z Adp(u,z) < r;”(u)} that maximisesip(u,v), and @} (u) is the
nodev € {t} U{z € PNV, | u < =} that minimisesip(u,v). Thelast
preceding neighboutz ' () and thefirst preceding core nod&} (u) are
defined analogously.

Unidirectional Labelling. Now, we inductively define a forwatddbelling
of the pathP. The labelss; ands{ are set tos and for¢,0 < ¢ < L, we set
Sey1 = Wy (s)) ands), , = @}, (se41). Furthermore, in order to avoid
some case distinctionsy,; := t. For an example, we refer to FiguBel2

Proposition 2 The following properties apply to the (liirectional) for-
ward labelling of P:

e Ulis=s5p=s) =51 28] =X...<sp s <sp41=t1

o U2a:V/,0 < ¢ < L:Vu,s) 2u =X s :dp(sy,u) <r,7°(s))
o U2b:V0,0 <0 < L:Yu> spqr:dp(sy,u) > 1,7 (s))

o U3: W,0</(<L:Vu,sp 2u=<sy:ug¢gV

o U4 W, 0<I(<L:sy=tVs, eV

A backward labelling (specifying nodesandt)) is defined analogously.

Meeting Level and Point. The meeting level\ of P is 0 if s = ¢ and
max{/l | sy < ty} if s # t. Note that\ < L (in any case) antl, ;1 < sx4+1
(in case that # t). Themeeting poinp of P is eitherty (if ¢y < s\) or
min(sy41,t)) (otherwise). Figurg.13gives an example.

Proposition 3 The following properties apply to theddting point of P:
e M1: 5, < p =Xty

e M2t 11 2 p = s
e MIVL,0<(<L:(s)<p—=p=2t)AN(p<t,—s,=<p)
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Proof. The cases = t is trivial. Subsequently, we assumeZ t. In order to
prove M1, M2, and (M3 for = )\), we distinguish between two cases.
Case 1:t) = 5')\. Then,p = t). M1 is fulfilled due to the definition of
the meeting level, which implies, < ¢,. Furthermore, due to U1, we have
trayr = t) 2ty =p < s\ < sy41 so that M2 and (M3 for = ) are
fulfilled.

Case 2:s < ty. Then,p = min(sx41,1t)).

Subcase 2.15\;1 = t). Then,p = sy;1. We havesy < s\ < sy;1 =p =
t’/\ =<ty so that M1 and (M3 fof = \) are fulfilled. Furthermore, M2 holds
due toty;1 < Sxi1-

Subcase 2.2t) < s ;1. Then,p = t). Sinces| < ¢y < ¢, we know
thats) € V{ (due to U4). Thus, we havg, <t < ¢, (otherwise | <
s < t,), we would have a contradiction with U3). Heneg,< s\ <t =

p <ty sothat M1 and (M3 fo¢ = )) are fulfilled. M2 holds as well since
tar1 Zth =p < sxq1-

It remains to show M3 fof < A and forZ > \. In the former case, M3
holds due to M1, which implies, < s\ < p =<ty = t; (Ul). In the latter
case, M3 holds due to M2, which impli€s=< 1 = p < sy+1 = s (UL).
O

Highway Path. P = (s,...,t) is ahighway path(Figure 3.14) iff the
following two Highway properties are fulfilled:

o H1:V/,0 < ¢ < L:HIL()
o H2:V/,0 <0< L:H2(0)

where
e H1()): V(u,v),s) fu<v=t,:uveV/

o H2(0): V(u,v),s¢ Ru<v <ty:l(u,v) >¢

3.5.4 Reachability Along a Highway Path

We consider a pat® = (s,...,t). For a nodeu on P, we define the
reference level (u) := max({0} U {i | s; < u}).

Proposition 4 For any two nodes: andv with v < v, the following refer-
ence_level properties apply:
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e L1:0</l(u)<L
o L4: 7 (u) < /(v)
Definition 3 A nodeu is said to beAppropriatelyreached/settled with the

keyk = (6(u), £(u), gap(u)) on the pathP iff all of the following conditions
are fulfilled:

o Ai(k,u): 6(u) = dp(s,u)
o As(kyu): £(u) = £ (u)
o As(k,u): gapu) = {

o Ay(u):Vi:t#s, 2u—uecV/

0 if u < sé(u)
Totwy (Souy) — @P(sy(,)- ) otherwise

The following (somewhat technical) lemma will be used toserbemmas$
and7. Basically, it states that in the highway query algorithra tearch
level and the gap to the next applicable neighbourhood badeset cor-
rectly.

Lemma5 Consider a path? = (s,...,t) and an edgdu,v) on P. As-
sume thatu is settledby the highway query algorithm appropriately with
some keyt. We consider the attempt to relax the edgev). After Line 9
has been executed, the followinyriants apply w.r.t. the variablesand
gap:

o I11: (@)sy fuNn(b)v =< spyq

o [2: /= ?(v)

o 13- gap— | if v =<s),
- gap= ry (sy) —dp(sy,u)  otherwise.

Proof. We distinguish between two cases in order to prove I1 and 13.
Case 1:zero iterations of the for-loop in Line 9 take plade= ¢(u)).

In this case, we havé = /(u) andw(u,v) < gap. Hence,s; < u due
to Ay(k,u) and L2 & I1a). In order to show I1b and I3, we distinguish
between three subcases:
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e Subcase 1.1u < s, = v =< s, =< sp1 (Ul) (= I1b). Furthermore,
because of gdp) = oo (A3(u, k)), we have gap= gap = r;(u)(u) =00
due to U3 and R1<% I3 sincev < s)).

e Subcase 1.2u = s, = gap(u) = oo (A3(u, k)) = w(u,v) < gap =
r;” (u) (Line 7)= dp(s),v) < ;7 (sy) (sinceu = s}) = v < sp41 (U2b)
(= 11b). Furthermore, gapg- gapg = ;" (u) = r; (sy)—dp (s}, u) (since
u = sy) implies 13 sinces; < v.

e Subcase 1.3u > s, = gap(u) = r; (s}) — dp(s),u) (A3(u, k)). By
Lemma2, ¢/ < Land(¢{ = L — gap= o0). If £ = L, we havev =<
t = sr4+1 = se41 (= 11b) and gap= co = r;7(s)) — dp(s),u) (R2) (=
I3 sinces;, < v). Subsequently, we deal with the remaining cése L.
The facts that, < ¢ ands; < u imply s # t, which yieldss) € V/
due to U4. Hence, due to R3, dap # oo = w(u,v) < gag = gap(u)
(Line 7) = dp(u,v) < r;7°(s)) — dp(sy,u) = dp(sp,v) < r;7(s))
= v = spp1 (U2b) (= 11b). Furthermore, gap= gag = gapu) =
r,”(s}) — dp(s),u) implies I3 sinces, < v.

Case 2:at least one iteration of the for-loop takes plate-(¢(u)).

We claim that after any iteration of the for-loop, we have- s,. Proof by
induction:

Base Case:We consider the first iteration of the for-loop. Line 9 and
the fact that an iteration takes place implyu,v) > gap, which means
that gap # oo. We distinguish between two subcases to show that

dp(Sé(u) V) > T?(@ (s’e(u)).

e Subcase 2.1u =< sg(u) = gap(u) = oo (As(u, k)) = w(u,v) > gap =
T o) (u) (Line 7)= T o) (u) # oo. We haves,) = u =< sg(u) dueto L2,
As(u, k), and the assumption of Subcase 2.1. However, we can exclude
that sg,) = u < sg(u): this would imply u ¢ Ve’(u) (U3) and, thus,
Ty (1) = 00 (R1). Thereforey = s, = dp(sy,),v) > 70, (S4(,)

e Subcase 2.2u > sg(u) = sg(u) #t= sg(u) € Vé’(u) (U4). Furthermore,
gap(u) = ré_’(u)(s’e(u)) — dp(sé(u),u) (As(u,k)) = gapu) # oo (due
to R3 sincel(u) < L (Lemma?2) and sg(u) € W(u)) = dp(u,v) =
w(u,v) > gap = gapu) = T;QL)(SZ(u)) - dP(SZ(u),U) (Line 7) =
dp(Sz(u), v) > rg_(u)(sé(u))
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Fromdp(sj,),v) > 140, (Sy,)), it follows thats,,) 1 < v (U2a), which
implies sy, 11 = u. Henceu = sy(,)41 (Sinceu = sy,)41 due to L3 and
Ag(k,u))

Induction Stepilet us now deal with the iteration from leveto leveli + 1
fori > ¢(u)+1. We havew(u,v) > gap= ;" (u), which impliesr;~ (u) #
oo. Starting withu = s; < s, < s;41 (induction hypothesis, U1), we can
conclude thau = s, (U3, R1)= dp(s},v) > r;7(s;) = sit1 < v (U2a)
= Siy1 S u= u = s;41 (Sinceu =< s;+1). This completes our inductive
proof.

After the last iteration, we have = s, < s} (= |1a). Furthermore,
w(u,v) < rp7(u). If u < s, we obtainv < s, < syq1 (= 11b) and
gap = 7,7 (u) = oo due to U3 and R1 I3 sincev < s)). Otherwise
(u = s), we getdp(sy,v) < r,7(sy), which impliesv < s,y as well
(U2b) (= I1b); furthermore, gap= r;”(u) = r;7(sy) — dp(sy,u) (since
u = s,) implies 13 sinces; < v. This completes the proof of I1 and I3.

12 (¢ (v) = ¢) directly follows froms, < v < s,41 (11). O

Lemma 6 Consider a highway pattP? = (s,...,t) and an edggu,v)
on P such thatu precedes the meeting poipt Assume that, has been
appropriatelysettled Then, the edgéu, v) is not skipped, but relaxed.

Proof. We consider the relaxation of the edge v). Due to Lemméab, the
Invariants 11-13 apply after Line 9 has been executed. Now,cansider
Line 10 of the highway query algorithm.

11 and M2 implys; < u < p < syy+1. Hence,l < A\. Thus,u < p =<
tx = t; (M1). By H2, we obtaind(u,v) > ¢. Therefore, the edgeu,v) is
not skipped at this point.

Moreover, we prove that the condition in Line 11 is not fuffill since
(u,v) belongs to a highway path. This means that the gdge) is not
skipped at this point, either. We have to show that V;/ v v ¢ B,. We
haves, < u (11). If u < s}, we getu ¢ V/ (U3). Otherwise, we have
sy 2u<v =< p=t, (M3), whichyieldsv ¢ B, (H1).

Therefore,(u, v) is not skipped, but relaxed. O

Lemma 7 Consider a shortest patk = (s,...,t) and an edg€u, v) on
P. Assume that, has been appropriatelgettledwith some key:. Further-
more, assume that the edfe, v) is not skipped, but relaxed. Themcan
be appropriatelyreachedrom u with keyk'.
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Proof. We consider the relaxation of the edge v). Due to Lemmab,
the Invariants 11-13 apply after Line 9 has been execute@rdfbre—since
(u,v) is not skipped, but relaxed—, the nodean be reached with the key

K = (8'(v), £'(v), 98P (v)) == (6(u) + w(u,v), £, gap— w(u,v)).

Thus, A (K',v), A2 (K, v), andAs(k’, v) hold sinceP is a shortest path and
due toA; (k,u), 12, and I3.

Consider an arbitrary such that # s, < v. To proveA,(v), we have
to show thatv € V/. Due to U4, this is true fos;, = v. Now, we deal
with the remaining case; < u < v. Sincev = sp1 = sy, (11, Ul),
we havei < ¢. The cas¢ = 0 is trivial; hence, we assumée> 0. Since
the edge(u, v) is not skipped, we know that Restriction 1 does not apply.
Therefore, we havé(u,v) > ¢, which impliesv € V;, C V//_,. Fori < ¢,
we haveV, ; C V/ and are done. Far= ¢, we haveu € V// due toA,(u).
This impliesv ¢ By, since Restriction 2 does not apply as welle V; and
v ¢ Byyieldv € V. O
Analogous considerations hold for the backward search.

3.5.5 Finding an Optimal Path

Source and target nodesindt are given such that a shortest path freto
t exists®

Definition 4 A statez is a triple (P, u,u), whereP is a s-t-path, u,u €
VNP,andu < .

Definition 5 A statez = (P, u,u) is valid iff all of the following valid $ate
properties are fulfilled:

e SL:w(P) =dy(s,t)
e S2: P|,_zis contracted, i.e P|, 5 = ctr(P|y—z)

e S3: P|s_,, and P|5_,; are paths in the forward and backward search
tree, respectively.

3The special case that there is no path froto ¢ is treated in SectioB.5.1
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Lemma 8 Consider a valid statee = (P,u,u) and an arbitrary node
x,s = x < u, onP. Then,x has been appropriately settled. Analogously
for backward search.

Proof. Base CaseTrue fors. Induction StepWe assumethat, s < y < u,

has been appropriately settled and show that succ(y) is appropriately
settled as well. Sincéy, z) belongs to the forward search tree (S3), we
know that (y, z) is not skipped, but relaxed. The other prerequisites of
Lemma? are fulfilled as well (due to the induction hypothesis and.S1)
Thus, we can conclude thatcan be appropriatelyeachedfrom y. Since

(y, x) belongs to the forward search tree, we know thistalsosettledfrom

1. O

Lemma9 If z = (P, u,u) is a valid state, therP is a highway path.

Proof. All labels (e.g.,s) in this proof refer taP. We show that the highway
properties H1 and H2 are fulfilled by induction over the lefel

Base CaseH2(0) trivially holds since/(u,v) > 0 for anyedge(u, v).
Induction Step (a)H2(() — H1(¢). We assume;, < t;. (Otherwise, H1{)
is trivially fulfilled.) This impliess; # t. Consider an arbitrary nodeon
P\S Lt We distinguish between three cases.

Case 1 =< u. According to Lemma, A4(z) holds. Hencez € V; since
sg < x.

Case 2:u < x < u. We havey := max(u, s;) € V/ (either by LemmaB:
Ay(u) or by U4). Analogouslyy := min(w,t)) € V). Sinceu < y =<
xr =y 2wandP|,_y = ctr(P|y—az) (S2), we can conclude thatZ By.
Furthermore, we have € V; (due to H2()). Thus,z € V.

Case 3:u < z. Analogous to Case 1.

Induction Step (b): H1({) A H2(/) — H2(¢ + 1). Let P denote
exp(Plg, 1, ¢) and consider an arbitrary edge, y) onP. If (z,y) is part
of an expanded shortcut, we hae:,y) > ¢ + 1 andz,y € Vi1 C V.
Otherwise(xz,y) belongs taP[y, _;,, which is a subpath aP[,,.¢,, which
impliesz,y € V/ and/(z,y) > ¢ by H1(/) and H2¢). Thus, in any case,
Uz,y) > L, z,y € V/, and(z,y) is not a shortcut of some level /.
Hence,P is a path inG}. Now, consider an arbitrary edde, v), sp+1 <
u < v = tgy1, 0on P, If (u,v) is a shortcut of some levet ¢, we directly
havel(u,v) > £+ 1. Otherwise u,v) is on P as well. Sinces,,; < v, we
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havedp(s),v) > r;°(s}) (U2b). Moreover, S1 implies that is a shortest
path inG}, and, in particulards(s), v) = w(?!s;_m) = dy(sy,v). Using
the fact thati; (s}, v) = dp(s),v), we obtaind,(s;,v) > r,”(s,) and, thus,
v &N (s).

Analogously, we have, ¢ N;~(t;). Hence, the definition of the high-
way networkG, implies (u,v) € Epq1. Thus,f(u,v) > £+ 1. O

Definition 6 A valid state is either dinal state (ifu = @) or a non-final
state (otherwise).

We pick any shortesi-t-path P. The state(ctr(P), s, t) is theinitial state.

Since forward and backward search run completely indepelydef each

other, any serialisation of both search processes wilthygehctly the same
result. Therefore, in our proof, we are free to pick—w.l.e-@ny order of

forward and backward steps. We assume that at first one fdraradt one
backward iteration is performed, which implies tkandt are settled. At
this point, the highway query algorithm is in the initial teta It is easy to
see that the initial state is a valid state. Due to the foll@Memma, it is

sufficient to prove that a final state is eventually reached.

Lemma 10 Getting to a final state is equivalent to finding a shortest
path.

Proof. w = w means that forward and backward search meet. Due to
Lemmas, we can conclude that bothandz are settled with the optimal
distance 4,), i.e., ?(u) = do(s,u) and?(ﬂ) = dy(u,t). Sinceu = u

lies on a shortest path (due to S1), we hdye, t) = dy(s,u) + do(T,1).

Line 6 impliesd’ < & (u) + & (W) = d(s,t). In fact, this means that the
algorithm returns!’ = d(s, t) since this is already optimal. O

Definition 7 For a valid statez = (P, u,u), the forward direction is said
to beblockedif p < u. Analogously, the backward direction is blocked if
u=p.

Lemma 11 For a non-final statez = (P, u,u), at most one direction is
blocked.
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Proof. Sincez is a non-final state, we have< =, which impliesu < p or
p <u. O

Definition 8 Therankp(z) of a statez = (P,u,u)is|{z € P | u < z <

u}H.

Lemma 12 From any non-final state = (P, u,u), another valid state™
is reached at some point such thdt™) < p(z).

Proof. We pick any non-blocked direction—due to Lemrhi we know

that there is at least one such direction. Subsequently,sa@@e that the
forward direction was picked; the backward direction caddeat with anal-
ogously.

We haveu < p and observe that all prerequisites of Leménare ful-
filled due to Lemma$ and8. Hence, we can conclude that the edgev :=
succ(u)) is not skipped, but relaxed. Thus, sinees a shortest path (S1),
can be reached with the optimal distance due to Lemipl ). The fact that
the algorithm terminates (Lemn&implies that the queugj gets empty at
some point, i.e., every element has been deleted @mn particular, we
can conclude that is deleted at some point. Sineéhas been reached with
the optimal distance, it will also be settled with the optimliatance (due to
the specification of the decreaseKey operation, which guees that ten-
tative distances are never increased). Petlenote the path fromto v in
the forward search tree. We set := (P* := P’ o P|,_t,v,u). We have
w(P+) = w(P,) + w(P|vﬂt) = dO(va) + dO(th) = dO(Svt) (= S1).
S2 is fulfilled sinceP*|,_z is a subpath of?|,_3. S3 holds due to the
construction ofP*. Hence,: " is valid. Furthermorep(z*) = p(z) — 1.0

Theorem 5 The highway query algorithm finds a shortestpath.

Proof. From Lemmal2 and the fact that the codomain of the rank function
is finite, it follows that eventually a final state is reachetijch is equivalent
to finding a shortest-t-path due to Lemma0. O
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3.5.6 Distance Table Optimisation

To prove the correctness of the distance table optimisati@nintroduce
the following new lemma and adapt a few definitions and préois Sec-
tion 3.5.5to0 the new situation.

Lemma 13 Consider a valid state = (P,u,u) withu < s;. Whenu’s
edges are relaxed, neither the condition in Line 7a nor thedi@n in
Line 11a is fulfilled.

Proof. Due to LemmaB, u has been appropriately settled with some key
We distinguish between two cases.

Case liu < sg. Fromsy,) = STy S U < SL (A2(k,u), L2), it follows
that/(u) < L (U1). Hence, the condition in Line 7a is not fulfilled. Funthe
more, we have, < u < sy, after Line 9 has been executed (Lemadl).
Thus,?¢ < L, which implies that the condition in Line 11a is not fulfilleg
well.

Case 2:s;, = u < s7. First, we show that the condition in Line 7a is
not fulfilled. We assumé(u) = L. (Otherwise, the condition cannot
be fulfilled.) Due toAs(k,u), we have gafu) = oco. Hence, gap =
r;(u)(u) = r;’(u) = ooy by R1 sinceu ¢ V] (U3). Now, we prove that
the condition in Line 11a is not fulfilled. We assumie= L A ¢ > {(u).
(Otherwise, the condition cannot be fulfiled.) Due to Lingwe get
gap= ;" (u) = ;" (u) = ooy (as above). O

Definition 6. A valid state is either afinal state (ifu = @ or
s <= uAu =< t))oranon-finalstate (otherwise).

Lemma 10. Getting to a final state is equivalent to finding a shortesgt
path.

Proof. In the proof of this lemma in SectioB.5.5 we have already dealt
with the case: = . Now, consider the new case< u A s}, < u AT =<
/. We show thats, is added to the sef . Sinces), < u, s, has been
appropriately settled with some kéy(due to LemmaB). We consider the
attempt to relax the edge’, , v := succ(s’ )) and distinguish between two
cases.
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Case lis;, = sp. £ = ((v) (12), s, = s} < v, andl(v) < L (L1)
imply ¢ = ¢ (v) = L. FurthermoreAs(k, s, ) and the assumption of Case 1
yield ¢(s,) = 0(s}) < L = £. In addition, gap= ooy # ooy by I3
(sinces; < v), the fact thats;, € V; (U4), and R2. Hence, the condition in
Line 11a is fulfilled so that’, is added tol .

Case 2:s;, < s. By As(k, s7), As(k, s} ), the assumption of Case 2, and
0(sh) < L (L1), we getl(s;) = £(s}) = L and gaps;) = co. Thus,
gapg = r;’(s}) = ooz # oo01 (R2). Hence, the condition in Line 7a is
fulfilled so thats’, is added tor .

Analogously, we can prove thé} is added to the sef . SincePis a
highway path (due to Lemn®), the subpatrP|S/L_,t/L is a path inG’; and,
thus,dy(s’,t}) = di(s},t7). Hencew(P) = do(s, s}) + dr(sh,t) +
do(t; ,t) is the length of a shortestt-path and, since the algorithm finds
a path with a length< f)(s/L) +dp (s, 1)) + 7(t’L) and since?(s/L) =
do(s,s7) and 7(7&2) = dy(t},t) (due to LemmaB: A;), we can conclude
that a shortest-¢-path is found. O

Definition 7. For a valid statez = (P, u,w), the forward direction is said
to beblockedif p < u or s, < w. Analogously, the backward direction is
blocked ifu < poru < t/.

Lemma 11. For a non-final statez = (P, u,u), at most one direction is
blocked.

Proof. Sincez is a non-final state, we have< @ and(u < s} Vt} < ).
To obtain a contradiction, let us assume that both direstiame blocked,
l.e., p 2uorsy, <wu)and @ < poru < 7). Consider the case < u
andu < . Hence,p < v < w < t}. Due to M3, we can conclude that
st < p < u. Sinces; < wandu < ¢, we have a contradiction. The
remaining three cases are analogous or straightforward. O

Lemma 12. From any non-final state = (P, u,u), another valid state ™
is reached at some point such thgt™) < p(2).

Proof. The proof of this lemma in Sectiah5.5still works since the added
two lines (7a and 11a) have no effect due to Definifiband Lemmal3. [J
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3.6 Combination with Goal-Directed Search

The highway query algorithm isot goal-directed. In fact, the forward
search ‘knows’ nothing about the target and the backwarctkeknows’
nothing about the source, so that both search processesoooigletely
independently and spread into all directions.

In order to obtain further speedups, a combination with d-dwacted
approach seems promising. Subsequently, we study a cotiobinveith A*
search using landmarks.

3.6.1 A* Search Using Landmarks

In this section we recapitulate the well-known techniqueldfsearch 35|
and in particular the ALT algorithm3], which is a specialisation o
search using so-calleldndmarks As a new result, we present how the
selection of landmarks can be accelerated using highwagrolges.

A* Search. The search space of Dijkstra’s algorithm can be visualised a
circle around the source. The idea4if search is to push the search towards
the target. By adding a potential: V' — R to the priority of each node,
the order in which nodes are removed from the priority quewsdtered. A
‘good’ potential lowers the priority of nodes that lie on asosiest path to
the target. It is easy to see that is equivalent to Dijkstra’s algorithm on
a graph withreduced costsformally w; (u,v) = w(u,v) — 7(u) + 7(v).
Since Dijkstra’s algorithm works only on nonnegative edgsts, not all
potentials are allowed. We call a potentiaffeasibleif w;(u,v) > 0 for

all (u,v) € E. The distance from each nodeof G to the target is the
distance fromv to ¢ in the graph with reduced edge costs minus the potential
of ¢ plus the potential of. So, if the potentialr(¢) of the target is zero,
7(v) provides dower boundfor the distance fromw to the target.

Bidirectional A*. At a glance, combiningd* and bidirectional search
seems easy. Simply use a feasible potentjdbr the forward and a feasible
potentialr, for the backward (orreverse’) search. However, this does not
work due to the fact that both searches might work on differeduced costs
so that the shortest path might not have been found when bathbltes meet.
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This can only be guaranteedsif andr, areconsistenmeaningws (v, v)

in G is equal tow,, (v,u) in the reverse graph. We use the variant of an
average potential functio()] defined agp¢(v) = (7¢(v) — m,(v))/2 for

the forward and, (v) = (7, (v) — mf(v))/2 = —py(v) for the backward
search. Note that these potentials are feasible and cemisisut provide
worse lower bounds than the original ones.

ALT. There exist several techniquesl] 98] how to obtain feasible po-
tentials using the layout of a graph. The ALT algorithm usssnall num-
ber of nodes—so-callethndmarks—and the triangle inequality to com-
pute feasible potentials. Given a setC V' of landmarks and distances
d(L,v),d(v, L) for all nodesv € V and landmarksC € S, the following
triangle inequations hold:

d(u,v) +d(v, L) > d(u, L) and d(L,u)+ d(u,v) > d(L,v).

Therefored(u, v) := max,es max{d(u, L) — d(v, L),d(L,v) —d(L,u)}
provides a lower bound for the distandéu, v). The quality of the lower
bounds highly depends on the quality of the selected lankknar

Consideringall landmarks for the computation of a lower bound is time-
consuming. Instead, for eacht query only two landmarks—one ‘before’
the source and one ‘behind’ the target—are initially usetcektain check-
points it is decided whether to add an additional landmatkecset of active
landmarks.

Landmark-Selection. A crucial point in the success of ALT is the qual-
ity of landmarks. Since finding good landmarks is hard, saveeuristics
[29, 32] exist. One technique that provides particular good lanmitmés
maxCover Unfortunately, its application is rather expensive: Qkting
maxCover landmarks on our Western European road netwods takout
75 minutes, while constructing the whole highway hierarcag be done in
about 15 minutes. A promising approach is to use the highvieratchy
to reduce the number of possible landmarks: The level-1 abtiee Euro-
pean network has six times fewer nodes than the original ar&tand its
construction takes only about three minutes. Using the asigossible po-
sitions for landmarks, the computation time for calculgtiandmarks can
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be decreasetl.Using only the nodes of higher level cores reduces the time
for selecting landmarks even more. Figd5 shows an example of 16
landmarks, generated on the level-1 core of the Europeavoriet

Figure 3.15: 16 core-1 landmarks on the Western Europeahneiavork.

3.6.2 Combining Highway Hierarchies andA* Search

Previously (see Sectioh4.2, we strictly separated the search phase to the
topmost core from the access to the distance table: firsgetseof entrance
pointsT and T into the core of the topmost level were determined, and
afterwards the table look-ups were performed. Now we inteme both
phases: whenever a forward core entrance poistdiscovered, it is added

to 7 and we immediately consider all pairs, v), v € 7, in order to check
whether the tentative shortest path lendtban be improved. (An analogous
procedure applies to the discovery of a backward core esgrpaint.) This
new approach is advantageous since we can use the tentadniess path
lengthd’ as an upper bound on the actual shortest path length.

“This applies to all known heuristics, not only to maxCover.
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In [69, 70], the highway query algorithm used a strategy that compares
the minimum elements of both priority queues and preferssthaller one
in order to sequentialise forward and backward search. Mveset to obtain
good upper bounds very fast, this might not be the best chBimeexample,
if the source node belongs to a densely populated area anichriet to
a sparsely populated area, the distances from the sourctamad to the
entrance points into the core of the topmost level will beywdifferent.
Therefore, we now choose a strategy that balahddsand| T |, preferring
the direction that has encountered less entrance pointsasie of equality
(in particular, in the beginning whe\nﬂ = ]7\ = 0), we use a simple
alternating strategy.

We enhance the highway query algorithm with goal-directed
capabilities—obtaining an algorithm that we cHIH* search—by replac-
ing edge weights byeduced costsising potential functions ¢ and,. for
forward and backward search. By this means, the searcheistéld towards
the respective target, i.e., we are likely to find sogae path very soon.
However, just using the reduced costs only changesittier in which the
nodes are settled, it does not reduce the search space.€eghaviy to ben-
efit from the early encounter of the forward and backwardcteaiould be
to abort the search as soon assanpath has been found. And, as a mat-
ter of fact, in case of the ALT algorithm2f]—even in combination with
reach-based routin@p]—it can be shown that an immediate abort is possi-
ble without losing correctness if consistent potentialctions are used. In
contrast, this does not apply to the highway query algorithmee even in
the non-goal-directed variant of the algorithm, we cantmrawhen both
search scopes have met (see Seciidn).

Fortunately, there is another aspect of goal-directedchetliat can be
exploited, namelpruning finding anys-t path also means finding an upper
boundd’ on the length of the shortest path. Comparing the lower bounds
with the upper bound can be used to prune nodes: if the keyeifladnode
u is greater than the upper bound, we do not have to rekrdges. Note
that, using reduced costs, the keya$ the distance from the corresponding
source tau plus the lower bound on the distance frarto the corresponding
target.

Since we do not abort when both search scopes have met angsbeca
we have the distance table, a very simple implementatioheoPLT algo-



88 Chapter 3. Highway Hierarchies

rithm is possible. First, we do not have to use consistergrpia functions.
Instead, we directly use the lower bound to the target asgatdor the for-
ward search and, analogously, the lower bound from the s@g@otential
for the backward search. These potential functions makeseech pro-
cesses approach their respective target faster than usisgstent potential
functions so that we get good upper bounds very early. Intiadglithe node
pruning gets very effective: if one node is pruned, we carcleate that all
nodes left in the same priority queue will be pruned as wettsiwe use the
same lower bound for pruning and for the potential that i$ pithe key in
the priority queue. Hence, in this case, we can immediately the search
in the corresponding direction.

Second, it is sufficient to select at the beginning of the ygder each
search direction only one landmark that yields the bestidwend. Since
the search space is limited to a relatively small local arearad source and
target (due to the distance table optimisation), we do ne¢ i@ pick more
landmarks, in particular, we do not have to add additionaditaarks in the
course of the query, which would require flushing and relmgjdhe priority
gueues. Thus, addindg* search to the highway query algorithm (including
the distance table optimisation) causes only little ovadhger node.

However, there is a considerable drawback. While the gmattbd
search (which gives good upper bounds) works very well, tbaipg is not
very successful when we want to comptdstestpaths, i.e., when we use
a travel time metric, because then the lower bounds are lygoal weak.
Figure3.16 gives an example for this observation, which occurs quge fr
quently in practice. The first part of the shortest path fraim¢ corresponds
to the first part of the shortest path fronto the landmark:. Thus, the re-
duced costs of these edges are zero so that the forward sarthwith
traversing this common subpath. The backward search belaeesimilar
way. Hence, we obtain a perfect upper bound very early (d). t8e lower
bound ond(s, t) is quite bad: we havé(s,u) — d(t,u) < d(s,t). Since
staying on the motorway and going directly franto « is much faster than
leaving the motorway, driving through the countrysidet tand continuing
to u, the distancei(s,t) is clearly underestimated. The same applies to
lower bounds oni(v, ) for nodesv close tos. Hence, pruning the forward
search does not work properly so that the search spacepsgthds into all
directions before the process terminates (b). In conttiastpnodes lies on
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the shortest path (in the reverse graph) froto the landmark that is used
by the backward search. (Since this landmark is very far awalye south,
it has not been included in the figure.) Therefore, the loveemridl is perfect
so that the backward search stops immediately. Howeverigla fortunate
case that occurs rather rarely.

Ve &

() (b)

Figure 3.16: Two snapshots of the search space diiHh search using
a travel time metric. The landmark of the forward search from to ¢ is
explicitly marked. The landmark used by the backward seigrsbmewhere
below s and not included in the chosen clipping area. The searchespac
black, parts of the shortest path are represented by thiek.liln addition,
motorways are highlighted.

Approximate Queries. We pointed out above that in most casesfined
a (near) shortest path very quickly, but it takes much longgit we know
that the shortest path has been found. We can adapt to thétisit by
defining an abort condition that leads to an approximateyqakyorithm:
when a nodeu is removed from the forward priority queue and we have
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(1+¢)-(d(s,u) +d(u,t)) > d (wheree > 0 is a given parameter), then
the search is not continued in the forward direction. In t@se, we may
miss somes-t-paths whose length is d(s, v)+d(u, t) since the key of any
remaining element in the priority queue is> d(s,u) + d(u,t) and itis a
lower bound on the length of the shortest path frowia v to ¢t. Thus, if the
shortest path is among these paths, we h#get) > d(s,u) + d(u,t) >
d' /(1+¢), i.e., we have the guarantee that the best path that we haazigl
found (whose length corresponds to the upper batihis at most(1 + ¢)
times as long as the shortest path. An analogous stoppie@pplies to the
backward search.

Better Upper Bounds. We can use the distance table to get good upper
bounds even earlier. So far, the distance table has only &yggied to en-
trance points into the coré/ of the topmost level. However, in many cases
we encounter nodes that belong ) earlier during the search process.
Even the source and the target node could belong to the cthe tdpmost
level. Still, we have to be careful since the distance tablg oontains the
shortest path lengths within the topmost core and a pathdegtwwo nodes
in V/ might be longer if it is restricted to the core of the topmestl instead

of using all edges of the original graph. This is the reasoy wé have not
used such a premature jump to the highest level before. Butinmrder to
just determine upper bounds, we could use these additiabkd book-ups.
The effect is limited though because finding good upper bswvatks very
well anyway—the lower bounds are the crucial part. Thereftiie exact
algorithm does without the additional look-ups. The apprate algorithm
applies this technique to the nodes that remain in the pyigueues after
the search has been terminated since this might improveetheétt For
example, we would get an improvement if the goal-directeaeled us to
the wrong motorway entrance ramp, but the right entrance tzes at least
been inserted into the priority queue.

Reducing Space Consumption. We can save preprocessing time and
memory space if we compute and store only the distances bgtihie land-
marks and the nodes in the core of some fixed I&veDbviously, this has

®In a preliminary experiment, the total error observed inradom sample was reduced
from 0.096% to 0.053%.
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the drawback that we cannot begin with the goal-directedcheianmedi-
ately since we might start with nodes that do not belong tdewel-% core
so that the distances to and from the landmarks are not kndWwerefore,
we introduce an additionahitial query phase which works as a normal
highway query and is stopped when all entrance points ig@tine of level

k have been encountered. Then, we can determine the distiooes to
all landmarks since the distances fremia the levelk core entrance points
to the landmarks are known. Analogously, the distances thentandmarks
tot can be computed. The same process is repeated for inteathangrce
and target nodes—i.e., we search forward frioamd backward fronrs—in
order to determine the distances froro the landmarks and from the land-
marks tos. Note that this second subphase can be skipped when the first
subphase has encountered only bidirected edges.

The priority queues of themain query phasare filled with the entrance
points that have been found during (the first subphase ofinitial query
phase. We use the distances from the source or target nosléhellower
bound to the target or source as keys for these initial el&sne®ince we
never leave the level-core during the main query phase, all required dis-
tances to and from the landmarks are known and the goaltélitesearch
works as usual. The final result of the algorithm is the slsbiath that has
been found during the initial or the main query phase.

3.7 Concluding Remarks

Review. Highway hierarchies are the first route planning technidua t
was able handle the road network of a whole continent, atlyespeedups
of more than a factor 1 000 compared to Dijkstra’s algoritirhey offer a
good compromise between preprocessing time, memory cqigmand
query time. In particular w.r.t. preprocessing time, they superior to prac-
tically any other method that achieves significant speediipe facts that
they can handle all types of queries efficiently, that we dea ger-instance
worst-case guarantees, and that a few tuning parameterbecaised to
obtain different trade-offs between memory consumptiod query times
make highway hierarchies applicable in a wide range of apptins. The
most significant drawback, however, is that—in contrastigivay-node
routing (Chapte#)—(so far) highway hierarchies cannot handle dynamic
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scenarios accuratefy.

In addition to being useful by themselves, highway hiereimspired
various other speedup techniques or even constitute agtpdint for them.
In particular, this is true for the methods presented in @Grag—6. More-
over, Goldberg et al. adopted the shortcut concept in oalgnprove both
preprocessing and query times of reach-based routingi¢gecp. 3.

References. This chapter is based o, 69, 70, 17, 68]. In order to
be self-contained, we gave a complete account on highwagrblges that
also covers parts that have already been included in theekkagtesis 75|
and thus, are not an official part of this thesis due to forreakons. The
main advancements of the current version compared to treomefrom
[75] are listed in Sectiorl.3.2 The combination of highway hierarchies
with landmark-basedi* search 17] was a joint work with Daniel Delling
(among others), who particularly attended to the landnsaeeific parts,
while the combination itself can be seen as a (non-exclugaet of this
thesis.

There is eheuristicapproach based on highway hierarchies by Nannicini e68]. [
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Highway-Node Routing

4.1 Central Ideas

Let us assume that we have identified ‘important’ nodés-which we call
highway nodes-in a given road network and furthermore, let us assume
for a moment that we want to compute shortest paths only legtwleese
highway nodes. One extreme (and trivial) solution woulddg@ist do the
routing in the original graph, the other extreme would berecpmpute a
|V'|x|V'| distance table. A third possibility is to constructarerlay graph
i.e., a graph that consists of the node8éaind of an edge set such that the
distance in the overlay graph between any node(pair) € V' x V' agrees
with the corresponding distance in the original networktéNibat a distance
table can be represented as an overlay graph if we introduesige with
the appropriate weight between each node pair. Usuallyeterywe are
interested in an overlay graph with a minimal edge set. [Eigut gives an
example.

Computing routes between highway nodes using an overlgyhgsa
usually much faster than doing the routing in the originapyr. But such
an overlay graph is even more useful: we can specify a simgieebtional
query algorithm that works for any node p&itt) € V x V. Itis somewhat
similar to the query procedure of highway hierarchies amisists of two
phases: First, we search forwards from the soued backwards from the
targett until the respective search treemveredoy nodes froni”’, i.e., each
branch of the tree contains at least one node fildmSecond, we continue
the search in the (hopefully considerably smaller) ovedegph from the
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nodes inV’ that have been settled during the first phase. An extension of
this general idea to multiple levels suggests itself.

We could think of various ways to determine the highway npddsch
are obviously a crucial ingredient for an implementatiortia$ new route
planning technique. One good possibility is to use the tlaaton that
is provided by our highway hierarchies approach: nodesgh leévels of a
highway hierarchy can be considered as more important tbdesin lower
levels. The construction of an overlay graph (for a givenenseitl’’) can
be done by performing a search from each nede V"’ until all branches of
the search tree are covered. We pick on each branch thesnedé€ closest
to the rootu and add an edgéu, v) with the distance that corresponds to

Figure 4.1: A minimal overlay graph (shaded nodes, dashegssdex-
plicitly given edge weights) of the depicted graph (solidyesl unit edge
weights). Note that a direct edde, v) is not required since a shortest path
from u to v is already represented by the edgesr) and(z, v).

Figure 4.2: A local search as part of an overlay graph cocistn process.
The search is started from thick edges belong to the search tree, shaded
nodes belong td”/. The search can be stopped wheandv’ have been
settled. Two edge@:, v) and(u, v") (dashed) are added to the overlay graph.
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the length of the path from to v in the search tree. For an example, refer
to Figure4.2. It turns out that certain tricks are required to get an apgno
that works efficiently in real-world road networks, whicmtain some nasty
elements like long-distance ferry connections.

4.2 Covering Paths

The concept ofovering pathplays a central role for highway-node routing.
Before using it extensively in Sectigh3, we introduce it here in a general
way.

4.2.1 Canonical Shortest Paths

For a given graplG = (V, E), U(G) is a set ofcanonical shortest paths
if it contains for each connected pdis,t) € V x V exactly one unique
shortest path froms to ¢ such thatP = (s,...,s',....t/,...,t) € U(G)
implies thatP|y_.p € U(G).

It is easy to see that Dijkstra’s algorithm always finds caceirshortest
paths if we have a total order on the nodes and, in case of aitibgy prefer
the parent node with the smaller rank.

4.2.2 Basics

Covering-Paths Set. We consider a grapliy = (V| E), a node subset
V' CV,anodes € V,and aset C {(s,...,u) | u € V'} of paths inG.

Definition 9 The setC is a covering-paths seif s w.r.t. V' if for any node
t € V' that can be reached from there is a node. € V/ on some shortest
s-t-path P such thatP|;_,, € C, i.e.,

ev’ ev’
P, N
P={(s,....7u ..., t).
————
eC

Definition 10 A covering-paths set’ is a canonical covering-paths seét
for any nodet € V' that can be reached from there is a node, € V' on
the canonicakhortests-t-path P such thatP|s_,, € C.

Note that{P = (s,...,u) | P € U(G) A u € V'} is a trivial canonical
covering-paths set.
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The crucial subroutine of all algorithms in the subsequentisns takes
a graph, a node set”’, and a root and determines a set of canonical cov-
ering paths. In the process, there are two conflicting ot the compu-
tation should be as fast as possible and the resulting selshe as small as
possible. In the following, we present a generic algorithmd four concrete
instantiations that allow different trade-offs betweeasth objectives.

Local Search. We consider Dijkstra’s algorithm that has been modified
as described above so that it determines canonical shpats. During a
Dijkstra search frons, we say that a settled nodeis coveredby a node
setV' if there is at least one nodee V' on the path from the root to w.

A queued node isoveredby V' if its tentative parent is covered by’'.
The current search tre@ is coveredby V' if all currently queued nodes are
covered byl”’.

A local Dijkstra searchis a Dijkstra search with an additional pruning
rule that allows for not continuing the search from certanules that are
covered or that have been settled on a suboptimal path. ‘dinwing” the
search from a node means that,'s edges are not relaxed wheris settled.
Subsequently, we will introduce four different concretarpng rules, but at
first, in the following lemma, we deal with the general case.

Lemma 14 Consider a node se¥’ and a local Dijkstra search from a
node s that yields a search treds. We defineC' to consist of all paths
(s,...,v) in B with an endpointv € V' that has no parent i3 that is
covered by/’. Then,C is a canonical covering-paths set ofv.r.t. V'.

Proof. Consider any nodé € V' that can be reached frosnand the canon-

ical shortests-t-path P. If P contains no covered node, the search cannot
have been pruned at any node Brsince P is a shortest path. Hencé,
belongs toB and, thus, ta” as well since € V'’ does not have a covered
parent inB. Otherwise (if there is a covered node B, consider the first
covered node on P that does not have a covered parent. Such a node al-
ways exists since the roethas no parent at all. We can conclude that all
nodesu < v on P are not covered and, consequently, that the search has
not been pruned at any node< v. Hence,P|,_., belongs taB. Moreover,

v € V'. Hence,P|;_, € C. O
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4.2.3 Conservative Approach

The conservativevariant (Figure4.3(a)) works in the obvious way: the
search froms is stopped (i.e., all remaining nodes in the queue are pjuned
as soon as the current search tigas covered. This yields a canonical
covering-paths set close to the optimdrslowever, if B contains one path
that is not covered for a long timé& can get very big even though all other
branches might have been covered very early. Therefoekdsta long time
until the local search terminates. In our application, ihis critical issue in
particular due to long-distance ferry connections.

4.2.4 Aggressive Approach

As an overreaction to the above observation, we might wantefme an
aggressivevariant that prunes the search at every covered node,drag s
branches can be terminated early, while only the non-coveaths are fol-
lowed further on. Unfortunately, this provokes two probgemFirst, the
covering-paths set gets unnecessarily’®econd, the tre® can get even
bigger since the search might contira®und the nodes where we pruned
the searcH. In our example (Figure.3(b)), the search is pruned atso
thatv is reached using a much longer path that leads araurd a conse-
quence, the path te is superfluously marked as a covering path.

4.2.5 Stall-in-Advance Technique

If we decide not to prune the search immediately, but to gdama while’

in order tostall other branches, we obtain a compromise between the con-
servative and the aggressive variant, which we stlll-in-advance One
heuristic we use prunes the search at nodehen the path explored from

s to z containsa nodes ofV’ for some tuning parameter. Note that for

In order to guarantee that the minimal set is found, we woalkHo slightly change
the tie-breaking rule that decides the case that a node ceasabhed on different shortest
paths: if there is a choice, we have to prefer the alreadyredvparent. This variant has
been introduced and proven correct37,[38].

2In Section4.3.3 we will explain how to reduce such a covering-paths seteragtfi-
ciently in order to obtain a minimal set.

3Note that the separator-based approach virtually usesgipessive variant. This is
reasonable since the search can never ‘escape’ the contpunere it started.
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a := 1, the stall-in-advance variant corresponds to the aggeegariant. In
our example (Figuré.3(c)), we use: := 2. Therefore, the search is pruned
not until w is settled. This stalls the edde, v) and, in contrast to (b), the
nodev is covered. Still, the search is pruned too early so thatdige &, x)

is used to settle.

4.2.6 Stall-on-Demand Technique

In the stall-in-advance variant, relaxing an edge leavingpeered node
is based on the ‘hope’ that this might stall another brancbhwéver, our
heuristic is not perfect, i.e., some edges are relaxed in, wahile other
edges which would have been able to stall other branchesicarelaxed.
Since we are not able to make the perfect decision in advaremtroduce
a fourth variant, namelgtall-on-demand It is an extension of the aggres-
sive variant, i.e., the search is pruned immediately at@aléced nodes. We
introduce a new concept, calletialling process It can be started from a
nodewu that has been pruned earlier. The goal is to identify nodmshifve
been reached on a suboptimal path. We can prove that thie fa¢hfor a
nodev if there is a path from via u to v that is shorter than the best pathito

(a) conservative (b) aggressive
“ wake
ON_ nOmIm e MOSC 20 Ok
(c) stall-in-advance (d) stall-on-demand

Figure 4.3: Simple example for the computation of coveriaghp. We
assume that all edges have weight 1 except for the edges and (s, =),
which have weight 10. In each case, the search processtedstams. The
setV' consists of all nodes that are represented by a square. €tgds
belong to the search trege. Endpoints of the computed covering paths are
highlighted in grey. Note that the minimal covering-patks ntains only
the path tou.
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found so far. In order to find suckitness pathswve perform a search from
considering reached nodes. This search is continued antyrfiodes whose
suboptimality can be proven. Such nodes are markedadied The main
search is pruned not only at covered nodes (as mentioneaakmu also
at stalled nodes. A stalling process frantan be invoked by an adjacent
nodev—we say that wakesu—if there is an edgéu, v) that is relaxed
from v.* In our example (Figurd.3(d)), the search is pruned at When

v is settled, we assume that the edgew) is relaxed first. Then, the edge
(v, u) wakes the node. A stalling process is started from The nodes
andw are marked as stalled. Whenis settled, its outgoing edges are not
relaxed. Similarly, the edgér, w) wakes the stalled node and another
stalling process is performed.

Algorithmic Details. We implement the stalling process as a breadth-first
search (BFS) instead of a shortest-path search since a BE8xkess over-
head and yields almost the same stalling effect (as predimiaxperiments
indicate). We store the length of the corresponding witrgsh at each
stalled node. If such a node is woken up later, we can starsttiéng
process based on this witness path (instead of the path #satonnd orig-
inally, which is longer and, thus, less qualified to stalklfier nodes). Note
that if we mark a queued node as stalled, it can happen tisatiached later
on (before it is settled) by the main search on a shorter gatlhis case,
we have to remove the stalled-marker. As an optimisationdavaot add
paths whose endpoint has been stalled to the covering-path#t is obvi-
ous that omitting such suboptimal paths does not invalittegecorrectness
of Lemmal4.

4.3 Static Highway-Node Routing

4.3.1 Multi-Level Overlay Graph

Overlay Graph. An overlay graph of a given graph consists of a subset of
the nodes and an edge set that has the property that shatedigtances
are preserved. More formally, for a given gra@hand a node séty, 1, the

“We only wake upu if there is a backward edge fromto u because if there was only a
forward edge(v, u), it could not be part of a witness path fronvia u to v.
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graphGyi1 = (Viy1, Eeyq) is anoverlay graphof Gy if for all (u,v) €
Vis1 x Vg1, we havedy, i (u,v) = dy(u,v), wheredy(u,v) := dg,(u,v)
denotes the distance fromto v in G,. One way to define the edge set
E,,1 with the desired property is to use the covering-paths quraegit is
shown in the following lemma. Note that this is similar to tteresponding
definition in [37, 38].

Lemma 15 Consider a graph, and a node seV, ;. For any nodeu €
Vit1, let C(u) denote a canonical covering-paths setof.r.t. Vo \ {u}.
Then,Gry1 = (Vi1 {(w,v) | v € Vigr A{u,...,v) € C(u)}) with
w(u,v) := w((u,...,v)) is an overlay graph of,.

Proof. We consider an arbitrary node péir,v) € Vy.1 x Vy41. Since all
edges ink, represent paths &'y, we havedy,(u,v) > dy(u,v). Thus,
if dy(u,v) = oo, we also havel,;(u,v) = co. Subsequently, we assume
dy¢(u,v) # co. We do an inductive proof over the numbeof nodes from
Vi1 on the canonical shortestv-path.
Base Casei = 1, i.e.,u = v. Trivial.
Induction Step:1,...,i — i 4+ 1. Consider a node paitu,v) € Vpy1 X
Vi1 whose canonical shortestv-path P hasi + 1 nodes fromV;, ;. The
definition of the canonical covering-paths $étu) implies that there is a
nodex € Vyy;1 \ {u} on P such thatP|,_, € C(u). FromP € U(Gy),
it follows that P|,—,, € U(G,). Moreover,P|,_,, contains at mostnodes
from V,,. Due to the induction hypothesis, we hake | (x,v) = dy(x,v).
The definition ofG/, implies that there is an edde, z) € Ey;, with
w(u,x) = w(Ply—sg) = de(u,z). Summing up, we havé, (u,v) <
w(u,z) + dey1(z,v) = de(u,z) + dg(z,v) = de(u,v), which implies
dypy1(u,v) = dy(u,v). O

Multi-Level Overlay Graph.  The overlay graph definition can be applied
iteratively to define a multi-level hierarchy. For giveighway-node sets
V=V, DV D ... DV, we define themulti-level overlay graph
G = (Gp,Gy,...,Gy) in the following way: Gy := G and for eaclf > 0,
Gy41 is the overlay graph aoff,. Thelevel/(u) of a nodeu € V' is max{/ |

u € V;}. Analogously, thdevel £(u,v) of an edge(u,v) € UL, E; is
max{¢ | (u,v) € Ep}. Again, these definitions are similar to those in
[37, 39].
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4.3.2 Node Selection

We can choose any highway-node sets to get a correct pracddawever,
this choice has a big impact on preprocessing and queryrpeafe.

Let us consider a Dijkstra search from some node in a roadanktw
We observe that some branches are very important—they cexirrough
the whole road network—, while other branches are stalletthéynore im-
portant branches at some point. For instance, there mightl ltgpes of
roads (motorways, national roads, rural roads) that leawertain region
around the source node, but usually the branches that |lbavesgion via
rural roads end at some point since all further nodes ardeelaon a faster
path using motorways or national roads. We want to expldit thhserva-
tion: not all nodes that separate different regions arectadeas highway
nodes, but only the nodes on the important branches. Natéikas a cru-
cial distinction from the separator-based multi-level noet®> In order to
classify the nodes by importance, we employ our highwayahitiies ap-
proach: we use the set of levékore nodes of the highway hierarchy Gf
as highway-node séf;.

4.3.3 Construction

The multi-level overlay graph is constructed in a bottorfaghion. In order
to construct level > 0, we determine for each node € V, a canonical
covering-paths set’'(u) in Gy—; w.r.t. V; \ {u} using one of the methods
from Sectiord.2and apply Lemmas.

Edge Reduction. Optionally, we can apply the followingeduction step
to eliminate edges front’, that are superfluous: for each nodec V,,
we perform a search 6, (instead ofGG,_1) until all adjacent nodes have
been settled. If there is a tie during the search, we pretemtith that
contains more nodes. Then, we can remove any édge) whose target
v has been settled via a path that consists of more than onesauge a
(better) alternative that does not require the edge) has been found.

SMore details on differences from the separator-based apprean be found in Sec-
tion4.3.5
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Lemma 16 Applying the edge reduction step to an overlay graphof
G yields a minimal overlay grapty, of Go_;.

Proof® Obviously, removing only edges:, v) from G, that can be replaced
by using a different pattP from u to v with w(P) < w(u,v) does not
invalidate the overlay graph property. We still have to shamimality.
Assume that there is an overlay grapti with |E}/| < |Ej|. Hence, there
is some edgdu,v) in £, \ Ey. SinceG) and G/ are overlay graphs of
the same graphi/,_,, distances i, are equal to distances @;. Hence,
there is some shortestv-path P” in G with w(P") < w(u,v). From
(u,v) ¢ E7,itfollows thatP” has at least one interior nogte Furthermore,
the shortest pat®’ in G, from v via x to v has the same length &'. Thus,
w(P’") = w(P") < w(u,v). This implies thatu, v) is removed by the edge
reduction step, i.e(u,v) ¢ Ej, which is a contradiction. O

4.3.4 Query

Level-Synchronised Variant. The query algorithm is a symmetric
Dijkstra-like bidirectional procedure, which works in attwon-up fashion.
To get a first intuition, we can think of the following algdmih that is syn-
chronised by search level. We give a description only fofoineard search.
First, we search in level 0, i.e., we determine a coverinfypaet of the
source node in Gy w.r.t. V7 using one of the methods from Sectidrf.
Then, we search level 1, i.e., for each endpeirdf a covering path, we
determine the covering-paths €étu) of v in G; w.r.t. V». After that, we
search level 2, starting from all endpoints of patht Jid’(«). And so on.

Forward and backward search are interleaved. We keep tfeshen-
tative shortest-path length (which is initially setdo) resulting from nodes
that have been settled in both search directions. We almfbttvard (back-
ward) search when all keys in the forward (backward) pyogtieue are
greater than the tentative shortest-path length.

Asynchronous, Aggressive Variant. The level-synchronised variant de-
scribed above would be rather inefficient since it does ngtgtention to
the fact that the search reaches the level borders in aniaregay: while

®This proof has been inspired by the proof of Theorem 2.238).[
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at one side of the search frontier the covering paths migtobed very
early, this might not be the case at a different side. We shalibw the
search process to proceed in higher levels even if the seaectower level
has not been completed yet; in other words, we prefer an hsymeus vari-
ant. It is convenient to describe such an asynchronousitilgpbased on
the aggressive approach (Sectib@.4) in the following way: We define the
forward search graph

G = (V{(w,0) | (0,0) € Eyy})

and, analogously, theackward search graph

«—

G = (V,{(u,v) | (v,u) € Eg(u)}).

We perform twonormal Dijkstra searches iy and in'G . As in the level-
synchronised variant, forward and backward search ardeatesd, we keep
track of a tentative shortest-path length and abort the daibbackward
search process not until all keys in the respective priagjitgue are greater
than the tentative shortest-path length. Note that waatrallowed to abort
the entire query as soon as both search scopes meet for th@xfes This
is due to similar reasons as in the case of highway hierazqluie. Sec-
tion 3.4.9.

Although it might not be obvious at first glance, this algamitis based
on the aggressive approach because whenever a node in a legble/
is settled, we immediately switch to that higher level (bysidering only
edges in level); in other words, we immediately pruhéhe search in the
lower level. Figured.4illustrates the query algorithm and gives an intuition
for its correctness. Consider a shortest path P in the original graph
(level 0) and the first and last nodesandt; on P that belong td/;. Due
to the definition of the overlay grapfi; (level 1), we havel;(s1,t1) =
do(s1,t1). The same argument can be applied iteratively; in our exampl
we also havely(sa, t2) = di(s2,t2). Now, consider the path’ from s to s;
in the original graph, continuing i@ to s,, continuing inG to to, in G tO
t1, and finally in the original graph to Itis easy to see that(P’) = w(P)
and that the first part aP’ up tot, belongs to the forward search graﬁﬁ

"Note that pruning is doninplicitly due to the definition of the forward and backward
search graphs.
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while the last part starting witk, belongs to the backward search gré@h
Sincess andt, belong to both parts, they can be settled from both sides so
that the shortest patR’ is found.

do(s1,t1)

Figure 4.4: lllustration of the query algorithm.

Theorem 6 The asynchronous, aggressive query algorithm is correct.

Proof. The query algorithm terminates since Dijkstra’s algorithiways
terminates. If there is no shortest path from source to targé&, the al-
gorithm will correctly returnoo since no node is settled from both search
directions: this is due to the fact that only paths in the iHaltel over-
lay graph are considered and these paths correspond toipaiiesoriginal
graph. Now, consider a node pdif,ty) € V x V with dy(sg,ty) # oo
and some shortest-to-path Py in Gy. Note that, trivially,/(z,y) > 0 for
any edge(x,y),so = = < y = to. For each level from Oto L — 1
consider the following steps: I, N V,.; = (), break. Otherwise, let
se+1 andtyy; denote the first and the last node frdm,; on P, respec-
tively. (s¢y1 andt,.; can be equal.) Sincé&,,; is an overlay graph
of Gy, we havedyi1(sey1,te+1) = de(se+1,te41). Pick a shortesk, ;-
ter1-path inGyyy and replacer|s,. ¢, , With it; we obtain P, ;. Note
thatw(Ppy 1) = w(F). SincePpi1ls,,, -t,,., is a path inGyy,, we have
l(x,y) > £+ 1for all edgeqz, y) on Py betweens,; andty, .

After the last iteration, where we defindel, we setP := P, and the
meeting poinp to t;. Now, it is easy to see that(P) = dy(so, o), P|s—p
belongs toG, and the reverse path @f|,_.; belongs toG . The forward
search is not aborted befgpés settled because up to this point, the tentative
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shortest path distance is at leagtP) and the minimum key in the priority
queue is at mosiw(P|;—,) < w(P). The same argument applies to the
backward search. Hencg,is settled from both search directions, which
implies that the algorithm returns the correct result. O

Note that we may either discard all edges that do not belonipeo
forward or backward search graph and perform the searcheorethain-
ing graph (which is exactly what we described above) or wekeap all
edges and make sure that only edges that belong to the seapthaye re-
laxed by introducing an explicit level check. The formeriaat is simpler,
more space-efficient, and faster since we can do withoutdtiienal level
checks. The latter variant, however, is more flexible sireepkng all edges
and level data allows modifications to the multi-level oagrgraph as they
are needed in dynamic scenarios (Sectiof).

We can also obtain anidirectionalvariant of the query algorithm using
techniques originally introduced to handle dynamic sdesarFor details,
see Sectiod.4.2

Stall-on-Demand. The integration of the stall-on-demand technique (Sec-
tion 4.2.9 is straightforward. Note that if we have kept only the fordva
and backward search graphs, then a small problem arisesislainsider
the forward search. When a nodevakes a node: so thatu can stallv,
then the edgéu, v) does not belong to the forward search graph. Thus, if
we just started the stalling process framyit would fail. Fortunately, there is

a simple workaround: since the reverse e@ige:) belongs to the backward
search graph and is used to wakethe required data is available and we
only have to make sure that it is used appropriately.

Obviously, pruning the search at nodes that have been dérablys
settled via a suboptimal path cannot invalidate the canesst proven in
Theorem6 since a continuation of the search from these nodes can never
contribute to a shortest path.

Outputting Complete Path Descriptions. In order to output a complete
description of the computed shortest path, we have to uniteckdges of
the overlay graphs in order to obtain the represented sobpathe original
graph. This can be done using the same techniques as for dygmerar-
chies (see Sectiod.4.3.
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4.3.5 Analogies and Differences To Related Techniques

In this section, we want to compare the highway-node rouéipgroach
with two related techniques, pointing out some analogiak differences.
The goal is to convey somiatuition of the relation between the discussed
techniques, without making accurate and provable prdpaosit

Separator-Based Multi-Level Method. In contrast to highway-node
routing, in the separator-based multi-level approaltmodes that separate
different regions are selected, which leads to a compaifgatiigh aver-
age node degree. This has a negative impact on the perfoeméamet us
consider the ‘old’ multi-level method with the new seledatistrategy, i.e.,
only ‘important’ nodes are selected. Then, the graph iscbifyi not de-
composed into many small components so that the followinéppaance
problem arises in the query algorithm. From the highwaysgpr nodes,
only edges of the overlay graph are relaxed. As a consequéreenim-
portant branches are not stalled by the important branchiess, since the
separator nodes on the unimportant branches have not blestede the
search might extend through large parts of the road network.

To sum up, there are two major steps to get from the sepdvasad
method to our approach: first, select only ‘important’ noded second, at
highway/separator nodes, do not switch immediately to the level, but
keep relaxing low-level edges ‘for a while’ until you can heesthat slow
branches have been stalled (stall-in-advance, Seétidfi) or employ the
stall-on-demand technique (Secti®r2.6.

Highway Hierarchies. We use the preprocessing of the highway hierar-
chies in order to select the highway nodes for our new approldowever,
this is not the sole connection between both methods. In ¥a&tcan in-
terpret highway-node routing as some kind of special cagsbeohighway
hierarchy approach. In this paragraph, we denote the higimede sets by
So, S1,...,5 instead ofl;, V1, ...,V to avoid notational conflicts with
the highway hierarchies. For given highway-node sets,idenghe follow-

ing highway hierarchy: To construct the highway netwoik. ; of a graph

G (for 0 < ¢ < L), we set the neighbourhood radii of any node= V/

to zero. This virtually means that,,; = G/. To specify the coré&, of a



4.4. Dynamic Highway-Node Routing 107

highway networkG, (for 1 < ¢ < L), we setB, to V; \ Sy, which implies
V, = S,. Note that due to its definition, the cof€ is an overlay graph of
Gy (though not a minimal one). A query in this highway hieraretguld
basically settle the same nodes as a highway-node quergwritising the
stall-on-demand technique, which is an important add-omigliway-node
routing.

In a sense, highway-node routing is a logical advancemehigbfivay
hierarchies: We started with the highway hierarchies cpnae presented
in Section3.2, i.e., we iteratively first construct a highway network ahelrt
contract it. In our experiments (see Sectiod.l), however, we observed
that we get particularly good results when starting with ati@ction step,
followed by alternating construction and contraction stdp order to start
with a contraction step without changing the implementative set the
neighbourhood radii of all nodes to zero so that the first tanson step
had no effect and we virtually started with the contractidrihe original
graph. In case of the highway-node routing approach, thisk’tis now
applied to all levels.

Note that our highway-node routing implementation reusegel parts
of the highway hierarchies program code. However, we dousitrgeduce
highway-node routing to a special case of highway hieraglsince, for
example, dealing with trivial neighbourhood radii wouldise unnecessary
overhead.

4.4 Dynamic Highway-Node Routing

Subsequently, we deal with two different dynamic scenafiast, we want
to switch to a different cost function, which means that ptiédly all edge
weights change. For example, a cost function can take irdowsnt differ-
ent weightings of travel time, distance, scenic value, aredl donsumption.
With respect to travel time, we can think of different prdfilef average
speeds for each road category. In addition, for certainclehypes there
might be restrictions on some roads (e.g., bridges and ksinne

Second, we want to cope with unexpected incidents, likdidrgfms,
which influence the expected travel time of a certain roacteeral roads in
some area. That means, a single or a few edge weights chaage. v can
distinguish between server scenari@nd amobile scenarioln the former,
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a server has to react to incoming events by updating its tfatetsres so that
any point-to-point query can be answered correctly; in thesfath mobile
device has to react to incoming events by (re)computisgngle point-to-
point query taking into account the new situation. In theseescenario,
it pays to invest some time to perform the update operatiocesa lot of
queries depend on it. In the mobile scenario, we do not wawiakie time
for updating parts of the graph that are irrelevant to theeturquery.

4.4.1 Changing the Entire Cost Function

The more time-consuming part of the preprocessing is thermhtation
of the highway-node sets. We observe that, when we switchdifiexent
‘reasonable’ cost function, properties of the road netw(dike the inher-
ent hierarchy) are possibly weakened, but not completedyrolged or even
inverted. For instance, both a truck and a sports car—aegping differ-
ent speeds—drive faster on a motorway than on an urban.strbas, we
can still expect a good query performance wkeapingthe highway-node
sets andcompletely recomputingnly the overlay graphs. In order to do
so, we do not need any additional data structures. We cactlglingse the
static approach from Sectioh3 omitting the first preprocessing step (the
determination of the highway-node sets).

4.4.2 Changing a Few Edge Weights

Server Scenario. Similar to an exchange of the cost function, when a sin-
gle or a few edge weights change, we keep the highway-nodeasdtup-
date only the overlay graphs. In this case, however, we dbana to repeat
the complete construction from scratch, but it is sufficienperform the
construction step only from nodes that might be affectedhgy dhange.
Certainly, a node» whose search tree of the initial construction does not
contain any node of a modified edg€u, x) is not affected: if we repeated
the construction step from we would get exactly the same search tree and,
consequently, the same result.

During the first construction (and all subsequent updateatioas), we
manage setsl’ of nodes whose level-preprocessing might be affected
when an outgoing edge afchanges: when a levéleonstruction step from
some node is performed, we add to Af; for each node in the search tree
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whose edges are relaxéd\ote that these sets can be stored explicitly (as
we do it in our current implementation) or we could store aessegt, e.g., by
some kind ofgeometric containefa disk, for instance). Figur& 5 contains
the pseudo-code of the update algorithm.

input set of edge€’™ with modified weight

define set of modified node$y" := {u | (u,v) € E™};
foreachlevel/,1 < /¢ < L,do
Vém = @; Rg = Uue\/[fl Aﬁ,
foreachnodev € R, do
repeat construction step from
if something changes, putto V",

Figure 4.5: The update algorithm that deals with a set of eslgight
changes.

Mobile Scenario: Single Pass. In the mobile scenario, we only determine
the setsR, of potentially unreliable nodes by using a fast variant & th
update algorithm (Figuré.5), where from the last two lines only the “ptt
to V" is kept. (Note that in particular the construction stepasrepeated.)
Then, for each node € V, we define theeliable levelr(u) := min{i—1 |

u € R;} with min () := oo. In order to get correct results without updating
the data structures, the query algorithm has to be modifiest, e do not
relax any edgéu, v) that has been created during the construction of some
level > r(u). Second, if the search at some nadbas already reached a
level ¢ > r(u), then the search at this nodedewngradedto level r(u).

In other words, if we arrive at some node from which we woulsiehto
repeat the construction step, we do not use potentiallyliabte edges, but
continue the search in a sufficiently low level to ensure thatcorrect path
can be found. We call this th@udent query algorithm

8 When the stall-in-advance technique is used, some edgesigreslaxed to potentially
stall other branches. Upon completion of the constructiep,swve can identify edges that
have been relaxed in vain, i.e., that were not able to stadirdiranches. Those eddes v)
had no actual influence on the construction and, thus, we meteatidy to A%.
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Note that the update procedure, which is also used to deterthe sets
of potentially unreliable nodes, is performed in the fordvdirection. Its
results cannot be directly applied to the backward direatiche query. Itis
simple to adjust the first modification to this situation (lmnsideringr(v)
instead ofr(u) when dealing with an edggu,v)). Adjusting the second
modification would be more difficult, but fortunately we caontpletely
omit it for the backward direction. As a consequence, thecbeprocess
becomes asymmetric. While the forward search is continniainier levels
whenever it is necessary, the backward search is never daded; If ‘in
doubt’, the backward search stops and waits for the forweadch to finish
the job.

More formally, we redefine the forward and backward seareiplys in
the following way:

G = (V, {(u,0) | (4,9) € Emin(e(u).r(u))}):

G = (Vi {(u,v) | (v,u) € By Ar(v) = £(u)}).

An example is given in Figurd.6. We assume that the weight of the
edge (z,t2) has been changed, i.e™ = {(x,t2)} and V" = {z}.
Furthermore, we havel! = {z} and A2 = {s,,t}—these sets have
been determined during the construction of the overlay rgrapApply-
ing the pared-down version of the algorithm in Figutes then yields
Ry = {z}, V" = {z}, and Ry = {s2,t2}. Consequently, we have
r(z) = 0,7(s2) = r(t2) = 1; the reliable level of all other nodes is.

Level 2

Figure 4.6: lllustration of the query algorithm in case ofregte edge weight
change (mobile scenario, single pass).
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Up to s9, the forward search can proceed as before (cp. Figu)e Then,
sincer(sy) = 1, the edgd ss, t5) in level 2 cannot be relaxed, but the search
stays in level 1. At the search is even downgraded to level 0 so that the
edge(x,t9) is relaxed in the original graph, where it has its correctasp-
date weight. After that, the forward search can rise agathcamtinue in
level 1. The backward search, however, stops already. aAccording to

the (re)definition ofG , neither(to, s2) nor (t2, ) belongs to the backward
search grapf?. Still, the shortest path is found since both search scopes
overlap.

Mobile Scenario: Iterative Variant.  Alternatively, we can use an itera-
tive variant of the above approach, provided that we alloly edge weight
increases which is a very reasonable assumption in particular when we
consider traffic jams. Note that the previous methodsdorely on this
assumption.

Initially, we mark all modified edges so that we can easilyidec
whether a given edge has been modified. Then, we set the"sef mod-
ified edges td). Now, we apply the same algorithm as in the single-pass
variant, i.e., determine the reliable levels and perforengtudent query that
takes the reliable levels into account. It is easy to seedlhatliable levels
areoo so that a normal query is executed, which returns a pathHe\gOf
course, this procedure does not necessarily yield corescits. Therefore,
we have to examine the computed path: we determine the espiegspath
in the original graph and its lengthin the original graph, which contains
the up-to-date edge weights. df = d, we know that the computed path
does not contain any modified edge. Therefore, since we etlawly edge
weight increases, it must be a shortest path. Otherwise,avedi < ci,
i.e., the path has become longer due to an edge weight upd&atedd all
marked edges on the path to the 88t and repeat the computation.

In other words, during the first iteration, we ignore all fi@fams, dur-
ing the second iteration, we consider only the traffic jamghenpath found
in the first iteration, in the third iteration, we considee thaffic jams on the
paths found in the first two iterations, and so on. In the woase, we need
as many iterations as modified edges exist. Still, in realdvscenarios,
the iterative variant shows promise since usually only allsinzetion of all
current traffic jams affects the own route.
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Unidirectional Query. Interestingly, we can exploit the concepts intro-
duced above to obtainumidirectionalquery algorithm (which can be used
in both static and dynamic scenarios). We just have to addatigett to
Vg™ (irrespective of the fact whether some edger) has been modified or
not). Then, we compute the reliable levels (exactly as dband apply the
prudent query algorithm. Here, it is sufficient to run the iquenly in the
forward direction. When the forward search approachesatiget, it will
automatically go down to lower levels and finally reach thrgeasince the
edges that would jump over the target have been declaredrasehable.
An example is given in Figurd.7. We assume that there is no modified
edge so thals™ = () and V" = {t}. Note that we havel; = {t;} and
A7 = {t2}. Hence,R; = {t1}, Ry = {t2}, and thus(¢;) = 0 and
r(t2) = 1. Consequently, aty, the forward search is downgraded from
level 2 to level 1, and at; from level 1 to level 0 so thatis settled by the
forward search.

Level 2

Figure 4.7: lllustration of the unidirectional query algom.

Note that in order to apply the unidirectional query alduorit we still
have to know the target node in advance since it is requirethébappro-
priate determination of the reliable levels.

4.5 Concluding Remarks

Review. Our experiments (Section6) will confirm that the static variant
of highway-node routing has outstandingly low memory regmients, fast
preprocessing times, and good query performance. Morgibvgiconcep-
tually very simple. The query algorithm just correspondsitirectional
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Dijkstra enhanced by one straightforward subroutine (ta#-an-demand
technique) that can be implemented in a few lines of code.

More important and innovative, however, is the fact thatdpproach
can be extended to work in dynamic scenarios: we can reasetaelike
traffic jams and we can efficiently switch between differemgtdunctions.

Highway-node routing can also be used to instantiate ougrgEmany-
to-many algorithm (Chaptes) and our generic transit-node routing (Chap-
ter 6), yielding very efficient implementations in both cases.

Future Work.  There is room to improve the performance both at the im-
plementation and at the algorithmic level. In particulattér ways to select
the highway-node sets might be found: preliminary expeniisi@sing a new
approach indicate that by this means query times and menooigueption
can be further reduced. The preprocessing can be effectpaghllelised
since the required local searches can be performed indeptynaf each
other. The memory consumption of the dynamic variant candmsider-
ably reduced by using a more space-efficient representafitme affected
node sets.

Although we have already considered a mobile scenario ie e a
few edge weights change, we do not have an implementatiomispd for
a mobile device yet. However, since the search spaces oWhighode
routing are very small and since the hierarchical and gexgeal structure
allows a favourable arrangement of nodes into memory bjosksexpect
that an efficient realisation is possible.

At the end of Sectiod.4.2 we presented a unidirectional variant of the
query algorithm. Unfortunately, this algorithm cannot lppléed directly to
time-dependent scenarios where the arrival time (and thesgxact target
node in a time-expanded representation of the network) tisknown in
advance. It is an open question whether we can achieve gatmmpance
when computing the reliable levels w.iseveraltarget nodes (e.g., for each
possible arrival time at the given target location).

References. This chapter is based o], but also contains several im-
provements that have not been published yet.
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5

Many-to-Many Shortest Paths

5.1 Central Ideas

In contrast to Chapters, 4, and 6, here, we do not deal with the point-
to-point variant of the shortest-path problem, but with thany-to-many
variant, i.e., we are given two node sétsind7’ and we want to compute
the shortest-path distances betwedimode pairg(s,t) € S x T'. In order
to solve this problem, we could just employ, for example hlkigy-node
routing once for each node pair, meaning that we exeélte | 7| queries.
Highway-node routing is a bidirectional technique with #uelitional prop-
erty that forward and backward search proceed completelgp@endently
of each other. That means that in the above example, we waalmige|.S|
times the same backward search #fitltimes the same forward searth.
This observation is the starting point for an efficient mamymany algo-
rithm. We decide to perform each backward search only ortoeng the
resulting search spaces in an appropriate way so that easartbsearch
(which is executed only once as well) can access the defddsi@mation
on the backward search spaces.

More precisely, we manage| 8| x |T| distance tableD, where we ini-
tially set all entries to infinity. For each nodghat a backward search from
encounters, we leave an entf <X(u)) in some bucket that is associated
with ». (As introduced beforey (u) denotes the computed distance from

provided that we omit the abort-on-success criterion, tleat we do not stop the
searches early after forward and backward search have met
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u to t.) During a forward search from a nodec S, we scan the bucket of
each visited node: For each entryt, 7(u)), we add up the just computed
distance?(u) from s to v and the stored distancé (u) from u to t. The
sum represents the length of a path fremia « to ¢. If it is less than the
value D[s, t] stored in the table, we improve the table entry. After having
considered all encountered intermediate nodewe can be sure that the
table contains the correct distances to all targetsl'.

This algorithm can be further improved by introducing soragname-
try: It is not necessary that backwaadd forward searches explore the en-
tire topmost level of the multi-level overlay graph. We caifiety prune the
backward searches at nodes that belong to the topmostileveliom these
nodes we do not continue the search within the topmost I&\ed.correct-
ness is not invalidated since the forward searches will fisdshortest paths
to the nodes where the backward searches were pruned. Bydhiss, the
backward searches get cheaper and, more importantly,areesggnificantly
less bucket entries that the forward searches have to stdact| for large
distance tables, the time spent for bucket scanning camiedominating
so that it is reasonable to strengthen the asymmetry, 6.ehdose a lower
level as topmost level: this increases the forward searabesp but reduces
the number of bucket entries.

Highway-node routing is not the only candidate for constig the ba-
sis of our many-to-many algorithm. Interestingly, a whdbss of shortest-
path algorithms, which we label as bidirectional, Dijkdike, and target-
oblivious, comes into question. In the next section, we #lynintroduce
this class—which the generic version of our many-to-magptthm (pre-
sented in Sectiob.3) relies on. More details on the concrete instantiation
based on highway-node routing (or on the closely relatetividy hierar-
chies) then can be found in Sectibnl.

5.2 Bidirectional Target-Oblivious Search

Definition 11 A bidirectional Dijkstra-like shortest-path algoritisan al-
gorithm that determines for given source and target nodesid ¢ a for-
ward search spacer (s,t) C V x RJ and a backward search space
T (s,t) €V x R{ such that

d(s,t) =min{x +vy | (u,x) € T(s,t) A (u,y) € T(s,t)}. (5.1)
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Note thatmin () := co. In the general case, both the forward and the back-
ward search space depend on hetind¢. For instance, consider the bidi-
rectional version of Dijkstra’s algorithm, which is, of ase, the most ob-
vious example for a bidirectional Dijkstra-like short@sith algorithm. If

s = t, we haved (s, t) = {s}, which is usually not the case if we choose a
different target. Thusg (s, t) depends on.

Definition 12 A bidirectional Dijkstra-like shortest-path algorithm is
target-oblivioudiff

V(s,t1,t2) € V3 : G (s,t1) = 0 (s,t2) and

(5.2)
\V/(Sl,SQ,t) cV3: <E(Sl,t) <E(Sg,t).

In other words, the forward search of a target-obliviousatgm ‘knows’
nothing about the target, i.e., it proceeds irrespectivéhef chosen tar-
get. An analogous statement applies to the backward seaartsequently,
when dealing with target-oblivious algorithms, we can juste & (s) and
‘T (t) instead of7 (s,t) and T (s, t).

Bidirectional Dijkstra-like algorithms usually employ ree kind of
abort-on-success criterion, taking into account the ledgof the best short-
est path found so f&rAn algorithm that uses such an abort-on-success cri-
terion cannot be target-oblivious since the forward (bakiysearch space
size depends on the occurrence of success, which, in tupends on the
target (source). This fact has already been illustratedpire@ious example,
where we considered bidirectional Dijkstra and the cases ands # t.

Moreover, any goal-directed approach cannot be targétiobs for ob-
vious reasons. Note that this is not a complete exclusionHisr instance,
the bidirectional boundvariant of reach-based routin@€] is not target-
oblivious, either, since the pruning rule that is appliediry the forward
search takes into account the minimum key intaekwardpriority queue.

Nevertheless, there are several examples for bidiredtDijlestra-like
target-oblivious shortest-path algorithms: the bidimwl version of Di-

2The simplest example of such a criterion allows stoppings#ach as soon as forward
and backward search have settled a common node df.erops belowso). This simple
criterion applies to the bidirectional version of Dijksgralgorithm. For highway hierar-
chies and highway-node routing, we have to use weaker ieriterensure correctness (cp.
Sections3.4.2and4.3.9.
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jkstra’s algorithm, highway hierarchies, highway-nodeitiag, the self-
boundingvariant of reach-based routingd], and the separator-based multi-
level method B7]—provided that the abort-on-success criterion is omitted
in each case.

5.3 A Generic Algorithm

In a given graphG = (V, E) and for given node sets, 7" C V, we want to
compute the shortest-path distandés ¢) for all node pairgs,t) € S x T
For this problem, we derive a generic algorithm step-by,;sstarting with
any bidirectional Dijkstra-like shortest-path algorithrhe final outcome
can be found in Figuré.3(f). All subsequently listed algorithmic variants
take source and target node s8tandT' as input and compute a distance
table D as output such thab[s,t] = d(s,t). Figure5.1(a) gives a naive
bidirectional many-to-many algorithm. Basically, for Bact-pair, we per-
form one normal bidirectional query to determine the dis¢afiloms to ¢.

1 foreachs e S do
2 foreacht € T do
@ 3 computea (s, t);
4 computes (s, t);
5 computeD|s, t] according to EquatioB.1;

Figure 5.1: Naive many-to-many algorithm based on any édional
Dijkstra-like shortest-path algorithm.

Lemma 17 The naive bidirectional many-to-many algorithm is correct

Proof. Follows immediately from Definitiord 1. O

The first step to get to an efficient many-to-many algorithiio ieestrict
ourselves to target-oblivious algorithms. For this sukelaf bidirectional
Dijkstra-like shortest-path algorithms, we can restate rive algorithm
from Figure5.1(a) in Figure5.2(b). At first glance, this restriction might
seem counter-intuitive since target-oblivious approaatannot employ an
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abort-on-success criterion and, thus, are usuabg efficient than a cor-
responding ‘target-aware’ variant. However, now, we caplakthe fact
that the forward search space does not depencaod the backward search
space does not depend grwhich yields an equivalent version (c) of our al-
gorithm (also given in Figuré.2). Interestingly, this simple transformation
already constitutes the most important step: instead dépeing | S| times

|T'| bidirectional shortest-path queries (b), we now (c) haveetdorm only

|S| forwardplus|T'| backward queries (followed by ‘intersecting’ the search
spaces to compute the actual distances), which is a gread\empent.

1 foreachs € Sdo
2 foreacht € T'do
(b) 3 computea (s);
4 computes (t);
5 computeD|s, t] according to Equatiof.1;

0

1 foreacht € T docomputeT (t);
2 foreachs € S do
(c) 3 computea (s);
4 foreacht € T'do
5 computeD|s, t] according to Equatiof.1;

Figure 5.2: Getting to an efficient many-to-many algorithaséd on any
bidirectional Dijkstra-like target-oblivious shortgs&th algorithm.

The remaining question is how to evaluate Equatiol—i.e., how to
intersect the search spaces—efficiently (Line 5 of Variajit (In order to
do so, we associate with each nada bucket that contains for each target
whose backward search reachesn entry consisting of the ID of the target
node and the computed distangcéo the target. More formally, we define a
buckets(u) of u € V:

Blu) :=={(t,y) [t €T A(u,y) € T (1)} (5.3)
Now, we can restate Equati@nlin the following way:
d(s,t) =min{zx +y | (u,x) € T(s) A (t,y) € B(u)} (5.4)
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This equation means that we can compute the optimal distaoces to ¢

by considering for each nodein the forward search space gfthe entry in
the bucket ofu that matches the targetadding up the lengths of the paths
from s to v and fromu to ¢, and taking the minimum. The correctness is
proved in the following lemma.

Lemma 18 For any bidirectional Dijkstra-like target-oblivious shest-
path algorithm, Equatiors.4is fulfilled for any node paifs, t) € V2.

Proof. Due to Definition11, we know that Equatiob.1is fulfilled for any
bidirectional Dijkstra-like shortest-path algorithm. dd) it is sufficient to
show that

A={z+y|(u,z) € T(s)A(u,y) € T(t)} =
B:={s+y|(uz) €T (s)A(ty) € flu)}
This is the case since

z€A
Jr,y e R, ueV:iz=z+yA(u,z) € T(s) A (u,y) € T(t)

Jr,y R, ueV:iz=a+yA(u,z) € T(s)A(t,y) € B(u)
z € B. 0

t 390

We obtain a new algorithmic variant (Figue3(d)) that is equivalent
to (c), but employs EquatioB.4 instead of5.1, as explicitly specified in
Lines 7-9. Note that this requires a proper initialisatibthe distance table
(Line 1) and the composition of the buckets (Line 3).

Now, we can swap Lines 6 and 7 (sin@&(s) does not depend o),
yielding the equivalent variant (e). Finally, we can mérg@es 7 and 8,
resulting in the final, very efficient variant (f).

Theorem 7 The many-to-many algorithm (Figuke3(f)) is correct.

Proof. Follows directly from Lemmal7 and the fact that the algorithmic
variants (a), (b), (c), (d), (e), and (f) are equivalent. O

3At first glance, it seems that Line (e)-7 just disappears. &l@s it is important to note
that in Line (f)-7,¢ is no longer bound (as in Line (e)-8), but free.
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1 foreach(s,t) € S x T'do D|[s,t] := oc;
2 foreacht € T do compute (¢);

3 foreachu € V do compose3(u) according to Equatioh.3;
4 foreachs € S do

5 computea (s);
6 foreacht € T do
d 7 foreach (u,x) € 7 (s) do
8 foreach (t,y) € 5(u) do
9 Dis,t] := min(D]s, t],z + y);
6 foreach (u,z) € @ (s) do
(e 7 foreacht € T'do
8 foreach (t,y) € 5(u) do
9 Dis,t] := min(D]s, t],z + y);
6 foreach (u,z) € 7 (s) do
@ 7 foreach (t,y) € 5(u) do

8 Dls,t] := min(D]s,t],z + y);

Figure 5.3: Getting to an efficient many-to-many algorithaséd on any
bidirectional Dijkstra-like target-oblivious shortgsath algorithm (contin-
ued from Figures.2). Note that the three variants (d), (e), and (f) have the
first five lines in common. Variant (f) is the final variant.
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5.4 A Concrete Instantiation

The generic many-to-many algorithm (Figuse3(f)) can be instantiated
based on any bidirectional Dijkstra-like target-oblivioshortest-path algo-
rithm. However, not every instantiation is reasonable. é&@mple, using
the bidirectional version of Dijkstra’s algorithm withoabort-on-success
criterion implies that both backward and forward searcinsbacomplete
graph. This is by far worse than just employiftj unidirectional Dijkstra
searches.

In contrast, a direct application of highway-node routingtliout abort-
on-success criteriof)is very promising since the search spaces are very
small. The same applies to highway hierarchies. The subseglescrip-
tions refer to the many-to-many algorithm based on highnege routing,
knowing that an instantiation based on highway hierarctéesbe achieved
in an analogous way. (At some point in Sectiod.2 we will distinguish
between highway-node routing and highway hierarchies trodiice opti-
misations that are specific to each particular instantigtio

When considering the search spaces of highway-node routiagpb-
serve that both forward and backward search typically sttarodes of the
topmost overlay graph. This causes unnecessary effottsahae avoided
by introducing an asymmetric variant of highway-node noguti

5.4.1 Asymmetry

Without loss of generality, we assuni&| > |S|. Otherwise, it is more
efficient to apply our algorithm to the reverse graph.

We specify arasymmetric highway-node routiadgorithm that is a very
simple modification of the original highway-node routingegy algorithm:
the backward search is pruned at nodes V7, i.e., outgoing edges of such
nodesu are not relaxed.

Lemma 19 The asymmetric variant of highway-node routing is a bidirec
tional Dijkstra-like target-oblivious shortest-path algthm.

“In the context of the many-to-many algorithm based d¢arget-obliviousshortest-path
algorithm, we always refer to approaches that do not empicghert-on-success criterion.
Thus, subsequently, we will no longer state this explicidh time.
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Proof. Consider the proof of Theorer® (“correctness of highway-node
routing”). We have shown that there is a particular meetiaintpp on a
shortest patt® such that (iXp, d(s,p)) € 7 (s) and (i) (p, d(p, t)) € T (t).
This still holds since (i) the forward search has not beemgéd at all and
(ii) the meeting poinp has been defined in such a way that all nodes p

on P|,_; do not belong td/;, so that the backward search is not pruned
at these nodesa, which implies thatp is settled. We can conclude that
Equation5.1is fulfilled. Moreover, it is obvious that Equati@n2is fulfilled

as well. O

From this lemma, we can conclude that the application of gyma
metric variant of highway-node routing yields a correctdamore efficient)
many-to-many algorithm. Note that not only the backwarddespace
sizes have been reduced, but also the total number of bunk@&tseand,
thus, the number of bucket scans during the forward searches

Analysis. Since highway-node routing does not give worst case perfor-
mance guarantees that hold for arbitrary graphs, our asakj be based
on parameterisations and assumptions that still have tdhveeked experi-
mentally. We nevertheless believe that such an analyselisble because
it explains the behaviour of the algorithm and helps findimgnebetter vari-
ants.

In the following, we regard. as being a tuning parameter, i.e., we allow
the choice of different numbers of levels of the multi-leeskrlay graph.
We write 7 (s, L) and T (¢, L) (instead of (s) and 7 (t)) to stress that
the forward and backward search spaces depend on the pardmétwill
be more convenient to disregard the associated distandesoasider only
the nodes in the search spaces. For this purpose, we ingoduc

v| (v,z) € @(s,L)} and
vl (v,x) € T(t,L)}.

Let X (L) denote the average size of the backward search spaces, i.e.,

X(L) = <Z|Fv(t,L)l> /1T

teT
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Note that a forward search explores rougilyL) + |V, | nodes on average
since it searches up to the topmost level (visiting roughygdame number
of nodes as a backward search) and continues in the topmes(Vésiting
|Vz| nodes). Moreover, leY' (L) denote the overlap ratio of forward and
backward searches, i.e.,

[ Xsesger|ov(s, L) Noy(t, L)
e ( [S[- [T ) /X(L),

and letTpji (k) denote the cost of a Dijkstra-like search when explofing
nodes in a road network.

The backward searches have c@st- Tpijx (X (L)). Building buckets
costs timeO(|T'| - X (L)), which is dominated by the time required for the
backward searches so that we need not explicitly regardehisin our total
cost calculation. The forward searches have cost autTpij (X (L) +
|V1.|) for the search itself. Bucket scanning takes

o( ¥ s ninm.0l) =o(s- 111 Y(1)- X(0)).

seSteT
We get a total cost of
|S] - Toiw (X (L) +[VL]) + |T| - Tow (X (L)) + O(IS] - |IT] - Y (L) - X(L)).
1. 2. 3.

Note that the first term clearlgecreasedor an increasingL (since the
decrease of| outweighs the increase df (L)), while the second term
grows for an increasing. The third term is less obvious since the character-
istics of Y'(L) are less clear. Our experiments (see Tabl®in Section7.8)
indicate thafy"(L) fluctuates within a small range in case of highway-node
routing and increases (for an increasibpin case of highway hierarchies.
We can conclude that typically the third term grows withsince X (L)
clearly grows.

If both setsS andT are large, the third term dominates. From this we
can learn two things. First, since the constant behind ¢nia s very small,
we can expect very good performance for large problems. riSeaee can
actually save time by choosingsmaller than the maximum possible level.
We could use random sampling to estimate the amount of gqvprkgsent in



5.4. A Concrete Instantiation 125

the input. Based on this estimate and appropriately medsumestants of
proportionality, we would then get a cost model that is aat@ienough to
choose a (near) optimal value fbr

It is also interesting to look at extreme cases. Wigih= |T'| = 1, it
is best to choose the highest possible leveLand we essentially get the
asymmetric variant of point-to-point highway-node rogtiWhen?T =V,
it is best to choosd. = 0 and we just get Dijkstra’s algorithm for re-
peatingly solving the single-source shortest-path prabfeom all nodes
s € S. In other words, our many-to-many algorithm smoothly ipt#ates
between good algorithms for these extreme cases and poougsiderable
speedups in the middle where none of the ‘extreme’ algostimrks very
well.

5.4.2 Optimisations

Fewer Bucket Entries. We can speed up bucket scanning by reducing the
number of bucket entries that are made during the backwanttses. For
determining the correct shortest path lendth, t), it is sufficient that there

is a single bucket entri¢, d(u, t)) at some node on a shortest-t-path such
that (u,d(s,u)) € @ (s). Every additional bucket entry with this property
COosts unnecessary extra scanning time.

In case ofhighway hierarchieswe observe that during a backward
search the current search level can differ from the actwal lef a node.
Due to this fact, bucket entries at nodes in the core of ldvalre made
while the search is still in a level < L. Because every forward search
settles all nodes it} , a bucket entryt, d) € 5(u) can be omitted if: has
been settled onapath, ..., v,...,t) such that both. andv are in the core
of level L.

This observation does not apply tighway-node routingwhere we
do not distinguish between search level and node level. Memvén case
of highway-node routing, we can reduce the number of bucketes by
ignoring nodesu that have beerstalled if we know that the computed
distanced from u to the current targetis suboptimal, we certainly need not
store a bucket entrft, d) atu. We will see that by this means, the number of
bucket entries can be reduced by about 40% (cp. Takhkein Section7.8).
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Accurate Backward Search. The reduction of bucket scans described in
the previous paragraph can be strengthened by performimgate back-
ward searches. The current version of backward search isccarate be-
cause we break the search when entering (the core of) theosidavel.

In a sense, this corresponds to the ‘aggressive approdohduced in Sec-
tion4.2.4

In case ohighway hierarchieswe can think of continuing the backward
search until all nodes in the priority queue are in the cote®topmost level
instead of pruning the search at levekore entrance points. This method,
which corresponds to the ‘conservative approach’ (Secti@r, leads to
fewer bucket entries because the restriction of the prevaragraph ap-
plies more often.

In case ofhighway-node routingwe could do similar things. Alterna-
tively, we can at least relax the edges of the pruned nodesiar ¢o wake
adjacent nodes so that they can possibly start a stallingepso(‘stall-on-
demand’, Sectiod.2.9.

Note that for small distance tables these measures miglaueerpro-
ductive since the backward searches get more expensive.

5.4.3 Algorithmic Details

To deal efficiently with a large amount of buckets with diéfet sizes (which
are not known in advance), we suggest the following approReining the
backward searches, we manage a single resizable arrageafing the set
{(u,t,d) | t € T A (u,d) € T(t)}. After all backward searches have
been performed, we group these triples by the first compoiegatuild an
appropriate index structure so that we can access in cdrigtan for any
nodeu € V the consecutive range of the array that represéqis.

5.4.4 Extensions

Outputting Complete Path Descriptions. So far we have only described
how to compute shortest-path distances. We now explain hewalgorithm
can be modified so that it computes a data structure that smuputting
a complete description of a shortest-path P (for (s,t) € S x T') in time
O(|P).
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We explicitly store the search spaces of forward and badks@arches
in the form of rooted trees. For each query gairt), there is some interme-
diate nodev such that a shortest path fronto ¢ is composed of ag-v-path
in the forward search space frosmand av-t-path in the backward search
space tat. Hence, all we need to store are pointers tm the two search
spaces. This information is updated during the main contipntavhenever
Dis,t] is improved. By this means, we can easily assemble a pathein th
multi-level overlay graph. Then, we can use the techniqogsduced in
Section3.4.3to expand edges in the overlay graphs in order to reconstruct
the represented subpaths in the original graph.

We can save some space by pruning those parts of the seaces spat
are not needed for any shortest connection. In the case owarf search
space, this pruning can be done directly after the searcfirisised.

Computing Shortest Connections Incrementally. In some applications,
we are not really interested in a complete distance tabler ekample,
many heuristics for the travelling salesman problem stdtt the closest
connections for each node and only compute additional adioms on de-
mand B3]. For such applications, the asymmetry in our search dlgoris

again helpful. As before, the cheap backward search is dunallfnodes
t € T. The comparatively expensive forward searches, howevdghare-

quire heavy scanning of buckets, are only progressing imengally after
their search frontier is completely in the topmost level.

To do this, we remember the number of levehodes encountered by
each backward search. Each forward search is equipped wiipyeof this
counter array. When the forward search scans a bucket gnttyof some
level-L node, it decrements the counter for When the counter reaches
zero, we know thaD|[s,t] = d(s,t) and we can output the newly found
distance.

Parallelisation. Suppose we have a shared memory parallel computer
with = processing elements (PEs). Then the problem is easy to- paral
lelise: each PE performdT'|/x| backward searches antS|/z] forward
searches. Ift > |S|, we can achieve further parallelism by partitioning
|T'| and the corresponding buckets irkt@roups. Nowz/k processors are
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assigned to each group and perform a forward search fronodésin|S|
considering only the target nodes in their group.

5.5 Concluding Remarks

Review. Our algorithm provides a straightforward and highly effittie
solution to the many-to-many shortest-path problem. urttore, it is

generic, i.e., it can be instantiated based on various {boipbint algo-

rithms. This makes it comparatively easy to incorporateapproach into
different environments. Moreover, the memory overheaduisegsmall.

When we use our instantiation based on highway-node rgutiaglso can
take advantage of the fact that highway-node routing cadlbarertain dy-

namic scenarios. For example, we can recompute the mudi-averlay

graph in order to solve a many-to-many instance based orfeaatfit cost
function.

Our many-to-many algorithm can be employed directly inwasireal-
world applications. Furthermore, it can be used in the megssing stage
of some point-to-point shortest-path algorithms, namelydrecomputed
cluster distances (Sectidn2.2 and transit-node routing (next chapter).

Future Work. Let us consider the case that we want to compute only a
single table in a given road network. If the table is big erguaur approach
beats Dijkstra’s algorithm even if the preprocessing ohhigy-node rout-

ing is considered to be part of our task (cp. Seclidh?d. However, it might

be interesting to find ways to compute a multi-level overlegpdy specially
tailored toS andT'—after all we only need to preserve shortest paths be-
tween nodes ir5' andT. The hope would be that this can be done more
efficiently than building a complete multi-level overlayagh.

References. This chapter is partly based o&1], which is, in turn, based
on Sebastian Knopp's diploma thest]. While the presentation of the al-
gorithm and the experiments iB]] refer to an instantiation based on high-
way hierarchies, in this thesis, we prefer to introduce tla@yro-many al-
gorithm in a generic way. Furthermore, we somewhat imprbeeanalysis
of the algorithm. For performing experiments, we employ & neimple-
mentation based on highway hierarchies and a new implet@ntaased
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on highway-node routing. In this thesis, we restrict owsglto a few ran-
domly generated symmetric (i.65, = T') instances. Further experiments
with randomly generated asymmetric instances and reddwwstances can

be found in p1] and [B0].
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Transit-Node Routing

6.1 Central Ideas

Transit-node routings based on a simple observation intuitively used by
humans: When you start from a source nednd drive to somewhere ‘far
away’, you will leave your current location via one of onlyeavf ‘important’
traffic junctions, called (forwarddccess nodeﬁ(s). An analogous argu-
ment applies to the targeti.e., the target is reached from one of only a few
backward access nod(eTls(t). Moreover, the union of all forward and back-
ward access nodes of all nodes, caltexhsit-node set, is rather small.
This implies that for each node the distances to/from ite/éwd/backward
access nodes and for each transit-node air) the distance betweem
andv can be stored. For given source and target negewt, the length of
the shortest path that passes at least one transit nodesislgyv

dr(s,t) = min{d(s, u) + d(u,v) + d(v,t) | u € A(s),v € A(t)}.

Note that all involved distanceXs, u), d(u,v), andd(v, t) can be directly
looked up in the precomputed data structures. As a final digng alocal-
ity filter £ : V x V' — {true,false} is needed that decides whether given
nodess andt are too close to travel via a transit nodé.has to fulfil the
property that-L(s, t) impliesd(s,t) = dr(s,t). Note that in general the
converse need not hold since this might hinder an efficiealisagion of the
locality filter. Thus false positivesi.e., “L(s,t) A d(s,t) = dr(s,t)”, may
occur.

The following algorithm can be used to compui@, t):
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1 if =L(s,t) then compute and returdz (s, t);
2 elseuse any other routing algorithm.

Figure 6.1 gives aschematiaepresentation of transit-node routing, while
Figure6.2 (first published in }]) gives areal-world example.

access node

distances betwee access nod
transit nodes

Figure 6.1: Schematic representation of transit-noderrgut
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Figure 6.2: Finding the optimal travel time between two p®({flags) some-
where between Saarbriicken and Karlsruhe amounts to iagi¢ve two
times fouraccess node@iamonds), performing 16 table lookups between
all pairs of access nodes, and checking that the two disksingfihelocal-
ity filter do not overlapTransit nodeghat do not belong to the access-node
sets of the selected source and target nodes are drawn dsguaaks.
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Knowing the length of the shortest path, a complete desonif it can

be efficiently derived using iterative table lookups andcpreputed rep-
resentations of paths between transit nodes. Providedhbatbove ob-
servation holds and that the percentage of false posite/ésni, the above
algorithm is very efficient since a large fraction of all gesrcan be han-
dled in Line 1,d7 (s, t) can be computed using only a few table lookups, and
source and target of the remaining queries in Line 2 are gloge. In fact,
the remaining queries can be further accelerated by intinguadditional
levels of transit-node routing.

6.2 A Generic Algorithm

For a given graplts = (V, E'), we consider + 1 sets
V=727 2...2171

of transit nodes: Moreover, for any levef, 0 < ¢ < L, we consider

e a forward and a backwardccess mapping_éfg .V — 2% and 2[ :
vV — 27t which map a node to its forward and backwantess nodes
respectively,

e alocality filter £, : V' x V' — {true, false}, which decides whether the
distance between two nodes can be determined using onlig levé of
transit-node routing,

e adistance tabl®, : 7, x T, — Rg U {oo}, which contains the correct
distances between all node pairs fr@mx 7, except for the distances that
can be computed using higher levels of transit-node routing

e the distancel, : V x V — Rj U {oo} that is obtained using levélof
transit-node routing, i.e., considering all access noddsviel ¢ and the
distances between all pairs of these access nodes, and

e the minimal distancel>, : V x V — RJ U {oo} that can be obtained
using all levels> /.

!Note that in earlier publications7l, 4, 5], the order of the levels (which we called
‘layers’ at that time) was reversed: the topmost transitenset was denoted %, now
it is denoted by7;,. We have changed the order to blend well with the other hsereal
approaches presented in this thesis.
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To avoid some case distinctions, we introduce the follovdafinitions:
i TL+1 =10,

. zo(u) = (Zo(u) = {u},

o d>r41(s,t) == o0,

e min() := oo.

Now, for any levell,0 < ¢ < L, we give a precise definition of the three
distance function®y, dy, andd>:

[ d(s,t) ifd(s,t) < dseti(s,t)
Dels,t) = { s otherwise

d(s,t):=min{d(s, u)+Dy(u,v)+d(v,t) | u € Ay(s),v € Ay(t)} (6.2)
de(svt) B rgl;?dk(svt) (6.3)

6.1)

Note that the following equation is equivalent ®©3):

d>(s,t) = min(de(s, t), Zoin, di (s, 1)) (6.4)

Obviously, all these distances are upper bounds on thelattagest-path
length, as stated in the following proposition:

Proposition 5 Dy(s,t) > d(s,t), de(s,t) > d(s,t), d>(s,t) > d(s, ).

We assume that all distances to/from forward/backward ssconedes and

all distancedD, (s, t) have been precomputed. We can show that we always
obtain the correct shortest-path length when we use ald@idransit-node
routing:

Lemma 20 d>o(s,t) = d(s, ).

Proof. Due to 6.2), we havedy(s,t) = d(s,s) + Do(s,t) + d(t,t)
since Ag(s) = {s} and Ag(t) = {t}. If d(s,t) < dsi(s,t), we
havedy(s,t) = Dy(s,t) = d(s,t) (due to 6.1)) and thus,d>o(s,t) =
min(dy(s,t),d>1(s,t)) = d(s,t) by (6.4) and Propositiorb. Otherwise
(d(s,t) = d>1(s,t)), we havedy(s,t) = Dy(s,t) = oo (due to 6.1)) and,
again,d>o(s,t) = min(do(s,t),d>1(s,t)) = d(s,1t). O
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Of course, using all levels is comparatively expensive. rétoge, we
want to avoid accessing levels that are not needed to gebthect result.
For the decision making we want to employ the already intceduocality
filters. We require that

ﬁﬁ@(‘S? t) - (d(57 t) = de(su t)) (65)
Then, we can use thteansit-node routingalgorithm as specified in Fig-

ure 6.3 to efficiently compute the length of a shortest path from agiv
source node to a given target node

input source node and target node
output distanced(s, t)

1 d:= o

2 for ¢:= L downto 0do

3 d :=min(d', dy(s,t));
4 assertd’ = d>y(s, t);

5 if =Ly(s,t)then break;
6 return d’;

Figure 6.3: The transit-node routing algorithm.

Theorem 8 Transit-node routing is correct.

Proof. If the condition in Line 5 is fulfilled at some point, we retuih =
d>¢(s,t) = d(s,t) due to 6.5). Otherwise, we returd’ = d>o(s,t) =
d(s,t) according to Lemmao. O

Practical Remarks. In the distance tableBy, it is sufficient to store only
the non-infinity entries explicitly. For this purpose, wencase a space-
efficient static hash table. Furthermore, as an alternéy@ecomputing

the entries inDy, we can use any other shortest-path algorithm to compute
the distance®), on-the-fly when they are required.
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6.3 An Abstract Instantiation

In this section, we instantiate the algorithm from the poesi section by
giving concrete access mappings, while a concrete choidbeofransit-
node sets is stilhot specified. The locality filter will be defined in such
a way that Equatiorb.5 is fulfilled. Note that other instantiations of the
generic algorithm that deviate from this section are pds$idp. Sectiorb.5.
“Alternative Instantiations”).

Access Mapping. For a nodes and a level, consider a sat’ of covering
pathg of s w.r.t. 7, in G. (To obtain a very efficient algorithm, we might
want to choose ainimal covering-paths set.) Let

Ao(s)i={v|P=1{(s,...,v) € C}.

The backw<a_rd access mapping is defined analogously, coimgjdée re-
verse graph= instead ofG.

Locality Filter.  An explicit representation of a levéllocality filter (stor-
ing n? bits) would need too much space for large graphs. Therefaégok
for a more space-efficient alternative. We want to identige pairs(s, t)
such that the distanc s, t) cannot be computed using transit-node routing
in level £ or higher. For each of these pairs, we pick aness a particular
nodep on a shortest-t-path. We make sure that botlandt memorise this
witnessp. Then, when we want to evaluat® (s, t), we just have to check
whethers and¢ share a common witness. Note that this approach can lead
to false positivesi.e., two nodes might share a common witness although
their distance actually can be computed using transit-modeng in level/
or higher.

Beside paying attention to the memory requirements, we laeia-
terested in fast preprocessing times. Therefore, we int@dhe concept
of handingcomputed dataownfrom higher to lower levels: Let us con-
sider some pathsg,...,S1,...,D,...,t1,...,t0) With so,tg € 7y and
s1,t1 € T;. Moreover, let us assume that we already know that, ¢;)

The concept otovering pathdias been introduced in Sectidr2. Note that in contrast
to Chapter, here we daot requirecanonicalcovering paths.
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cannot be computed using level 2 or higher. Thus, we have sdtness

p and boths; and¢; memorise this witness. Now, this witness is handed
down froms; to sy and fromt; to to. An equivalent formulation is to say
that sg inherits the witnesg from s;. Now, if we want to decide whether
d(so,to) can be determined using level 2 or higher, the answer is inces

s andty share the common witnegs Note that by this means, the number
of false positives may increase.

In the following, we work out the formal details of these idealhe
level ¢(u) of a nodeu € V is max{¢ | v € 7;}. Let us assume that we
have some fixed strategy that picks for any two connected neded ¢
one particular node(s,t) on one particular shortestt-path. We define
forward and backward node seké, : V — 2V and K, : V — 2V in the
following way: for any nodes and any level < ¢(s) + 1, ?g(s) := 0, for
level ¢ = /(s) + 1,

Ko(s) == {p(s,t) | t € V AU(s) = £(t) Ad(s,t) < ds¢(s,t)}  (6.6)
and for any level > /(s) + 1,
Kis)= | Fiw), (6.7)
uezé—l(s)

and analogously, for any nodend any level < ¢(t) + 1, ?g(t) =0, for
level ¢ = £(t) + 1,

?g(t) ={p(s,t) | s € VAL(s)=L(t) Nd(s,t) < d>e(s,t)} (6.8)
and for any level > ¢(t) + 1,
KEt)= | K. (6.9)
UGZZ—I(t)

Note that Equation$.6 and 6.8 reflect the ‘witness’ idea, while Equa-
tions6.7 and6.9reflect the ‘handing down’ idea.
Finally, we define the locality filter

Lo(s,t) =/ (m(s) N L(t) £ @) . (6.10)

k<t
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Lemma 21 Consider two nodes and ¢ with d(s,t) # oo. If and only if
there is some node € 7, on some shortest-t-path P, thend>,(s,t) =
d(s,t).

Proof. <) We haveds,(s,t) = d(s,t). This implies, by 6.3) and 6.2,
that there is a levet > ¢, a nodeu € Zk(s), and a node € <Zk(zt) such
thatd(s,u) + Dg(u,v) + d(v,t) = d(s,t). Due to Propositiors, we have
Dy.(u,v) > d(u,v). We can conclude that andv are nodes on a shortest
s-t-path. Furthermore, we know thate Zk(s) C T, CTy.

=) We pick the maximum levet > ¢ with the property that there is
some node fronT, on some shortestt-path P. Letu andv denote the first
and the last node frorfi, on P, respectively. The case = v is possible.
According to the definitions of the covering paths and theessenappings,
there is a node/ € Z)k(s) C T; on a shortest-u-path P and a node
v e Zk(t) C T, on a shortest-t-path P. Consider the path

P‘uﬂ'u

which is a shortest-¢-path as well. According td3(2), we havedy(s,t) <
d(s,u') + Dy (u/,v") + d(v',t). Due to our choice of, we know that there
is no nodex € 7., on any shortest/-v’-path Q—otherwise, the same
nodex would be on the shortestt-path P’|;_,» o @Q o P'|,_;. From the
part of this lemma that has already been proven, it folloves dw’, v') <
d>p+1(u/,0"). Thus, by 6.1), Di(u',v") = d(u/,v") and, consequently,
di(s,t) < d(s,u’) + Di(u/,v") + d(v',t) = d(s,t). Fromds,(s,t) <
di(s,t) < d(s,t), it follows thatd>,(s,t) = d(s,t) due to Propositioi. [

Lemma 22 The locality filter specified in Equatio.10 fulfils Equa-
tion 6.5

Proof. Trivial for d(s,t) = oo (due to Propositiofs). Ford(s,t) # oo, we
want to show the contraposition of Equatiérb and therefore assume that
d(s,t) # d>¢(s,t). Letk be the maximum level such that,_1(s,t) =
d(s,t). Such ak must exist due to Lemma0. The choice oft implies
kE—1< ¥ d>i(s,t) # d(s,t), anddi_;(s,t) = d(s,t). Hence, there is



6.3. An Abstract Instantiation 139

some shortest-t-path with nodes/ € A ,_;(s) andv’ € A;_(¢) on it.
If s € 7;,_1, we setu := s; otherwise,u := «’. Analogously, ift € 7;,_1,
we setv := t; otherwisep := v’. In any case, we have v € 7;_1.
LemmaZ2l and d>(s,t) # d(s,t) imply that there is no shortest
s-t-path that contains a node frofy. In particular, u,v ¢ 7, and
d(u,v) < d>k(u,v)—otherwise, there would be a shortesi-path con-
taining a noder € 7, and thus, also a shortest-path containinge. Since
u,v € Tp—1 \ Tp,, we havel(u) = ¢(v) = k — 1. We can conclude that
p(u,v) € ?k(u) N ?k(v) due to Equation$.6 and6.8. If s ¢ 7;_1,
we havel(s) < k — 1, which impliesp(u,v) € K (s) due to Equa-
tion 6.7: s inherits p(u,v) from v = «’. Otherwise, we have = u so
that p(u,v) € ?k(s) holds as well. An analogous argument applies to
?k(t) Thus, p(u,v) € ?k(s) N ?k(t) Sincek < ¢, Ly(s,t) = true
according to 6.10). O

6.3.1 Computing Access Nodes

Here, we describe how to determine the forward access nodes topmost
level L. Analogous methods can be applied to compute forward arkt bac
ward access nodes to different levels. From each modé/, we perform a
local Dijkstra search ii@7 in order to determine the covering-paths set w.r.t.
71, (cp. Sectiom.2.9). We take each endpoint of a covering path as access
node ofu. Applied naively, this approach is rather inefficient. Hoae we
can use two tricks to make it efficient.

First, we do not have to use the conservative approach (Beti2.3,
but we can use one of the more advanced techniques (Seétibrss.2.6.
However, in general, these techniques do not yietdimimal access-node
set, which would be preferable. Fortunately, the resul§egcan be easily
reducedif the distances between all transit nodes are already kndvem
access nodg can be reached fromvia another access nodeon a shortest
path, we can discargl Figure6.4gives an example. Note that this reduction
procedure is very similar to the edge reduction in Secliéh3

Lemma 23 Applying the reduction procedure yields a minimal accessen
set.

We omit a detailed proof here since it would be very similathi® proof of
Lemmal6.
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Figure 6.4: Example for the computation of access nodesdimaj the first,
but not the second ‘trick’. Edge weights correspond to tmgtles of the
drawn line segments. The nodesw, x, andy belong to7;,. The search is
started fromu. All thick edges belong to the search tree. All depicted sode
from 77, are endpoints of covering paths. Howewetan be removed from
this set since the path fromvia w to y turns out to be shorter than the path
that has been found. Thushas only three access nodes.

Second, we may only de_t)ermine the access nodeE@@)) for all
nodesv € 7;_; and the setsd ;_;(u) for all nodesu € V. Then, for
each node: € V, we can compute

Apw) = |J AL).

UEZL_l(u)

Again, we can use the reduction technique to remove unrageskements
from the set union. The idea to hand access nodes down caridreled to
work across more than one level:

Apluw) = | U U A (up_1).

’U«IG_A>1(U«O)’U«2€Z)2(U«1) U«L—le_A>L—1(’U«L—2)

(6.11)

Lemma 24 Handing down access nodes is correct, i.e., the resulting
access-node set complies with the specification at the tiegirof Sec-
tion 6.3
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Proof. We say that an access-node Eé;t(u) is proper (i.e., it complies with

the specification at the beginning of Sect®#) iff there is a covering-paths

setCy(u) of u w.r.t. 7, such thatd ,(u) = {v | P = (u, ..., v) € Co(u)}.
Assume that for some nodeand some level > 0, we have a proper

access-node seﬁ)g_l(u) (and thus, a corresponding covering-paths set

Cy—1(u)) and that for each node € Xg,l(u), we have a proper access-

node set7fg(v) (and thus, a corresponding covering-paths(4ét)). Let

Aw = |J A

IS Zg_ 1(u)

and _
Co(u) :={P=(u,...,v) | PeU(G) Nve Ay(u)}.

We have to prove thaﬂ}(u) is a proper access-node set. For that, it is
sufficient to show tha’,(u) is a covering-paths set afw.r.t. 7,.

Consider any node € 7, that can be reached from. We have to
show that there is a node € 7, on some shortest-t-path P such that
P‘u%x € C((u)

Sincet € 7, C 7,_1, there is a nodg on some shortest-¢t-path ”’ such
that P/|,,—., € Cy_1(u) and thusy € Z)g,l(u). Similarly, sincet € 7,
there is a node: on some shortest-t-path P” such thatP”|, ., € Ci(y)
and thus;z € _A}(y) C 7;. Let P¢ € U(G) denote the canonical shortest
u-z-path. SetP := P¢o P"|,_;. Note thatP is a shortestu-t-path. The
definition Of—A)g(u) implies thatz € —A)g(u). Hence,P|, ., € Co(u).

By induction, this proof can be extended to multiple levels. O

6.3.2 Computing Distance Tables

To compute an all-pairs distance table, we can use the nmamany algo-
rithm from Chapters. Roughly, this algorithm first performs independent
backward searches from all transit nodes and stores thergaitltlistance
information inbucketsassociated with each node in the search space. Then,
a forward search from each transit node scans all bucketedumters and
uses the resulting path length information to update a taflentative dis-
tances.

For the topmost tabl®;, (where we always hav®y (s, t) = d(s,t)),
this procedure can be applied directly. For all other talides? < L, we
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have to respect that an explicit entBy (s, t) is only required ifd(s,t) <
d>¢+1(s,t)—all other entries arec and do not have to be explicitly stored.
In order to be able to check this condition, the preprocessfriransit-node
routing is done in a top-down fashion, i.e., we first compheeaccess nodes
and the distance table for the topmost level before constiqutevel L — 1,
and so on. Thus, when we compute the table we can already access
d2g+1(8, t).

A naive application of the many-to-many algorithm is pratie for
lower levels (probably even for levél—1). Fortunately, there is one simple
trick based on Lemmal: when performing backward and forward searches
in order to compute tabl®,, ¢ < L, we do not have to relax edges out of
nodesu € 7;,.1. By this measure, we only might miss shortegtpaths
with a node from7,,; on them. However, due to Lemnzd, we already
know that in these case@s ;11 (s,t) = d(s,t) so thatDy(s,t) = occ.

Note that the computation of the distance tableconsists of the same
local forward and backward searches as the computatiore@dbess-node
setsA,y; and A, . Thus, it is sufficient to perform the respective search
processes only once and extracting both the access noddkeaddta re-
quired for the distance table computation.

6.3.3 Computing Locality Filters

As already mentioned, the preprocessing of transit-nodéng is done in
a top-down fashion. We compute the forward and backward setEs )
and?g first for all nodes in7Zz,, then for the nodes iff;,_1, and so on. For
anyu € 7, and any level, we just have?g(u) = ?g(u) = (). For a level
k < L and any node: € 7j, \ 711, We ‘inherit’ the level¢ sets from the
level{¢ — 1) access nodes fdr> k + 1 according to Equations.7and6.9,;
for ¢ = k+1, we apply Equation§.6and6.8. In order to deal with the latter
case, we have to determine all node pairg) such that/(s) = ¢(t) = k
andd(s,t) < d>g4+1(s,t). This is exactly what we do when we compute
the level% distance tabld;,. Hence, the computation of the s?sml and
?kﬂ can be viewed as a byproduct of the computatio®gf

After all sets?g and ?g have been determined, the locality filters are
defined according to Equatidhl1Q
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Faster Computation of Supersets. In spite of the trick mentioned in Sec-
tion 6.3.2 the computation of a distance table can get expensive savtha
might want to do without distance tables in the lower leveld ase some
shortest-path algorithm instead that computes the redjdistances on de-
mand. In this case, the locality filters can no longer be abthas a byprod-
uct of the distance table computation so that we have to finfleaaeht way
to compute them efficiently. Let us consider some ldvek L and two
nodess andt such that/(s) = ¢(t) = k. Consider a local forward search
from s that determines covering paths<ofv.r.t. 7, yielding a search tree
E and, analogously, a local backward search froyrelding a search tree
B. We set

k+1() B\ T and ?kﬂ() BN\ Tt

Lemma 25 K, (s) 2 Kye1(s) and Ky (t) 2 K pea(t)

Proof. Consider a node: from ?k+1(s). According to Equatiort.6,
there is a node such thatu is a node on some shortest-path P and
d(s,t) < d>p+1(s,t). Due to Lemma1, we can conclude that there is no
shortests-t-path with a node froni7;; on it; in particular,u & 7Tiq.
Hence, the forward search is not pruned at any node”n,, so that
we B \ 741, Which implies?;€+1(s) 2 szﬂ(s). An analogous proof

exists for?;+1(t) 2 Fk+1(t). O

Obviously, locality filters that are based on these supeset still cor-
rect in the sense that they fulfil Equatiérb. However, the number of false

po/sitives increases. Note that the computation of the sa[mf? ;ﬂ 4+1(s)and
?k 11(t) requires the same local searches as the computation oftessac
node sets_/fkﬂ(s) and Zk+1(t). Therefore, when dealing with supersets,

the computation of the locality filters can be viewed as a bgpct of the
computation of the access-node sets.

6.3.4 Trade-Offs

Instead of precomputing all access-node sets, distantesfand locality
filters, we can decide to compute only a part of the data reddor transit-
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node routing and determine the remaining data on demandgitne query.
In case of the access nodes, we can postpone the local sedochbe
covering-paths set to query time. Moreover, it is sufficienstore for a
nodeu € 7, only the access nodes to level 1; then, during a query,
access nodes to higher levels can be retrieved using Equiafit

In case of the distance tables, we can—as already mentioostit-the
distance tables in the lowest levels and perform an exgiodrtest-path
search instead.

In case of the locality filters, we can postpone the appticatif Equa-
tions 6.7 and6.9 until query time as well so that a nodec 7, stores only
K r1(u) and K 141 (u).

Of course, postponing parts of the preprocessing reduegsqumessing
time and memory consumption, but increases query time.

6.3.5 Outputting Complete Path Descriptions

Generally, in a graph with bounded degree (e.g., a road mkwsing a
(near) constant time distance oracle, we can output a stiquégh from
s to ¢ in (near) constant time per edge: Look for an edge’) such that
d(s,s')+d(s',t) = d(s,t), output(s, s’). Continue by looking for a shortest
path froms’ to t. Repeat untit is reached.

In the special case of transit-node routing, we can speedhiggto-
cessgy two measures. Suppose the shortest path uses tss aodes
u € Ap(s)andv € Ap(t). First, while reconstructing the path frogrto
u, we can determine the next hop by considering all adjaceté¢s of s
and checking whethet(s, s') + d(s',u) = d(s,u). Usually?, the distance
d(s',u) is directly available since: is also an access node &f Analo-
gously, the path fromy to ¢ can be determined.

Second, reconstructing the path framo v can work on the overlay
graphGy, of G with node set7;, rather than on the original gragh. Em-
ploying the same methods that are used to expand shortctaisénof high-
way hierarchies (Sectio®.4.3, we can precompute information that allows
us to output the paths associated with each edd@éimn time linear in the

%In a few cases—when is not an access node ef (which can only happen if the
shortest paths in the graph are not unique)—, we have toa@nall access nodeg of
s’ and check whethei(s,s") + d(s',u’) + d(u’,u) = d(s,u). Note thatd(u’, u) can be
looked up in the topmost distance table.
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number of edges ofr that it contains. Note that long distance paths will
mostly consist of these precomputed paths so that the timedge can be
made very small. These techniques can be generalised tiplaldivels.

6.4 A Concrete Instantiation

In this section, we give a concrete specialisation of thérabisinstantiation

of the previous section, determining transit-node setsguisighway hierar-
chies (ChapteB), performing the preprocessing using highway-node rout-
ing (Chapterd) and the many-to-many algorithm based on highway-node
routing (Chapter5), and applying geometric circles to define the locality
filters. Note that many other reasonable concrete instanigare conceiv-
able, which is the reason why we decided to specialise thergesigorithm
from Section6.2in two steps instead of merging Sectidh8 and6.4.

6.4.1 Specifying Transit Nodes

Nodes on high levels of a highway hierarchy have the proptdy they
are used on shortest paths far away from source and targat.aiiay’ is
defined with respect to the Dijkstra rank. Hence, it is ndtiarase (the core
of) some levelK of the highway hierarchy for the transit-node ggt Note
that we have quite good (though indirect) control over trsulténg size of
71, by choosing the appropriate neighbourhood sizes and theaate
value for K. For further transit-node levels, we use (the cores of) towe
levels of the highway hierarchy.

6.4.2 Computing Access Nodes

Access-node sets are computed exactly as described imSeailexcept
for the fact that we use highway-node routing (based on tlsergion in
Section4.3.4 to perform local searches in order to determine the cogerin
paths sets more efficiently.

This implies that before the actual preprocessing of ttanwile routing
is started, we have to construct a multi-level overlay grépéctions4.3.1
and4.3.3 using the transit-node sets as highway-node sets.
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6.4.3 Computing Distance Tables

The topmost table is determined by a standard all-pairgdes$tgpath com-
putation (using|7z|-times Dijkstra’s algorithm) in the topmost overlay
graphGr. Note that for the topmost level, an application of the mtoy-
many algorithm using the same multi-level overlay graphldidne virtually
equivalent to executing ju$f; |-times Dijkstra’s algorithm.

All other distance tables, however, are computed as destiib Sec-
tion 6.3.2 i.e., using the many-to-many algorithm from ChagieAt this,
it is reasonable to employ an instantiation of the many-smynalgorithm
that is based on the already constructed multi-level oyagtaph (cp. Sec-
tion 5.4).

6.4.4 Computing Locality Filters

An explicit and exact storage of the forward and backwarcbrasdsi ¢and
K, would be very expensive w.r.t. memory consumption. Furtizee, we
have to keep in mind that we need a very efficient operationditrmines
whether the intersection of two node sets is empty. For thessons, we
usegeometric circleso represent supersets of the sﬁ@and?g. We have
already noted in Sectiofi3.3that using supersets ﬁg and?e still yields
correct locality filters, only the number of false positiveay increase.

We assume that a layout of the gra@lis available, i.e., for each node in
V we know its coordinates in the pIaﬁeEor each node, we store forward
and backward radiio’,(v) and @ ,(u) such that

Td ={veV:|lv-ulla <7, (u)} 2D K,
and, analogously,
L= fve Vil —ull < T} 2 Ky,

where||v — u||2 denotes the Euclidean distance betweemdwv. An inter-
section test can be implemented very efficiently by compgttie distance

“Even if this information is not available in the input, edyaiseful coordinates can be
synthesised (see Secti@r?.q.
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between the two involved nodes with the sum of the radii ofrédevant
circles®

Kys)NEKyt)#£0 o s —tlla < Tols) + Tolt).  (6.12)

Note that the application of Equatiois7 and6.9to ‘inherit’ node sets is
quite simple using geometric circles: we use

T o(s) = max{|[s — ulla + Tp(u) | u € Ap_1(s)}

and an analogous assignment @y (¢). Figure6.5gives an example.

-

Figure 6.5: Example for the_)‘inheritance’ of a geometricdlity filter. The
grey nodes constitute the sdt,_; (s).

‘A-F

Faster Evaluation. Combining Equation§.10and6.12 we have
Lols,1) =\ (lls = tll2 < Tils) + Tu(0))-
k<t

Thus, in order to evaluaté,(s, t), we have to perform up tbcomparisons.
We can easily do with only one comparison by precomputing

Tls) = max g (s) and oy(t) := max 0 (t)

5To avoid the expensive square root computation that is redub determine the Eu-
clidean distance, we can alternatively square both siddsedhequality.
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and using
Lols,t) = (lls = tll < Bils) + Th(D)).

Note that the number of false positives may increase.

6.4.5 Hasty Inheritance

In order to accelerate the preprocessing, we have alreadg extensive
use of the idea of handing down obtained data (access nodaéity filters)

to lower levels. Basically, for a node in a level ¢, we look for covering
paths w.r.t7,,; and inherit the data stored at the endpoints of the covering
paths.

We can think of a hastier approach: When we search for thericgve
paths ofu and encounter a nodethat has already been processed, i.e., that
has already adopted the data from le¢el 1, we do not have to continue
the search fromr. Instead, we can directly inherit the data frem

In our implementation, we use this technique when we haral diawn
from level 1 to level O.

6.4.6 An Economical and a Generous Variant

In our experiments, we consider two different variants lastitated in Fig-
ure6.6.

Variant ‘Economical’ aims at a good compromise between space con-
sumption, preprocessing time and query time. It uses tlenazsd on top of
the original graph (i.e.. = 3). We make extensively use of the options
presented in Sectiof.3.4 At each node: € 75, we store the access nodes
to level 3, and at each node € V, we store the access nodes to level 2.
This means that the level-3 access nodes for nade¥> have to be recon-
structed during query using Equatiéril Level 1 is only used to accelerate
the preprocessing (since it is faster to compute accessraodklocality fil-
ters only for a subsel; C V, handing the data down to all nodes). We do
not use level-1 access nodes or a level-1 distance tablkeathswve just set
L1(s,t) := true for all node pairgs, t) so that if the query reaches level 1,
it is automatically forwarded to level 0.
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We explicitly store the level-2 and level-3 distance tablés level O,
instead of keeping a distance table, we perform a shortghtguery using
highway-node routing.

The locality filters are dealt with analogously to the acoesdes: at
each node: € 75, we storeg’s(u) andg 5(u), and at each node € V', we
store 0’5 (u) and ‘g5 (u). The level-2 locality filter is determined with the
fast but less precise method described at the end of SexioR

Variant ‘Generous’ is tuned for very fast query times. As the economical
variant, it uses three levels on top of the original graph (buthis case,
level 1 is not only used to accelerate the preprocessing)eagh node:,
we store the access nodes and the locality fiteeguired for the query in
level 2 and 3. This allows direct access to these levels.dvet [, we store
neither access nodes nor a locality filter. Instead, if neglliwe perform
local searches to determine the access nodes and we uswitiiddcality
filter £y (s,t) := true for all node pairgs, t). We explicitly store the level-
1-3 distance tables, while we perform a shortest-path quelgvel O (if
required). Note that having a level-1 distance table is@ifstznt difference
from the economical variant. Interestingly, the searchttierlevel-1 access
nodes already involves the search in level 0 so that no exirk iw imposed
by the level-0 search. This also explains why it is reasaabljust set
L1(s,t) := true.

HNR economical  TNR HNR generous  TNR
level level level level
6 3

Figure 6.6: Two variants of transit-node routing (TNR) lthee highway-
node routing (HNR).

bi.e., the radiigy (u), @5 (u), T4 (u), and@ s (u)
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6.4.7 Queries

Queries are performed in a top-down fashion. For a givenygpir (s, t),

first Xg(s) andﬁg(t) are either looked up or computed depending on the
used variant. Then table lookups in the top-level distanbéetyield a first
guess ford(s,t). Now, if =L3(s,t), we are done. Otherwise, the same
procedure is repeated for level 2. If evéa(s,t) is true, we perform a
bidirectional shortest-path search using highway-nodéing that can stop

if both the forward and backward search radius (i.e., thedkélye minimum
element in the respective priority queue) exceed the upmend computed

in levels 2 and 3. Furthermore, the search need not expanddny node

u € 75 since paths going over these nodes are covered by the s@arch i
levels 2 and 3. In the generous variant, the search is alretagped at the
level-1 access nodes, and additional lookups in the ledittance table are
performed.

6.4.8 Outputting Complete Path Descriptions

The general methods from Sectiér3.5can be applied rather directly to
our concrete instantiation in order to determine a compdetription of
the shortest path. To unpack shortcuts, we can fall backerotltines used
in the highway hierarchies approach (Sectio#h.3.

6.5 Concluding Remarks

Review. Transit-node routing provides the fastest available gtiergs for
large static real-world road networks. Speedups compar@&djkstra’s al-
gorithm exceed factor one million. The extremely good qussgformance
does not imply prohibitive preprocessing times or memonysconption. In
fact, the preprocessing is still clearly faster than mamgptoute planning
techniques that achieve considerably smaller speedupsedver, transit-
node routing is not only optimised for long-range querieg,aiso answers
local queries very efficiently.

Alternative Instantiations. There seem to be two basic approaches to
transit-node routing. One that starts with a locality filltand then has
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to find a good set of transit nodés for which £ works (e.g., the grid-
based implementatior8]). The other approach starts with and then has
to find a locality filter that can be efficiently evaluated aretetts as ac-
curately as possible whether local search is needed (eugahstract and
concrete instantiations, Sectiofs$3-6.4). Both basic approaches fit in the
generic framework introduced in Sectiér?. In [4, 71], we describe a few
additional general preprocessing techniques that mighsb#ul for instan-
tiations that differ from the one specified in Sect®B.

Future Work. Like in the case of highway-node routing, we expect that
it might be possible to determine even better transit-neade. ddeally, this
could imply an improvement w.r.t. preprocessing time, mgnmmnsump-
tion, and query times.

Locality Filters. The observation that in the past, successful geomet-
ric speedup techniques have always been beaten by relategeoonetric
techniques (e.g. geometric" search by landmark-basett search or geo-
metric containers by edge flags) suggests the hypothesigdbmetry is not
required for efficient route planning algorithms. Againsstbackground,
the fact that we have to usegaometriclocality filter to obtain our best re-
sults is dissatisfyingsince itcontradictsour hypothesis. Contrariwise, if
we could do without a geometric filter, our transit-node mogiinstantiation
would confirmour hypothesis since its query times are superior to those of
the implementation that is based on a grid division and thageometry.

An alternative, non-geometric locality filter could explthe fact that
nodes that are so close that a local query is requigeghlly share common
access nodes. Such a filter could be evaluated very effigisimite it is
equivalent to checking whether some lookup in the distaabketreturns a
zero® Preliminary experiments indicate that this locality filkeould yield
less false positives. However, the remaining difficultyicden in the word
‘usually’: there are a few exceptions where a local node ghaérs not share
a common access node. In order to get a correct locality, filterhave to
deal with these exceptions appropriately, perhaps byngtand checking

"This isnot a practical problem, but it is undesiraksle a matter of principle
8At least if we disallow zero weight edges, getting a zero isgpthat forward and back-
ward access nodes match.
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them explicitly’ or by deliberately adding ‘superfluous’ access nodes in the
few exceptional cases to ensure the ‘common-access-néegle @Qorrectly
handing down access nodes and locality filters to lower $ewehkes an
implementation of this idea nontrivial.

Reducing the Number of Table Lookups. For a given source-target
pair (s,t), let
— —
a :=max(| A (s)], |4 (t)]).

For a global query (i.e.£(s,t) = false), we needO(a) time to lookup
all access nodes)(a?) to perform the table lookups, ar@(1) to check
the locality filter. Thus, if we want to further improve theeqy times, the
first attempt should be to reduce the number of table lookdjés could
be done by excluding certain access nodes at the outset, aisiiea very
similar to the edge flag approach (Sectib.2. We partition the topmost
overlay graphG';, into k regions and store for each nodes 77, its region
r(u) € {1,...,k}. For each node and each access nodec AL(s), we
manage a flag vectof,,, : {1,...,k} — {true, false} such thatf, ,(x)
is true iff there is a shortest path fromvia u to some node € 7}, with
r(v) = x. These flag vectors can be precomputed in the following way,
again using ideas similar to those used in the preprocesé$itig edge flag
approach: LetB C 7, denote the set of border nodes, i.e., nodes that are
adjacent to some node ffi;, that belongs to a different region. For each
nodeﬁ) € V and each border nodec B, we determine the access node
u € Ar(s)that minimisesi(s,u) + d(u,b); we setfs ,(r(b)) to true. In
addition, f,.(r(u)) is set totrue for eachs € V and each access node
u € ZL(s) since each access node obviously minimises the distance to
itself. We assume that the preprocessing can be done snffjcfast since
|71| is already small| B| is even smaller, and the distancé3:, b) can be
looked up in the topmost distance table. An analogous peegsing step
has to be done for the backward direction. Presumably, igisaal idea to
just store the bitwise OR of the forward and backward flagomscin order
to keep the memory consumption within reasonable bounds.

Then, in a query frons to ¢, we can take advantage of the precomputed
flag vectors. First, we consider all backward access nodesantl build

°Note thatidentifyingall exceptions during preprocessing is rather simple.
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the flag vectorf; such thatf;(r(u)) = true for eachu € ZL(t). Second,
we consider only forward access nodesf s with the property that the bit-
wise AND of fs ,, and f; is not zero; we denote this set b_df/L(s); during
this step, we also build the vectgg such thatfs(r(u)) = true for each

u € Z’L(s). Third, we usef, to determine the subséTL(t) - ZL(t)
analogously to the second step. Now, it is sufficient to perfonly
|Z),L(s)\ X \‘Z’L(tﬂ table lookups. We conjecture—based on the excellent
sense of goal direction that the edge flag approach exhiltitat-by this
means, the number of table lookups can be reduced from arthital1—4.
Note that determining_éf/L(s) andZ/L(t) isinO(a), in particular operations
on the flag vectors can be considered as quite cheap.

The preprocessing of the flag vectors can be further acteter&irst,
we can perform the computations only from nodes 7; (instead of con-
sidering all nodes) and hand the obtained flag vectors dowan appropriate
way. However, that way, the effectiveness of the flag veatordd be im-
paired. Second, we could rearrange the columns of the distaible so that
all border nodes are stored consecutively, which shouldaedhe number
of cache misses during preprocessing.

References. This chapter is partly based oml] 4, 5]. The relation be-
tween our contributions and the work by Bast, Funke, and jmadi, who
introduced transit-node routing in the context of a gridgdmhimplementa-
tion in [3] (which was followed by two joint publicationst] 5]), has been
explained in Section$.2.3and1.3.5

In this thesis, the formal representation of the generiméaork has
been largely extended compared to earlier publicationgthEumore, we
now have both an implementation based on highway hieragerid a more
recent one based on highway-node routing. Since the neveirrgitation
is superior to the old one (in particular w.r.t. preprocegdimes) and more
flexible (in particular w.r.t. choosing the transit-nodés$ewe concentrated
on the new one in this thesis. Details on the highway-hibsatased in-
stantiation including experimental results can be foundin 4, 5].
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Experiments

7.1 Implementation

We have implemented all of our route planning techniquesetjofollowing
the specifications from Chapte3s6. The implementation has been done in
C++ using basic data structures from the C++ Standard Teenplbrary.
Since our various approaches are closely related, therkighaotential of
sharing common code. Therefore, we decided to write a sprgigram that
unites the functionality of all route planning techniqués.order to avoid
runtime overheads, we make extensive usgeieric programmindech-
niques using C++'s template class mechanism. This allawsxXample, to
represent several variants of Dijkstra’s algorithm (whiobst of our prepro-
cessing and query algorithms are based on) in a single téengkss with-
out losing performance in comparison to having each vairaatseparate
class! The obvious advantage of shared code is that improvingituane
variant often also yields an immediate improvement of theovariants.
Overall, our program consists of more than 20 000 lines oédattluding
comments).

We put particular efforts into carefully implementing eiist data struc-
tures, e.g., for representing graphs. We decided agaiimgy esisting li-
braries like LEDA B8] or the Boost Graph Libraryg2] since the generality

1Actua||y, in the current version there are no less than 3@@dint variants.
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of such libraries entail certain undesired overhe€ads.

To obtain a robust implementation, we include extensivesisbency
checks in assertions and perform experiments that are etieaainst refer-
ence implementations, i.e., queries are checked agaijkstiais algorithm
and fast preprocessing algorithms are checked agains mapiementa-
tions. Moreover, we created our own visualisation to8lgtat can handle
large graphs and are able to illustrate our route plannipgogzhes. By this
means, several possibilities for further improvementshaen discovered
and utilised.

We use 32-bit integers to store edge weights and path lengtiisnore
details on the implementation, in particular on the empliogata structures,
we refer to Appendid.

7.2 Experimental Setting

7.2.1 Environment

The experiments were done on one core of a single AMD OpteroceB-
sor 270 clocked at 2.0 GHz with 8 GB main memory anc 2 MB L2

cache, running SuUSE Linux 10.0 (kernel 2.6.13). The prognas com-
piled by the GNU C++ compiler 4.0.2 using optimisation le8elResults
for the DIMACS Challenge benchmarks] [can be found in Tabl&.1

7.2.2 Instances

Main Instances. We deal with the road networks of Western Eurbpe
(which we often just callEurop€) and of the USA (without Hawaii) and
Canada SA/CAN. Both networks have been made available for scien-
tific use by the company PTV AG. For each edge, its length amdourt

2Furthermore, in the past, various problems have been epevhen using graph li-
braries and dealing with very large instances. In the mesmtit seems that the situation
has improved. For example, the current implementation@ttige flag approacl8¢] uses
the Boost Graph Library and is able to handle very large regtdiorks. However, some
runtime overheads still remain.

3Austria, Belgium, Denmark, France, Germany, ltaly, Luxenng, the Netherlands,
Norway, Portugal, Spain, Sweden, Switzerland, and the UK
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Table 7.1: DIMACS Challenge benchmark for US (sub)graphs (query
time [ms]).

metric
graph time dist
NY 29.6 28.5

BAY 34.7 33.3
COL 51.5 49.0
FLA 134.8 120.5
NW 161.1 146.1
NE 225.4 197.2
CAL 2911 235.4
LKS 461.3 366.1

E 681.8 536.4
W 1211.2 988.2
CTR | 4485.7 3708.1
USA | 5355.6 4509.1

of 13 road categories (e.g., motorway, national road, rediooad, urban
street) is provided.

In addition, we perform experiments on a publicly availaidesion of
the US road network (without Alaska and Hawaii) that was iolgiz from
the TIGER/Line Files92] (USA (Tiger). However, in contrast to the PTV
data, the TIGER graph is undirected, planarised and disshgs only be-
tween four road categories, in fact 91% of all roads belonth¢oslowest
category so that you cannot discriminate them.

Strongly Connected Components. For the 9th DIMACS Implementation
Challenge 1], our road networks of Europe and the USA (Tiger) were es-
tablished as benchmark instances. However, since notréltipants could
handle unconnected graphs, in each case, only the largesglst con-
nected component was considered. Although our implementét able

to handle unconnected graphs, we restricted ourselve®tstithngly con-
nected components in case of the combination of highwayiteres with
goal-directed search (Sectigmb) and in case of transit-node routing (Sec-
tion 7.9) to comply with the guidelines of the challenge. In both sase
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makes hardly any differentavhich version of the graph is used since the
largest strongly connected component consists of about®a#bnodes.

Different Metrics. For most practical applications ti@avel timemetric is
most useful, i.e., the edge weights correspond to an egtiofahe travel
time that is needed to traverse the edge. In order to competedge
weights, we assign an average speed to each road categeifafse’.2).

Table 7.2: Average Speeds [km/h]. The last column contdiesaverage
speed for “forest roads, pedestrian zones, private roaalgglgoads or other
roads not suitable for general traffic”.

motorway national regional urban
fast slow| fast slow fast sloy fast slgw
Europe 130 120 110 100 90 80 70 60 |50 40 30 |20 10
USA/CAN |112 104 96 96 88 80 72 64 56 40 32 |24 16
USA (Tiger) 100 80 60 40

In some cases, we also deal witlligtancemetric (where we directly
use the provided lengths) andiait metric (where each edge gets weight 1).

An Even Larger Road Network. Very recently, we obtained a new ver-
sion of the European road networkdw Europg that is larger than the old
one and covers more countriedt has been provided for scientific use by
the company ORTEC. So far, we have done only a few experinwnts
Unless otherwise stated, the term ‘(Western) Europe’ adwafers to the
smaller network provided by PTV.

Table7.3gives the sizes of the used road networks.

“Note that in case of transit-node routing, we could get a lsimgrovement w.r.t.
query times if we changed our implementation such that oolynected inputs are han-
dled correctly—because in this case, we could omit a fewlchémr the special case that
two nodes are not connected.

®In addition to the old version, the Czech Republic, Finladdngary, Ireland, Poland,
and Slovakia.
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Table 7.3: Test Instances. In case of Europe and the USArjTige give
the size of both variants: the original one and the largeshgty connected
component (scc).

road network #nodes #directed edges
Europe 18029721 42199587
Europe (scc) 18010173 42188664
USA/CAN 18741705 47244849
USA (Tiger) 24278285 58213192
USA (Tiger) (scc)| 23947347 57708624
New Europe 33726989 75108089

7.2.3 Preliminary Remarks

Unless otherwise stated, the experimental results retbetecenario where
the travel timemetric is used, only the shortest-pdéngthis computed
without outputting the actual route, and turning restoic aregnored

When we specify the memory consumption of one of our appegch
we usually give theoverhead which accounts for thadditional memory
that is needed by our approach compared to a space-effidairgdional
implementation of Dijkstra’s algorithm. This overhead iways expressed
in ‘bytes per node’. Alternatively, we sometimes give th&l disk space
(in MB), which is the space that is needed to store the originaph to-
gether with the preprocessed auxiliary data on hard dislods not include
volatile data structures like the priority queues.

7.3 Methodology

7.3.1 Random Queries

As a simple, widely used and accepted performance measereyvgueries
using source-target pairs that are pickedformly at random The advan-
tage of this measure is that it can be expressed by a singte fidne average
query time) and that it is independent of a particular ajggili. In addition
to the average query time, we also often given the averagetsspace size
and the average number of relaxed edges. As basis for caopariwe
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use Dijkstra’s algorithm: the ternspeeduprefers to the ratio between the
average query time or the average search space size ofrBikatgorithm
and the corresponding measurement of the algorithm whaterpance is
studied. Unless otherwise stated, in our experiments, wke 30 000 ran-
dom source-target pairs.

7.3.2 Local Queries

For use in applications it is unrealistic to assume a unifdistribution of
queries in large graphs such as Europe or the USA. On the btet,
it would be hardly more realistic to arbitrarily cut the gnajmto smaller
pieces. Therefore, we decided to also measocal querieswithin the
big graphs: We choose random sample poindésd for each power of two
r = 2%, we use Dijkstra’s algorithm to find the nodavith Dijkstra rank
rks(t) = r. We then use our algorithm to make aii-query. By plotting
the resulting statistics for each value= 2*, we can see how the perfor-
mance scales with a natural measure of difficulty of the quég/represent
the distributions as box-and-whisker plo6]: each box spreads from the
lower to the upper quartile and contains the median, thekehssextend to
the minimum and maximum value omitting outliers, which atgd indi-
vidually. Such plots are based on 1000 random sample peirisr some
examples, see Figur&s3, 7.6, 7.8, and7.12

7.3.3 Worst Case Upper Bounds

For any bidirectional approach where forward and backweedch can be
executed independently of each other—this applies bothgioway hier-
archies and highway-node routing—, we can use the follov&aipnique
to obtain aper-instance worst-case guaranjeee., an upper bound on the
search space size for any possible point-to-point quenafgiven fixed
graphG: By executing a query from each node @fto an added isolated
dummy node and a query from the dummy node to each actual ndtle i
backward graph, we obtain a distribution of the search spamss of the
forward and backward search, respectively. We can comlmtte distribu-
tions to get an upper bound for the distribution of the seapdce sizes of
bidirectional queries: whef_, (z) (F—_(z)) denotes the number of source
(target) nodes whose search space consisisrafdes in a forward (back-
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ward) search, we define
Folz)= ) Folz) Fe(y), (7.1)

T+y=z
i.e.,F(z) is the number of-t-pairs such that the upper bound of the search
space size of a query fromto ¢ is z. In particular, we obtain the upper
boundmax{z | F.(z) > 0} for the worst case without performing aif
possible queries. Examples can be found in Figidrésand?7.9.

For bidirectional approaches that employ a distance tabiés—ap-
plies both to highway hierarchies and transit-node routing very similar
method can be used to derive histograms for the number oseddable
entries: LetF’, (z) denote the number of source nodes witforward en-
trance points to the topmost core (in case of highway hibrasy or with
x forward levelL access nodes (in case of transit-node routitig).(x) is
defined analogously. Then, a distribution for the numbembfe accesses
can be derived by replacing+ y = z with = - y = z in Equation7.1and
thus, using

FL(z)= ) Fllz) FL(y) (7.2)
TY=z

Figures7.5and7.13have been obtained by this means.

7.4 Highway Hierarchies

7.4.1 Parameters

Default Settings. Unless otherwise stated, the following default settings
apply. We use thenaverick factorf = 2(i — 1) for thei-th iteration of
the construction procedure, the contraction rate 2, the shortcut hops
limit 10, and the neighbourhood siZé¢ = 30 for Europe andd = 40 for
both North American networks—the same neighbourhood sizeséd for

all levels of a hierarchy. First, we contract the originaagn® Then, we
perform five iterations of our construction procedure, whitetermines a
highway network and its core. Finally, we compute the distatiable for all
level-5 core nodes.

8In Section3.2, we gave the definition of the highway hierarchies where vsedonstruct
a highway network and then contract it. We decided to chamgetder in the experiments,
i.e., to start with an initial contraction phase, since weaskied a better performance in this
case.
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Self-Similarity. For two levels/ and /¢ + 1 of a highway hierarchy, the
shrinking factoris the ratio betweef¥;| and| £y, |. In our experiments, we
observed that the highway hierarchies of Europe and the USr wimost
self-similarin the sense that the shrinking factor remained nearly urgdmh
from level to level when we used the same neighbourhood RiZer all
levels—provided that/ was not too small.

Figure7.1demonstrates the shrinking process for Europe. Note that th
first contraction step is not shown. In contrast to our defaettings, we
do not stop after five iterations. For most levels dhd> 70, we observe
an almost constant shrinking factdwhich appears as a straight line due to
the logarithmic scale of the y-axis). The greater the nesgilhood size, the
greater the shrinking factor. The last iteration is an eoep the highway
network collapses, i.e., it shrinks very fast because ntidgsre close to the
border of the network usually do not belong to the next levéhe highway
hierarchy, and when the network gets small, almost all nadeslose to the
border. In case of the smallest neighbourhood size<( 30), the shrinking
factor gets so small that the network does not collapse eftenlat levels
have been constructed.

#edges

100 | -

. ' ' Ly
0 2 4 6 8 10 12 14

level

Figure 7.1: Shrinking of the highway networks of Europe. Huferent
neighbourhood sizeH and for each levet, we plot|Ej |, i.e., the number
of edges that belong to the core of level

"Detailed numbers foff = 70 can be found in Table.1in Section3.1
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Varying the Neighbourhood Size. Note that in order to simplify the ex-
perimental setup, all results in the remainder of Secfidnlhave been ob-
tained without rearranging nodes by level. This simplifmais unproblem-

atic since we want to demonstrate the effects of choosirfigrdift parameter
settings and at this, threlative performance is already very meaningful.

In one test series (Figurg?2), we used all the default settings except for
the neighbourhood sizH, which we varied in steps of 5. On the one hand,
if H is too small, the shrinking of the highway networks is ledeaive so
that the level-5 core is still quite big. Hence, we need mitie tand space
to precompute and store the distance table. On the other, ifahldgets
bigger, the time needed to preprocess the lower levelsasesbecause the
area covered by the local searches depends on the neigbbdwsize. Fur-
thermore, during a query, it takes longer to leave the loweels in order
to get to the topmost level where the distance table can ki Udaus, the
query time increases as well. We observe that the prepliogegse is min-
imised for neighbourhood sizes around 40. In particula,aptimal neigh-
bourhood size does not vary very much from graph to graphthi@eravords,
if we used the same parametdr, say 40, for all road networks, the result-
ing performance would be very close to the optimum. Obvigugioosing
different neighbourhood sizes leads to different spaoe-trade-offs.

N e S e O T T T T T L7 T T T T
B Europe —— 16 R
= > 80 — FUSA/CAN -X- 15 L Y
£ 3 T USA - : ¥
) 270 H 7 14 ;
E 5 % 13 |
o 5% 212
£ = L
§ 2 50 > 1'1
o 5] ] o
s 3 40 & ool
> g 08 %
o 9 30
GE) 0.7
0l 111 25 [ N

0.6
20 30 40 50 60 70 80 90 20 30 40 50 60 70 80 90 2030405060 708090

Figure 7.2: Preprocessing and query performance dependitige neigh-
bourhood sizdd.
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Varying the Contraction Rate. In another test series (Tabfed), we did
not use a distance table, but repeated the constructioessamntil the top-
most level was empty or the hierarchy consisted of 15 levile. varied
the contraction rate from 0.5 to 2.5. In case of = 0.5 (andH = 30),
the shrinking of the highway networks does not work propedythat the
topmost level is still very big. This yields huge query timeShoosing
larger contraction rates reduces the preprocessing amy tjones since the
cores and search spaces get smaller. However, the memag agsd the
average degree are slightly increased since more shoepeitsitroduced.
Adding too many shortcuts: (= 2.5) further reduces the search space, but
the number of relaxed edges increases so that the querydiehesrse.

Table 7.4: Preprocessing and query performance for thepearoroad net-
work depending on the contraction rate‘overhead’ denotes the average
memory overhead per node in bytes.

contr. 'PREPROCESSING _ QUERY
ratec tw_ne over odeg time #settled #relaxed
[min] head ' [ms] nodes edges
0.5 83 30 3.2| 391.73 472326 1023944
1.0 15 28 3.7 5.48 6396 23612
1.5 11 28 3.8 1.93 1830 9281
2.0 11 29 4.0 1.85 1542 8913
25 11 30 4.1 1.96 1489 9175

Varying the Number of Levels. In a third test series (Tablg5), we used
the default settings except for the number of levels, whiehvaried from

6 to 11. Note that the original graph and its core (i.e., tiseilteof the first

contraction step) counts as one level so that for examplevél$’ means
that only five levels are constructed. In each test case tandis table was
used in the topmost level. The construction of the highegltewf the hier-
archy is very fast and has no significant effect on the pregssiog times.
In contrast, using only six levels yields a rather largeatise table, which
somewhat slows down the preprocessing and increases themnesage.
However, in terms of query times, ‘6 levels’ is the optimabide since us-
ing the distance table is faster than continuing the seardtigher levels.
We omitted experiments with less levels since this woulddyiery large

distance tables consuming very much memory.
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Table 7.5: Preprocessing and query performance for thepearoroad net-
work depending on the number of levels. ‘overhead’ dendiesaverage

memory overhead per node in bytes.

PREPROC QUERY
# time over-| time #settled
levels | [min] head| [ms] nodes
6 12 48| 0.75 709
7 10 34| 0.93 852
8 10 30| 1.14 991
9 10 30| 1.35 1123
10 10 29| 1.54 1241
11 10 29| 1.67 1326

Results for further combinations of neighbourhood sizentramtion
rate, and number of levels can be found in Tablesand7.8.

7.4.2 Main Results

Table 7.6 summarises the key results of the experiments where we apply

the default parameters and perform random queries (asfiggen Sec-

tion 7.3.10).

Table 7.6: Overview of the key results. Note that ‘worst t@&san upper
bound foranypossible query in the respective graph aotionly within the

chosen sample (cp. Sectigmi.5.

Europe USA/CAN USA (Tiger)

PARAM. H 30 40 40

PREPROC CPU time [min] 13 17 15
@overhead/node [byte] 48 46 34
CPU time [ms] 0.61 0.83 0.67
#settled nodes 709 871 925

QUERY #relaxed edges _ 2531 3376 3823
speedup (CPU time) 9935 7259 9303
speedup (#settled nodes) 12715 10750 12889
worst case (#settled nodes) 2388 2428 2505
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Table 7.7: Preprocessing and query performance for thepearoroad net-
work depending on the contraction ratend the neighbourhood sizé.
We do not use a distance table, but repeat the constructamesgs until the
topmost level is empty or the hierarchy consists of 15 levels

contr. nbh. PREPROCESSING . QUERY

ratec size l tw_ne over- odeg. time #settled  #relaxed
[min]  head [ms] nodes edges
30 83 30 3.2| 391.73 472326 1023944
40 83 28 3.2| 267.57 334287 711082
50 87 27 3.2| 188,55 242787 506 543
0.5 60 86 27 3.2| 135.27 177558 362748
70 87 26 3.2| 101.36 135560 271324

80 89 26 3.1 73.40 99857 196 150

90 87 25 3.1 55.02 75969 146 247

30 15 28 3.7 5.48 6396 23612

40 15 28 3.7 2.62 3033 11315

50 17 27 3.6 2.13 2406 8902

1.0 60 18 27 3.6 1.93 2201 8001
70 19 26 3.6 1.80 2151 7474

80 20 26 3.6 1.79 2193 7392

90 22 26 3.6 1.78 2221 7268

30 11 28 3.8 1.93 1830 9281

40 12 28 3.8 1.72 1628 7672

50 13 27 3.7 1.56 1593 6975

1.5 60 14 27 3.7 1.53 1645 6697
70 15 27 3.7 1.51 1673 6590

80 17 27 3.7 1.51 1726 6719

90 18 27 3.7 1.54 1782 6655

30 11 29 4.0 1.85 1542 8913

40 11 29 3.9 1.64 1475 7646

50 12 28 3.9 1.48 1470 6785

2.0 60 14 28 3.8 1.46 1506 6650
70 15 28 3.8 1.45 1547 6649

80 16 27 3.8 1.49 1611 6935

90 17 27 3.8 1.53 1675 6988

30 11 30 4.1 1.96 1489 9175

40 11 29 4.0 1.70 1453 7822

50 12 29 4.0 1.58 1467 7119

25 60 14 29 3.9 1.57 1493 7035
70 15 28 3.9 1.54 1536 6905

80 16 28 3.9 1.55 1583 7094

90 18 28 3.9 1.58 1645 7204
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Table 7.8: Preprocessing and query performance for thepgaroroad net-
work depending on the number of levels and the neighbourlsamd? . In
the topmost level, a distance table is used.

nbh. _ PREPROCESSING _ QUERY
#levels size [ time over- odeg time #settled #relaxed
[min]  head | [ms] nodes edges
40 14 60 3.9| 0.67 691 2398
50 13 40 3.9 0.77 818 2892
5 60 14 32 3.8| 0.87 938 3361
70 15 30 3.8| 0.96 1058 3837
80 16 28 3.8/ 1.05 1165 4278
920 17 28 3.8/ 1.13 1269 4697
30 12 48 4.0/ 0.75 709 2531
40 11 33 3.9 0.87 867 3171
50 12 29 3.9| 0.99 1015 3759
6 60 13 28 3.8/ 1.10 1157 4299
70 15 28 38| 1.21 1292 4837
80 16 28 3.8/ 1.30 1414 5311
920 17 27 3.8| 1.40 1521 5817
30 10 34 4.0/ 0.93 852 3195
40 11 29 3.9 1.07 1025 3894
50 12 28 39| 1.20 1187 4538
7 60 13 28 3.8/ 1.32 1344 5166
70 15 28 3.8/ 1.39 1462 5689
80 16 27 3.8| 1.47 1578 6179
920 18 27 3.8 1.53 1668 6661
30 10 30 40| 1.14 991 3853
40 11 29 3.9 1.27 1171 4624
50 12 28 39| 1.36 1321 5283
8 60 14 28 3.8| 1.43 1455 5887
70 15 28 3.8| 1.46 1546 6338
80 16 27 3.8| 1.48 1611 6935
920 18 27 3.8/ 1.53 1675 6988
30 10 30 4.0/ 1.35 1123 4532
40 11 29 39| 1.45 1289 5338
9 50 12 28 3.9| 1.48 1417 5931
60 14 28 3.8| 1.47 1506 6429
70 15 28 3.8| 1.46 1547 6649
30 10 29 4.0 1.54 1241 5214
10 40 11 29 39| 157 1380 6012
50 12 28 39| 151 1468 6470
60 14 28 3.8| 1.46 1506 6650
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7.4.3 Local Queries

Figure7.3shows the query times according to the methodology intreduc
in Section7.3.2 Note that for ranks up t@'® the median query times are
scaling quite smoothly and the growth is much slower tharettponential
increase we would expect in a plot with logarithmicaxis, lineary axis,
and any growth rate of the form? for Dijkstra rankr and some constant
power p; the curve is also not the straight line one would expect feom
query time logarithmic in-. For ranksr > 2%, the query times hardly rise
due to the fact that the all-pairs distance table can bridgegap between
the forward and backward search of these queries irresgpeatidealing
with a small or a large gap. In case of Europe and USA/CAN, thery
times drop forr = 22 sincer is only slightly smaller than the number of
nodes so that the target lies close to the border of the regpecad network
which implies some kind of trivial sense of goal directiom floe backward
search (because, in the beginning, we practically canndantgahe wrong
direction).
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Figure 7.3: Local queries.

7.4.4 Space Saving

If we omit the first contraction step and use a smaller cotitracrate
(= less shortcuts), use a bigger neighbourhood size higher levels
get smaller), and construct more levels before the distaaioke is used
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(= smaller distance table), the memory usage can be reducsatiecably.
In case of Europe, using seven levdis = 100, and: = 1 yields an average
overhead per node of 17 bytes. The construction and quepstintrease
to 55 min and 1.10 ms, respectively.

7.4.5 Worst Case Upper Bounds

We apply the techniques introduced in SectioB.3 Figure7.4 visualises
the distribution of the search space sizes as a histogram.

Similarly, Figure7.5represents the distribution of the number of entries
in the distance table that have to be accessed durisgtaquery. While the
average values are reasonably small (4 066 in case of Eutbpeyorst case
can get quite large (62 379). For example, accessing 62 3ri@sim a table
of size 9 351x 9351 takes about 1.1 ms, where 9 351 is the number of nodes
of the level-5 core of the European highway hierarchy. Heimtesome
cases the time needed to determine the optimal entry in Standie table
might dominate the query time. We could try to improve thestoase by
introducing a case distinction that checks whether the rurmobentries that
have to be considered exceeds a certain threshold. If so,oulwot use
the distance table, but continue with the normal searchessocHowever,
this measures would have only little effect on thesrageperformance.

1. I

N Europe

10'? |- I -l USA/CAN ----- _
oyt T4, USA(Tiger) _

0 500 1000 1500 2000 2500
Search Space Size

Figure 7.4: Histogram of upper bounds for the search spaes sif s-t-
queries. To increase readability, only the outline of tretdgram is plotted
instead of the complete boxes.
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Figure 7.5: Histogram of upper bounds for the number of estin the
distance table that have to be accessed duringtaguery.

7.4.6 Outputting Complete Path Descriptions

So far, we have reported only the times needed to computédntireest-path
length between two nodes. Now, we determine a complete idésor of
the shortest path. In Table9we give the additional preprocessing time and
the additional disk space for the unpacking data structireghermore, we
report the additional time that is needed to determine a ¢etendescription
of the shortest path and to travetsesumming up the weights of all edges
as a sanity check—assuming that the query to determine tréestipath
length has already been performed. That means that theaigedge time
to determine a shortest path is the time given in Tabteplus the query
time given in previous tablés Note that Variant 1 is no longer supported
by the current version of our implementation so that the rensin the first
data row of Tabl&’.9have been obtained with an older version and different
settings.

We can conclude that even Variant 3 requires little addaigmrepro-
cessing time and only a moderate amount of space. With \{&8jahe time
for outputting the path remains considerably smaller thantime to deter-

8Note that we dmot traverse the path in the original graph, but we directly sitwn
assembled description of the path.

°Note that in the current implementation outputting pathcdpsions and the feature to
rearrange nodes by level are mutually exclusive. Howelrerjg not a limitation in principle.
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mine the path length and a factor 3-5 smaller than using MaZiaThe US
graph profits more than the European graph since it has pétthsansider-
ably larger hop counts, perhaps due to a larger number oédegio nodes
in the input. Note that due to cache effects, the time for wttitpg the path
using preprocessed shortcuts is likely to be consideramlgller than the
time for traversing the shortest path in the original graph.

Table 7.9: Additional preprocessing (pp) time, additiodek space and
query time that is needed to determine a complete desaripfithe short-

est path and to traverse it summing up the weights of all ed@ssuming

that the query to determine its lengths has already beeorpestl. More-

over, the average number of hops—i.e., the average patthlenterms of

number of nodes—is given. The three algorithmic variangésdascribed in
Section3.4.3

Europe USA (Tiger)
pp space query #hops pp space query #hops
[s] [MB] [ms] (avg.)|[s] [MB] [ms] (avg.)
Variant1| O 0 17.22 1366 0 0 39.69 4410
Variant2 | 69 126 0.49 1366 68 127 1.16 4410
Variant3 | 74 225 0.19 1366 70 190 0.25 4410

—_—

7.4.7 Turning Restrictions

We did an experiment with the German road network (a subgoépbr Eu-

ropean network) and real-world turning restrictions (gsavided by PTV)
to verify our expectation that incorporating the restdosg into the graph
has only a little effect on the performance. The results asttipe: the pre-
processing time does not change, the total number of nodesdyes in the
highway hierarchy only increases by 4%, and the query tinseshy 3%.

7.4.8 Distance Metric

When we apply a distance metric instead of the usual (and 6@t practi-
cal applications more relevant) travel time metric, thedriehy that is in-
herent in the road network is less distinct since the diffeeebetween fast
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and slow roads fades. We no longer observe the self-sityilarthe sense
that a fixed neighbourhood size yields an almost constairtkshg factor.

Instead, we have to use an increasing sequence of neiglumaligizes to
ensure a proper shrinking. For Europe, we iise= 100, 200, 300, 400,
500 to construct five levels before an all-pairs distancéetebbuilt. Con-

structing the hierarchy takes 34 minutes and entails a meowarhead of
36 bytes per node. On average, a random query then takes 4,8@tiling

4810 nodes and relaxing 33481 edges. Further experimentsfferent

metrics can be found in Sectian5.

7.4.9 An Even Larger Road Network

In order to deal with our new and larger European road netdew Eu-
rope), we use the same parameters as for the old versionr{ioytar, H =
30). We observe a very good shrinking behaviour: we have tlnd&s as
many nodes in the beginning (compared to the old versiort)atier the
construction of the same number of levels only 1.04 times asynmodes
remain. Thus, the same number of levels is sufficient, ordydiktance ta-
ble gets slightly bigger. We arrive at a preprocessing tifne8ominutes, a
memory overhead of 37 bytes per node, and query times of Gs@@mnan-
dom queries; on average, 685 nodes are settled and 2 457adgetaxed.
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7.5 Highway Hierarchies Combined With Goal-
Directed Search

7.5.1 Parameters

Unless otherwise stated, we use the same default settinggeasied in
Section7.4.1 The chosen neighbourhood sizes for all considered metrics
are given in Tabler.10 We use 16 maxCover landmarks that have been
computed in the level-3 core. The approximate query algoriises a max-
imum relative error of 10%, i.es, = 0.1.

Table 7.10: Used neighbourhood sizes. For the travel timigicnave use
a fixed neighbourhood size for the construction of all levéler the other
two metrics, we use linearly increasing sequences as naighbod sizes
of the different levels. For Europe with the travel time netwe have a
different neighbourhood size in case that we do not use ardisttable ({)
and in case that we use one (DT).

Europe USA (Tiger)
metic| @ | DT 0 | DT
time 40 | 30 40 | 40
dist 60, 120, 180,.. | 60, 120, 180,..
unit 40, 50, 60, .. | 60,120, 180, ..

7.5.2 Using a Distance Table and/or Landmarks

As already mentioned in Sectidh4.2 using a distance table can be seen
as adding a very strong sense of goal direction after theafdfree topmost
level has been reached. If the highway query algorithm @uitidistance
table) is enhanced by the ALT algorithm, the goal directiomes into ef-
fect much earlier. Still, the most considerable pruning@efioccurs in the
middle of rather long paths: close to the source and the tiatige lower
bounds are too weak to prune the search. Thus, both optiorisatistance
tables and ALT, have a quite similar effect on the searchespaging either
of both techniques, in case of the European network withtrigneel time
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metrig the search space size is roughly halved (see Tahl®. When we
consider other aspects like preprocessing time, memormyeysand query
time, we can conclude that the distance table is somewhatisufto the
landmarks optimisation. Since both techniques have aaimoint of ap-
plication, a combination of the highway query algorithmwlitoth optimi-
sations gives only a comparatively small improvement caegbao using
only one optimisation. In contrast to the exact algorithne &pproximate
variant reduces the search space size and the query timede@idy—e.g.,
to 19% and 25%, respectively, in case of Europe (relativestoguonly the
distance table optimisation)—, while guaranteeing a maxinmelative er-
ror of 10% and achieving a total ert8rof 0.051% in our random sample
(refer to Tabler.12).

Using adistance metricALT gets more effective and beats the distance
table optimisation since much better lower bounds are mrediuthe nega-
tive effect described in Figuré. 16is weakened. Furthermore, in this case,
a combination with both optimisations is worthwhile: theegutime is re-
duced to 43% in case of Europe (relative to using only theadist table
optimisation). While the highway query algorithm enhanestth a distance
table has 5.9 times slower query times when applied to thefean graph
with the distance metric instead of using the travel timerimethe combi-
nation with both optimisations reduces this performanqe tgaa factor of
3.1—or even 1.2 when the approximate variant is used.

The performance for thenit metricranks somewhere in between. Al-
though computing shortest paths in road networks basedeourtih metric
seems kind of artificial, we observe a hierarchy in this sgenas well,
which explains the surprisingly good preprocessing andygti@es: when
we drive on urban streets, we encounter much more juncticas driv-
ing on a national road or even a motorway; thus, the numbeoad seg-
ments on a path is somewhat correlated to the road type. Iffisutt to
tell why the US road network with the unit metric is considdyamore dif-
ficult to handle than the European network. Originally, wedrusing the
same neighbourhood sizes for both networks. But it turnedhai Europe
shrinks much better and that the US network requires largighbourhood
sizes (cp. Tabl&.10), which has a negative impact on the performance.

19.e., the sum of the path lengths obtained by the approximigterithm divided by the
sum of the shortest-path lengths minus one
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Table 7.11: Comparison of all variants of the highway quéggidthm using
no optimisation (), a distance table (DT), ALT, or both techniques. Values
in parentheses refer approximatequeries.

metric | 0 DT ALT both
Europe

preproc. time [min] 13 13 14 14

time total disk space [MB] 898 1241 1301 1644
#settled nodes 1510 708 786 511 (134)
query time [ms] 1.19 0.60 0.80 0.49 (0.15)
preproc. time [min] 31 32 33 33

dist total disk space [MB] 907 1654 1309 2056
#settled nodes 7685 3261 2445 1449 (125)
query time [ms] 6.99 353 272 151 (0.18)
preproc. time [min] 21 22 23 24

unit total disk space [MB] 903 1358 1302 1757
#settled nodes 3015 1524 1550 1116 (645)
query time [ms] 242 137 155 1.11 (0.68)

USA (Tiger)

preproc. time [min] 16 16 17 18

time total disk space [MB]| 1124 1283 1649 1807
#settled nodes 1553 932 803 627 (132
query time [ms] 1.04 0.70 0.72 0.55 (0.15)
preproc. time [min] 35 38 37 40

dist total disk space [MB]| 1126 2139 1651 2663
#settled nodes 7461 3512 2059 1372 (117)
query time [ms] 6.03 3.73 216 1.37 (0.20)
preproc. time [min] 36 36 38 38

unit total disk space [MB]| 1108 1562 1630 2083
#settled nodes 7126 3676 2781 1778 (306)
query time [ms] 518 3.15 255 1.60 (0.36)

7.5.3 Local Queries

In Figure 7.6, we compare the exact and the approximéié* search in
case of the European network with the travel time metrichénexact case,
we observe a continuous increase of the query times: siredigtance
between source and target grows, it takes longer till bahcbescopes meet.



176 Chapter 7. Experiments

For large Dijkstra ranks, the slope decreases. This canlaiezd by the
distance table that bridges the gap between the forwardaaiavard search
for long-distance queries very efficiently (cp. Sectioa.3.

Up to a Dijkstra rank oR'®8, the approximate variant shows a very sim-
ilar behaviour—even though at a somewhat lower level. Tles,query
times decreasg reaching very small values for very long paths (Dijkstra
ranks 222-2%4). This is due to the fact that thelative inaccuracy of the
lower bounds, which is crucial for the stop condition of thppmximate
algorithm, is less distinct for very long paths: hence, nuishe time, the
lower bounds are sufficiently strong to stop very early. Heaavethe large
number and high amplitude of outliers indicates that samegigoal direc-
tion does not work well even for approximate queries.
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Figure 7.6: Local queries on the European network with theelrtime
metric using the exact and the approximHi#* search.

7.5.4 Approximation Error

Figure 7.7 shows the actual distribution of the approximation errar do
random sample in the European network with the travel tim&imeFor
paths up to a moderate length (Dijkstra raXik), at least 99% of all queries
in the random sample returned an accurate result. Only \evyqueries
approach the guaranteed maximum relative error of 10%.dfgdr paths,
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still more than 93% of the queries give the correct resultl @most 99%
of the queries find paths that are at most 2% longer than theeshgath.
The fact that we get more errors for longer paths corresptmttee running
times depicted in Figuré.6: in the case of large Dijkstra ranks, we usually
stop the search quite early, which increases the likelitafah inaccuracy.

While the approximate variant of the ALT algorithrh7] gives only a
small speedup and produces a considerable amount of irdecesults (in
particular for short paths), the approximaiél* algorithm is much faster
than the exact version (in particular for long paths) andipoes a compar-
atively small amount of inaccurate results. This diffeeeremainly due to
the distance table, which allows a fast determination oeufpounds—and
thus, in many cases early aborts—and provides accuratedistence sub-
paths, i.e., the only thing that can go wrong is that the $eprocesses in
the local areas around source and target do not find the rightentrance
points.

In Table7.12 we compared the effect of different values for the maxi-
mum relative erroe. We obtained the expected result that a larger maximum
relative error reduces the search space size considerabithermore, we

| | | | | | | |
217 918 519 520 521 22 528 o2

Dijkstra Rank
Figure 7.7: Actual distribution of the approximation erfora random sam-
ple in the European network with the travel time metric, gred by Dijkstra
rank. Note that, in order to increase readability, the \saxarts at 93%, i.e.,
at least 93% of all queries returned an accurate result.
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had a look at the actual error that occurs in our random samm@elivided
the sum of all path lengths that were obtained by the apprataralgorithm
by the sum of the shortest path lengths (and subtracted dvie)ind that
the resultingotal error is verysmall, e.g., only 0.051% in case of the Euro-
pean network with the travel time metric when we allow a maximrelative
error of 10%.

Table 7.12: Comparison of different maximum relative esror Note that
the observed total errors are given in percent.

metric e [%] | 0 1 2 5 10 20
Europe

time #settled noded 511 459 393 241 134 83
total error [%)] 0 0.0002 0.0016 0.015 0.051 0.107

dist #settled nodes 1449 851 542 217 125 101
total error [%] 0 0.0091 0.0351 0.116 0.211 0.278

unit #settlednodes 1116 1074 1030 879 645 344
total error [%] 0 0.0001 0.0002 0.004 0.024 0.127

USA (Tiger)

time #settled nodeg 627 506 417 249 132 75
total error [%)] 0 0.0025 0.0141 0.062 0.125 0.188

dist #settled nodes 1372 754 465 193 117 94
total error [%] 0 0.0112 0.0302 0.083 0.132 0.166

unit #settled nodes 1778 1450 1170 636 306 157
total error [%] 0 0.0010 0.0065 0.044 0.146 0.282

7.6 Static Highway-Node Routing

All results in this section refer to the European road nekwoWe also
did some experiments on USA/CAN and USA (Tiger), which iadkcthat
highway-node routing works similarly well on North Amencaetworks.

7.6.1 Parameters

We construct a highway hierarchy without a distance tablegubie param-
eters specified in Section5.1 We get a classification of the nodes into 12



7.6. Static Highway-Node Routing 179

levels. In order to obtain a variant with an outstanding loemmory con-
sumption, we also derive a classification into 11 levels,rehevel 1 is just
omitted.

After performing a lot of preliminary experiments, we desido apply
the stall-on-demand technique to the query and the staltiirance tech-
nique to the construction process (with= 5 except for the construction
of level 1 in the 12-level case, where we use= 1). Moreover, we use the
edge reduction step in order to compute minimal overlaylggap

7.6.2 Results

Table 7.13 gives an overview on the performance of different variarits o
static highway-node routing. We consider the 12-levelargri(‘normal’)
and the one with 11 levels (‘save memory’). In each case, wenduish
between a version where we keep the complete overlay-giiepdrthy and
a version where we keep only the search graphs. Note thae#netsspace
sizes differ between the two versions because the stalleomand technique
is slightly less effective when applied only within the ssragraph since a
few useful edges are missing.

In case of the 11-level variant, level 1 consists of compaglt few
nodes so that, on the one hand, a local search in level O takesacatively
long till the search tree is covered by level-1 nodes. Thigeflected in

Table 7.13: Performance of different variants of statichlaigy-node rout-
ing. We give both the time to construct the highway hierar@iHid) that
determines the highway-node sets and the time to constragntilti-level
overlay graph used for highway-node routing (HNR).

normal save memory
complete search grapL complete search graph
constr. HH [min] 11:27
constr. HNR [min] 3:31 7:44
overhead [B/node] 9.5 2. 4.0 0.7
query [ms] 0.89 0.8 1.50 1.44
#settled nodes 957 9811 2328 2369

#relaxed edges 7561 7737 10693 10927
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slower construction and query times. On the other hand, thedverlay
graph is comparatively small so that only little memory i®ded for the
additional edges. When we keep only the forward and backwegdch
graph, the memory overhead is as little as abcuit€oer node (on average).
Even if we consider the normal variant and keep the comphateay-
graph hierarchy, the space overhead is still quite smadk than 10 bytes
per node to store the additional edges of the multi-levetlayggraph and
the level data associated with the nodes. The total diskeSpat33.2 bytes
per node also includes the original edges and a mapping fraginal to
internal node IDs (that is needed since the nodes are reatdgrievel).
Details on the 12-level overlay graph can be found in Tablel We
observe that the shrinking factor decreases from leveltl.I& his is due to
the fact that this particular multi-level overlay graph &sbd on a highway
hierarchy with a rather small neighbourhood size of 40. Nerage node
degree increases from level to level, but stays within nealsie bounds.

Table 7.14: Details on the 12-level overlay graph used faticshighway-
node routing. Note that the edge countersndbinclude edges that can be

only used in a backward search.

level #nodes shrink #edges shrink | average
factor factor| degree

0| 18029721 42199587 2.3
1| 2739732 6.6 11884352 36 4.3
2 423635 6.5 2226290 5.8 5.3
3 118844 3.6 780147 2.9 6.6
4 35617 3.3 292630 2.y 8.2
5 11944 3.0 117123 2.5 9.8
6 4364 2.7 49290 24 11.3
7 1817 24 23108 2.1 12.7
8 864 21 12434 1.9 14.4
9 454 1.9 6579 1.9 14.5
10 249 1.8 4029 1.6 16.2
11 146 1.7 2459 1.6 16.8

"The main memory usage is somewhat higher. However, we caiveexact numbers
for the static variant since our implementation does nawatb switch off the dynamic data

structures.
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Figure7.8 shows the query performance against the Dijkstra rank. The
characteristics are similar to those of highway hieraliop. Figure7.3).
For small Dijkstra ranks, highway-node routing is somevguggerior, while
for large Dijkstra ranks, highway hierarchies take the le@te latter ob-
servation can be explained by the fact that the current imeigation of
highway-node routing does not make use of the distance tgiblmisation
(Section3.4.9).1?
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Figure 7.8: Local queries.

Figure7.9 gives upper bounds for the search space sizes of all possible
s-t-queries (analogously to Figured). We can guarantee that at most 2 148
nodes are settled during any query within the European retgank. This
is slightly better than the corresponding guarantee tlgdivinay hierarchies
give (2388 nodes).

We did a preliminary experiment on the performance of thaliveg-
tional query algorithm (Sectiof.4.2. The search space size increased only
from 957 to 1131 nodes. The effects on the query times areleat get.

On the one hand, a tuned version might take advantage of ¢héhtt we

have to manage only a single priority queue. On the other,haadhave to

keep in mind that the computation of the reliable levels sad@me time as
well.

12An integration of the distance table optimisation would traightforward. However, it
would hinder efficient dynamic updates, which represenntae motivation for the devel-
opment of highway-node routing. Therefore, we omitted ¢fismisation.
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Figure 7.9: Histogram of upper bounds for the search spaes sif s-t-
queries.

7.7 Dynamic Highway-Node Routing

As in the previous section, all results in this section rééethe European
road network.

7.7.1 Parameters

We deviate from the parameters used in the previous secati@nder to

achieve a different trade-off that favours good update sinhe order to de-

termine the highway-node sets, we construct a highway fiaieyaconsisting

of seven levels using the neighbourhood size= 70. This can be done in

16 minutes. Foall further experiments, these highway-node sets are used.
As before, we use the stall-in-advance technique for thestooction

and update process (with:= 1 for the construction of level 1 and:= 5

for all other levels).

7.7.2 Changing the Cost Function

In addition to our default speed profile (introduced in Tabl®, we con-
sider a few other selected speed profiles (which have beeidprbby the
company PTV AG), namely profiles for a fast car, a slow car, arslow
truck. Table7.15 gives the construction time of the multi-level overlay
graph and the resulting average query performance for edetidifferent
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Table 7.15: Construction time of the overlay graphs andygperformance
for different speed profiles using the same highway-node geatr the de-
fault speed profile, we also give results for the case thaétlye reduction
step is applied.

speed profile default (reduced) fastcar slow car slow truclstadce
constr. [min] 1:40 (3:04) 1:41 1:39 1:36 3:56
query [ms] 1.17 (1.122 1.20 1.28 1.50 35.62
#settled nodes 1414  (1382) 1444 1507 1667 7057
#relaxededges 9459 (9162) 9746 10138 11647 217857

speed profiles (using the same highway-node sets). Notéothaiost road
categories, our default profile is slightly faster than PI¥ést car profile.
The last speed profile (‘distance’) in Tablel5 virtually corresponds to a
distance metric since for each road type the same consteed spassumed.
The performance in case of the three PTV travel time profieglite close
to the performance for the default profile. Hence, we caniefftty switch
between these profiles without recomputing the highwayerssds.

For the constant speed profile, we get results that are arasily worse
(but probably still acceptable in most practical applicasi). There are two
reasons for this observation. First, the constant profiferdi significantly
from the travel time profiles so that the chosen highway-neets are no
longer as compatible as in the other cases. Second, as\alobadrved
in case of highway hierarchies, the constant profile is a rddfieult case
since the hierarchy inherent in the road network is lessndist This is
confirmed by the fact that when we replace our standard higinode set
with a set that has been determined using the distance frisgticconstruc-
tion and query time are considerably improved to 2:04 mmatel 9.23 ms,
respectively, but still the query time cannot compete wiith travel time
profiles.

We assume that any other ‘reasonable’ cost function woulkl same-
where between our default and the constant profile.
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7.7.3 Changing a Few Edge Weights (Server Scenario)

In the dynamic scenario, we need additional space to mamagaffected
node setsA’. Furthermore, the edge reduction step is not yet suppanted i
the dynamic case so that the total disk space usage increa8éshytes
per node. In contrast to the static variant, the main memeage is con-
siderably higher than the disk space usage (around a factaod mainly
because the dynamic data structures maintain vacanciesitgat be filled
during future update operations.

We can expect different performances when updating veryoitapt
roads (like motorways) or very unimportant ones (like urbaeets, which
are usually only relevant to very few connections). Thewfdor each of
the four major road categories, we pick 1 000 edges at rantfoaddition,
we randomly pick 1000 edges irrespective of the road type. elach of
these edge sets, we consider four types of updates: firstdde araffic
jam to each edge (by increasing the weight by 30 minutes}prekcwe
cancel all traffic jams (by setting the original weights)irdh we block all
edges (by increasing the weights by 100 hours, which vistalrresponds
to ‘infinity’ in our scenario); fourth, we multiply the weigé by 10 in order
to allow comparisons tol]. For most of these cases, Tallel6 gives
the average update time per changed edge. We distinguisledettwo
change set sizes: dealing with only one change at a time anwkgsing
1000 changes simultaneously.

As expected, the performance depends mainly on the seledgggland
hardly on the type of update. The average execution timesdungle update
operation range between 40 ms (for motorways) and 2 ms (farustreets).
Usually, an update of a motorway edge requires updates of leeds of
the overlay graph, while the effects of an urban-street tgpdee limited to
the lowest levels. We get a better performance when sevhealges are
processed at once: for example, 1000 random motorway segro@m be
updated in about 8 seconds. Note that such an update opevetidbe
even more efficient when the involved edges belong to the $acakarea
(instead of being randomly spread), which might be a comnage & real-
world applications.
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Table 7.16: Update times per changed edge [ms] for diffesatd types and
different update types: add a traffic jam)( cancel a traffic jam-{), block
a road (o), and multiply the weight by 10x).

any road type motorway
[changesét| + — oo X + - 00 X
1|27 25 28 26 400 400 40.1 373
1000| 24 23 24 24 84 81 83 81

national regional urban
[change sét| + - ©| + - o + -
11199 196 203 84 79 8p 21 20 21
1000, 7.1 6.7 713 53 50 58 20 19 20

7.7.4 Changing a Few Edge Weights (Mobile Scenario)

In the mobile scenario, we need the same data structuresthe gerver
scenario, in particular the affected node séfs In addition, in case of the
iterative variant, we need data structures to unpack shisrigven if we
wanted to determine only the shortest path length). Thete sdaictures
require additional 43 seconds of preprocessing time andMB&f disk
space. They have the ability to unpack a shortest path teattsefrom a
random query and contains shortcuts in 0.31 ms on avéradéoreover,
for some technical reasoffs we need 12 MB to store additional copies of
some edges.

Table7.17 shows for the most difficult case (updating motorways) that
using our prudent query algorithm, we can omit the compaghtiexpen-
sive update operation and still get good execution timefeast if only a
moderate amount of edge weight changes occur. The itenaivent per-
forms clearly better: we see a factor of about 14 in the cad®0ichanges.

3These data structures correspond to ‘Variant 2’ introdioekction3.4.3

Hysually, if an edge belongs to several levels of the overkaply hierarchy, we store
it only once and attach the appropriate level informatiore Tterative variant, however,
requires that the overlay graphs stay completely unchandpeth the original graph is mod-
ified. Thus, if there is an edge that belongs to the originapgrand to some overlay graph,
we need two copies so that only the copy in the original graphbie modified.
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This is due to the fact that usually very few iterations arfficiant to deter-
mine a shortest path. The single pass variant is robust fierelift types of
edge weights changes: adding 30 minutes or multiplying tlge eveights
by 10 yields virtually the same results. In case of the iteeatariant, how-
ever, the number of required iterations depends on the teaf¢he delays:
for ‘x 10’, we see somewhat better query times (unless there ayeveny
little changes), which is due to the fact that multiplying tedge weights
by 10 corresponds to an edge weight increase by only abouhdtes on
average.

Table 7.17: Query performance of the single-pass and tratiite variant
depending on the number of edge weight changes on motorweys<
100 changes, 10 different edge sets are considered; 1dd00 changes, we
deal only with one set. In the column ‘affected queries’, e ¢he average
percentage of queries whose shortest-path length is edféxst the changes.

SINGLE PASS ITERATIVE
affected query time query time #iterations
|change sét| queries [ms] [ms] average max

+ 30 minutes & 10)

1| 04% 2.3 (2.3 15 1.5 1.0 (1.0) 2 (2
10| 57%| 85 (8.8 1.7 @17 11 (1.1) 3 (3
100| 40.0% 47.1 (48.0) 3.4 (3.3) 14 (1.4 5 (5)
1000| 83.7% 246.2 (244.8) 229 (17)6) 2.7 (24) 9 (8)

10000, 97.994 939.0 (950.9) 492.0 (323(3) 7.9 (6.3) 27 (22)
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7.8 Many-to-Many Shortest Paths

All results in this section refer to the European road nekwor

7.8.1 Implementations and Parameters

We have an implementation based on highway hierarchies aadased
on highway-node routing. Both implementations follow tipeafications
from Section5.4 quite closely except for the facts that the “accurate back-
ward search” optimisation has not been included yet andféweer bucket
entries” optimisation is realised only in case of highwagda routing. In or-
der to sort the bucket triples (Sectibri.3, we just employ the sort routine
from the Standard Template Library. We expect that usingrgieémenta-
tion that is adapted to the specific situation (e.g., som@angaof counting
sort) could improve the running times for small distancdeslgfor large
distance tables, the sorting time is insignificant, cp. Fegid.10and7.11).

In Table 7.18 we also consider the ‘original’ implementation by Knopp
[51], which is based on highway hierarchies and includes theefducket
entries” optimisation.

For the variant based on highway-node routing, we use a theuki
overlay graph that has been constructed according to tlameders spec-
ified in Section7.6.1 For the experiments using Knopp’s implementation,
a highway hierarchy has been constructed with a neighbodrkze of 70
and a contraction rate of 1.5. We adopted these settingsifaeomplemen-
tation that is based on highway hierarchies.

7.8.2 Results

Table 7.18 gives the times needed to compute distance tables of various
sizes. Our reimplementation based on highway hierarclsieimewhat
slower than Knopp’s implementation since we do not emplay “fewer
bucket entries” optimisation. We did not made the efforgionplement this
optimisation because it was foreseeable that the varisggdoan highway-
node routing would be superior anyway. As a matter of factidme tables,
highway-node routing yields almost three times smallecetien times so

that we need not much more than a minute to compute a 20<020 000
table—in other words, less than Q.8 per table entry.
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Table 7.18: ComputingS| x |S| distance tables using the implementation
based on highway hierarchies (HH) froBi] and our new implementations
based on highway hierarchies (HH) and on highway-node mgutiNR).
Experiments from51] have been performed on a similar, but not identical
machine. All times are given in seconds.

[S] | 100 500 1000 5000 10000 20000
HH[51] | 0.2 1.0 25 238 66.7 211.0
HH 06 1.7 3.3 263 76.6 247.7
HNR 04 0.8 1.4 8.5 23.2 75.1

When comparing ourselves to Dijkstra’s algorithm, we havike into
account that, in contrast to Dijkstra’s algorithm, we neeohs preprocess-
ing time—15 minutes in case of highway-node routing. Howeabe break-
even point is already reached for a ¥777 distance table. That means, if
we want to compute some table larger thanx777, it is worth it to invest
the preprocessing time even if we want to compute only a aitajle for
the given road network. Note that in many applications, wetw@compute
more than one table for a given road network so that the adgerf our
many-to-many algorithm is even more distinct.

For our implementation based on highway hierarchies andribdased
on highway-node routing, Figure&10 and 7.11 show how the running
times distribute over the four parts of the many-to-manyatgm: back-
ward searches, sorting the bucket triples, forward searemel bucket scan-
ning. For larger distance tables, the time spent for buckanrsing gets
dominating so that it is reasonable to choose a smaller teplaeel. This
effect is more distinct in case of highway hierarchies sinigghway-node
routing causes considerably less bucket entries—as wesedn $abler. 19
In addition to various statistics that confirm our analysisrf Sectiorb.4.1,
Table 7.19 provides some experimental results for the many-to-many al
gorithm based on the original/symmetric variant of highwayle routing.
From these data, we can conclude that a direct applicatittheacfymmetric
variant already yields a reasonable performance, butoobly, switching
to the asymmetric variant brings a significant boost (andateslutely no
disadvantages).
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Figure 7.10: ComputingS| x |S| distance tables using the implementation
based on highway hierarchies.
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Figure 7.11: ComputingS| x |S| distance tables using the implementation
based on highway-node routing.
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Table 7.19: Computing a 10 000 10 000 distance table. For the first three
data columns, we give total numbers divided by 10000. Wengjstsh
between the total number of bucket scans (‘all’) and the remobscans in
G, or G, (‘top’) in case of highway hierarchies or highway-node nog
respectively; in each case divided by 100000 000. ‘Overtigriotes the
quotient of bucket scans and bucket entries: this roughiyesponds to
the average overlap of a forward search space and (the albedspart of)

a backward search space. In case of highway-node routin@lseegive
results based on the original/symmetric variant.

bwd search #bucket fwd search #bucketscans time
L : : . verlap

space size  entries  spacesize  all (topcj [s]
highway hierarchies

5 574 574 6474 64 (61) 11.2% 134.6

6 721 721 2093 85 (75) 11.8% 76.6

7 884 884 1154 128 (97) 14.5% 81.6

8 983 983 1012 172 (81) 17.4% 97.7

9 1013 1013 1008 201 (0) 19.9% 109.2
highway-node routing

7 283 168 2090 17 (15) 10.4% 41.3

8 326 191 1179 22 (15) 11.6% 30.6

9 356 207 806 23 (19) 11.0% 253

10 383 223 637 23 (18) 10.4% 23.2

11 412 238 564 29 17y 123% 25.0

sym| 519 359 ¢ 564 154 (N/A) 42.8% 77.8
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7.9 Transit-Node Routing

7.9.1 Parameters

We apply the economical variant to the travel time, the dista and the
unit metric. In each case, in order to determine the highna@ge sets (and
consequently the transit-node sets) we construct a highexarchy us-
ing the neighbourhood sizes from TabelO (DT). In addition, we apply

the generous variant to the travel time metric using thehimgrhood size
H =90.

7.9.2 Main Results

Preprocessing. Table 7.20 gives the preprocessing times for all consid-
ered road networks, metrics, and variants. In addition,eskay facts on
the results of the preprocessing, e.g., the sizes of theitnande sets, are
presented. Itis interesting to observe that for the trare tetric in level 2
the actual distance table size is at most 0.2% of the sizeva (& x |73
table would have.

Table 7.20: Preprocessing statistics. The $i2g| of the level-2 distance
table is given relative to the size of a complglg| x |73| table.| ;| denotes
| A,U Ay, i.e., the size of the union of forward and backward accedss0

level 3 level 2 overhead time
metric variant |75] | As] |75 |Ds|  |A2] | [B/node]  [h]
Europe
time €0 9355 11.4 151450 0.15% 5|3 99 0:25
gen 9458 11.3 293209 0.14% 44 226 1:15
dist eco 14001 22.3 179972 1.03% 8.8 301 2:42
unit  eco 10923 12.1 212014 0.28% 64 138 0:53
USA (Tiger)
time  €C° 6449 6.8 218153 0.20% 5|2 121 0:38
gen 10261 6.1 449945 0.08% 4|5 257 1:25
dist eco 16296 19.1 261759 0.53% 1.5 280 3:37
unit  eco 10901 125 239029 1.00% 6.2 219 3:59
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As expected, the distance metric yields more access noale#té travel
time metric (a factor 2—3) since not only junctions on vest faads (which
are rare) qualify as access nodes. The fact that we haveremsethe neigh-
bourhood size from level to level in order to achieve an giffecshrinking
of the highway networks leads to comparatively high prepssing times
for the distance metric.

Random Queries Using the Travel Time Metric. Table7.21summarises
the average case performance of transit-node routing. Heotravel time
metric, the generous variant achieves average query tinoes than two
orders of magnitude lower than those of highway-node rgufiiable7.13
or highway hierarchies (even when combined with goal-te@search, Ta-
ble7.11). Compared to Dijkstra’s algorithm, we obtain a speedupfattor

1.4 and 1.9illion in case of Europe and the USA, respectively. At the cost

of about a factor three in query time, the economical vasanes around a
factor of two in space and a factor of 2—3 in preprocessing.tim

Finding a good locality filter is one of the biggest challeng¥ our
instantiation of transit-node routing. The values in Tah[&lindicate that
our filter is suboptimal: for instance, only 0.0051% of thedes performed
by the economical variant in the European network would iregal local
search to answer them correctly. However, the localityrfilte forces us
to perform local searches in 0.1364% of all cases. The higtiig level-2
filter employed by the generous variant is considerably reffective, still
the percentage of false positives exceeds 90%.

Random Queries Using the Distance or Unit Metric. For the distance
and unit metric, the situation is worse. A considerably éarfyaction of
the queries continues to level 2 and below. It is importamdte that we
have concentrated on the travel time metric—since we censit travel
time metric more important for practical applications—dawme spent com-
paratively little time to tune our approach for the distaace unit metric.
Nevertheless, the current version shows feasibility aiidashieves an im-
provement of a factor of at least 15 or 80 for the distance drmetric,

respectively, compared to highway hierarchies combined goal-directed
search (Tabl€.11).
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Table 7.21: Query statistics w.r.t. 10 000 000 randomly ehds, ¢)-pairs.
Each query is performed in a top-down fashion. For each lewege report

the percentage of the queries that are not answered cgriectbme level

> ¢ and the percentage of the queries that are not stoppedeafedf (i.e.,
Ly(s,t) is true). Note that only the generous variant can perform a query in
level 1 (but, as the economical variant, it always contirtedsvel 0).

level 2 [%]
level 3 [%] (level 1[%])
metric variant| wrong contd wrong cont'd query time
Europe
eco 0.57 3.36 0.0051 0.1364 119
time 0.0016 0.0180
gen 0.25 1.55 (0.00019) (0.0180 4.3us
dist eco 3.89 13.21 0.0121 0.489 3itH
unit eco 1.06 5.23 0.0070 0.1731 134
USA (Tiger)
eco 0.37 2.44 0.0045 0.1130 R
time 0.0010 0.0124
gen 0.10 0.87 (0.00009) (0.0124 3.3us
dist eco 1.04 5.35 0.0067 0.158y 8@l
unit eco 1.67 8.66 0.0099 0.2729 198

Local Queries Using the Travel Time Metric. Since the overwhelming
majority of all cases is handled in the top level (more tha#o98 case of
the US network using the generous variant), the averagepsafamance
says little about the performance for more local queriestvhiight be very
important in some applications. Therefore, we use the ndetlogy intro-
duced in Sectiofi.3.2to get more detailed information about the query time
distributions for queries ranging from very local to globsge Figurer.12
Note that even the median query times for the largest Dakstnk (which
is the best case) are higher than the average query timasigiVable7.21
This is due to the fact that logging the statistics requiedreate the de-
picted plot causes a certain overhead.

For the generous approach, we can easily recognise theltdwels of
transit-node routing with small transition zones in betwelor ranks2'8—



194 Chapter 7. Experiments

224 we usually have-£3(s,t) and thus only require cheap distance table
accesses in level 3. For rank¥-2'6, we need additional lookups in the
table of level 2 so that the queries get somewhat more exgensi this
range, outliers can be considerably more costly, indigativat occasional
local searches are needed. For small ranks we usually nealdsiearches
and additional lookups in the level-1 table. Still, the camattion of a lo-
cal search in a very small area and table lookups in all theeeld usually
results in query times of less than 3.

In case of the economical approach, we observe a high variamuery
times for rank2!3-2'. In this range, all types of queries occur and the
difference between the level-3 queries and the local gsiesieather big
since the economical variant does not make use of level IsrRall Dijkstra
ranks, we see a growth of the query times that is typical fghlWway-node
routing (or highway hierarchies).
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Figure 7.12: Local queries on the European network with theet time
metric using the economical and the generous variant.
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Distance Table Accesses. Figure7.13represents a histogram of the num-
ber of topmost distance table accesses during-&guery. For Europe,
we observe an average number of table accesses of 75 and mumaxif
37-40=1480. Note that these values are by far smaller than ttre-co
sponding figures in case of highway hierarchies (Sectidr. This is due
to the redefinition of the access nodes mentioned in Settiba

10 T T T T T T T T
s Europe _
USA (Tiger) -

: I
0 200 400 600 800 1000 1200 1400
# Accessed Entries

Figure 7.13: Histogram of the number of entries in the topndistance
table that have to be accessed during-arquery.

7.9.3 Outputting Complete Path Descriptions

Analogously to Sectiory.4.6 in Table 7.22, we report the time that is
needed to determine a complete description of the shorétistamd to tra-
verse it. We restrict ourselves to the travel time metric Hragenerous
variant. Currently, we provide an efficient implementatamiy for the case
that the path goes through the top level. In all other casesjust per-
form a normal highway-node query and use the path unpachiatines of
highway-node routing. The effect on the average query tisgsry small
since most queries are correctly answered using only thegapch. In or-
der to unpack edges of the overlay graphs, we use two diffeegiants that
have been introduced as ‘Variant 2’ and “Variant 3’ in Settto4.3 Note
that the figures for Variant 3 have been obtained using arr ald@emen-
tation of transit-node routing based on highway hieraclaied a different
set of parameters since the current implementation of raghmode routing
does not support this variant.
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Table 7.22: Additional preprocessing (pp) time, additlatiak space and
query time that is needed to determine a complete desgaripfithe short-
est path and to traverse it summing up the weights of all edgssuming
that the query to determine its lengths has already beeprpeefl. More-
over, the average number of hops—i.e., the average patthlanterms of
number of nodes—is given.

Europe USA (Tiger)
pp space query #hops pp space query #hops
[s] [MB] [ps] (avg.)| [s] [MB] [us] (avg.)
Variant2| 18 91 314  137( 29 124 869 4551
Variant 3| 505 227 153 1370 277 221 264 4551

7.10 Comparisons
7.10.1 Static Point-to-Point Techniques

In Table 7.23 we compare various variants of our static point-to-point
route planning techniques—namely highway hierarchiestjcshighway-
node routing, and transit-node routing—with some of thetrmompetitive
methods where experimental results are available for thetéffe European
and the US road network, namely with the REAL algorithm (®ect.2.4,

the edge flag approach (Sectibr?.2, and grid-based transit-node routing
(Sectionl.2.3. We have to be careful due to several reasons:

e The experiments have been performed on different machioesdiffer-
ent AMD Opteron models, to be more precise. Ours runs at 2.8,GH
the one used for REAL and the one used for grid-based trandi-rout-
ing at 2.4 GHz, and the one used for the edge flag approach &H2z6
Note that not only the CPU frequency, but also the memoryitactare
affects the actual machine speed. In fact, our 2.0 GHz madhiacutes
Dijkstra’s algorithm slightly fastéP than the 2.4 GHz machine used for
REAL (using the same benchmark implementation).

e Slightly different versions of the road networks are useteisome ap-
proaches are applied only to the largest strongly connemetponent

Babout 1.5% on the US road network with travel time or distamegric (cp. Table7.1
with [31])
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(cp. Section7.2.2). However, this should not lead to any observable dif-
ferences.

o All approaches allow different choices of parameter sg#tiyielding dif-
ferent space-time trade-offs. We have to pick a few (pddity reason-
able) variants.

¢ In case of the REAL algorithm, the given memory requiremeetsr to
storing landmark distances in a compressed f@#. [

e The implementation of the edge flag approach makes use of dbstB
Graph Library, which seems to cause certain slowdowns. stamce,
their implementation of bidirectional Dijkstra on the Epean road net-
work takes about 7.2 seconds (on their machine), while @kestabout
4.4 seconds (on our machine).

e The preprocessing procedure of the edge flag approach idyiploits
the fact that the US network is undirected. If the approack applied to
a similar, but directed network, the preprocessing timeld/double.

e If we are interested not only in the shortest-path length, diso in a
complete description of the shortest path, all methodshmietge flags
have to spend some additional computation time to gendnateutput.
For highway hierarchies, highway-node routing, and ttamstle routing,
this additional time is given in Tablé.9, Section7.7.4 and Table7.22
respectively. 31] and [3] state times of about 1 ms and 5ms for REAL
and grid-based transit-node routing, respectively, toenet the shortest
path (for the US network with the travel time metric).

e The figures for grid-based transit-node routing that we gjuotable7.23
are based on the most recent, but gtitliminary version of B], which
has been submitted for publication in the final proceedingth® DI-
MACS Challenge. We omit the results for the Western Europead
network since they are very tentative.

e The grid-based implementation of transit-node routingcentrates on
global queries. Short-range queries are comparativelgresipe: query
times of more than 5ms are reported (while long-distanceiegi¢ake
only 12.s). Note that accelerating the local queries would requore c
siderably more memory.
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In spite of these items, we can make some general statemidmstrength
of our transit-node routing implementation is clearly theéremely good
query performance. Highway-node routing has an outstghdliow mem-
ory consumption, while the query times are competitive ghtiay hierar-
chies and REAL or even slightly superior in case of the US noetavork.
Highway hierarchies can achieve very low preprocessingdimr a quite
low memory consumption, while query times are reasonablydga all
cases. REAL's performance is similar to highway hierarsleecept for the
preprocessing times, which tend to be considerably higher.

While in Europe the query times of the edge flag approach cap kp
with those of other techniques with similar memory requieats, the run-
ning times are worse on the US road network. This is due toabts that
the edge flag approach has to visit at least all edges of théeshpath and
that an average shortest path in the US network consists & than three
times as many edges as in Europe (cp. Takk®). With respect to prepro-
cessing times, edge flags are inferior to most other appesacbnsidered
here.

On the one hand, the grid-based transit-node routing hasidemably
slower preprocessing and query times than our transit-nowléng imple-
mentation that is based on highway-node routing. On ther dthed, the
space consumption of the former is much better. Howeves,ishimainly
due to the already mentioned fact that the grid-based trandie routing
concentrates only on answering global queries very effilgien
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Table 7.23: Comparison between vari@iatic route planning techniques:
highway hierarchies (HH), highway-node routing (HNR)ns#-node rout-
ing (TNR), the REAL algorithm, and the edge flag approach (EFR}ase of
the REAL algorithm, there are two different variants: on#wi6 landmarks
and one with 64, where landmark distances are kept fa6 highest-reach
nodes only. In the first three data columns, the respectisevadue is high-
lighted. Rows marked by -acontain results of additional experiments that
have not been published elsewhere.

_ data PREPROCESSING ~ QUERY
method variant from time overhead time  #settled
[min] [B/node] | [ms] nodes
Europe
HH normal 7.4.2 13 48 0.61 709
HH save mem 7.4.4 55 17 1.10 1863
HH + ALT 7.5.2 14 72 0.49 511
HNR normal 7.6.2 15 2.4| 0.85 981
HNR save mem 7.6.2 19 0.7 | 1.44 2369

TNR economical 7.9.2 25 120 0.0110 N/A
TNR generous 7.9.2 75 247 0.0043 N/A

REAL 16,1 B1 97 85 1.22 814
REAL 64,16 B1] 141 36 1.11 679
EF 200regions 36] | 1028 19 1.6 2369
EF 1000 regions 36 | 2156 25 1.1 1593
USA (Tiger)
HH normal 7.4.2 15 34 0.67 925
HH save mem * 70 17 1.21 2143
HH +ALT 7.5.2 18 56 0.55 627
HNR normal * 16 1.6| 0.45 784
HNR save mem * 18 0.7 ] 0.61 1217

TNR economical 7.9.2 38 143 0.0095 N/A
TNR generous 7.9.2 85 278 0.0033 N/A

REAL 16,1 B 64 109 | 1.14 675
REAL 64,16 By | 121 45 | 1.05 540
EF 200regions 36 | 610 10 | 4.3 8180
EF 1000 regions 6] | 1419 21 |33 5522

TNR grid-based 3 900 21 | 0.063 N/A
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7.10.2 Dynamic Point-to-Point Techniques

Table 7.24 contains a comparison between dynamic highway-node i@utin
and the dynamic ALT approacii§| (Sectionl.2.2 with 16 landmarks. We
can conclude that as a stand-alone method, highway-nodiegasi clearly
superior to dynamic ALT w.r.t. all studied aspetts.

Table 7.24: Comparison between tagnamicroute planning techniques:
highway-node routing (HNR) and dynamic ALT-169]. Here, ‘overhead’
denotes the averagt#isk spaceoverhead (in bytes per node). Note that
highway-node routing—depending on the considered saerareeds more
main memory (see Sectioh7.3. We give execution times for both a com-
plete recomputation using a similar cost function and aratedf a single
motorway edge multiplying its weight by 10. Furthermore, gixe search
space sizes after 10 and 1000 edge weight changes (motorAay,for
the mobile scenario. In case of highway-node routing, theafive variant
is used. Time measurements in parentheses have been dhiaiaesimilar,
but not identical machine.

preprocessing static queries updates dynamic queries
time over{ time #settled compl. single #settled nodes
method| [min] head [ms] nodes [min] [mpg] 10 chgs. 1000 chgs.
HNR 19 39 1.17 1414 2 37 1504 17868
ALT-16| (85) 128 (53.6) 74441 (6) (203p6) 75501 255754

18Note that our comparison concentrates on only one variadyémic ALT: different
landmark sets can yield different trade-offs. Also, betémults can be expected when a lot
of very small changes are involved. Moreover, dynamic AL t&n out to be very useful
in combination with other dynamic speedup techniques yebtoe.
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Discussion

8.1 Conclusion

While the traditional view on algorithmics is focused almesclusively on
the design and thneoretical analysi®f algorithms, the paradigm @figo-

rithm engineeringalso includes the implementation aexperimental eval-
uation as an essential part of the development process. Usingviozal-
inputs for the conducted experiments is an important irigredo getting
meaningful results. This general statement applies nptabthe devel-
opment of route planning algorithms. Before 2005 only vanab road

networks were publicly and readily available, which madeegaluation
of new techniques under realistic conditions difficult fonshresearchers.
Since then, we have made considerable contributions tonifiga assem-
bling, and providing (to the scientific community) very largeal-world
road networks. In particular, our versions of the Westermogean and
the US road network have become the basis of the benchmadnaes
used at the 9th DIMACS Implementation Challendé [Since it is diffi-

cult to obtain a representative list of source-target pias originate from
real-world applications and since picking source-targeétsgust uniformly
at random is strongly biased towards very long-distanceiegiewe intro-
duced a methodology that evaluates a given route plannaimigue on a

The largest real-world road network we had at hand at tha tensisted of about
200000 nodes. However, since each bend was modelled asretigide (of degree two),
only around 1 000 nodes had a degree greater than two. Tleusothplexity of this network
was fairly low.
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whole spectrum of queries of different localities. In theamiéme, several
research groups have adopted both our road networks andstiodology
so that now it is comparatively easip compare results.

In fact, we had the impression that since common standards aveil-
able, the race for the best route planning technique hasdammen-
tum, reaching a distinct peak at the DIMACS Implementatidra&nge
in 20067 In this race, we have taken a leading role. Among all static
route planning methods that achieve considerable spegdigsurrently
provide

e the one with the fastest average query time (transit-nodgngp winner
of the DIMACS Challenge, 4.8s, speedup factor 1.4 milliory)

¢ the one with the fastest preprocessing (highway hieraschi@ minutes),
and

e the one with the lowest memory requirements (highway-nodérg, an
overhead of 0.7 bytes per node).

In addition, our point-to-point approaches can deal withygles of queries
very well, our many-to-many algorithm is unrivalled, and are not aware
of any competitive technique that is able to switch to a d#ife cost function
or to handle a moderate amount of traffic jams as efficientlihigeway-
node routing can do this.

Areas of Application. When dealing with point-to-point queries in a
server environment (e.g., route planning systems thatigedheir services
in the internet), transit-node routing can provide excli@sponse times
as long as we consider a static scenario. However, in the afaseline
route planning systems, transit-node routing might evearbeverkill since
a significant amount of time is spent on preparing and tratisiigraph-
ical representations of the result. Hence, the query tinidggbway-node

2sometimes with small modifications

33till, some difficulties remain, in particular the fact thesually different machines are
used to run the experiments.

“4A chronological summary of the ‘race’ can be found 7]

SNumbers refer to our Western European road network withab®umillion nodes and
to our 2.0 GHz machine.
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routing would probably be perfectly sufficient. Furthermarhen applying
highway-node routing, some dynamic scenarios can be hduaglevell.

Highway-node routing is also our method of choice when amréig a
mobile scenario (e.g., a car navigation system). In this,casoncrete real-
isation can take advantage of the conceptual simplicitythedow memory
requirements.

For some optimisation problems in the field of logistics, tafshortest-
path queries are required so that transit-node routing learnt@its strength.
In the special case of a many-to-many problem, our correipgrmany-
to-many algorithm can be used. A particular example is thes(omably
approximate) solution of the travelling salesman problera ioad network,
which requires a computation of the shortest paths betweerintolved
nodes.

A direct application of our approaches to traffic simulasiasless clear
since often time-dependent edge weights have to be cordid€he exten-
sion to such scenarios is one of the topics that we state imekiesection as
open questions.

8.2 Future Work

In the concluding remarks of several chapters, we havalistssible fur-
ther developments of existing work—some of the mentionegepts have
already commenced. In particular, we have started to deéterietter
highway-node sets, to parallelise the preprocessing diwag-node rout-
ing, and to write an implementation of highway-node routioga mobile
device. For the first two projects, first promising, thoughtaéive, results
are available.

In addition to these concrete advancements, there areugan®w chal-
lenges for next generation route planners that arise fr@ctdmsiderably
increasing availability of dynamic road data on the cureamd the upcom-
ing traffic situation and the client's demand for route piagrtailored to his
individual needs:

Considering Current Traffic Situations. One challenge is to deal with a
massiveamount of updates to the cost function. These updates réffiect
current traffic situation, in particular unexpected evdiktstraffic jams and
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their effects on the surrounding area. The frequency anehextf these
updates will increase significantly over the next few yeansesnot only
the coverage of existing monitoring systems like fixed roadssers will
be expanded, but also new techniques like floating car ddkdevividely
spread. So far, existing methods like highway-node routizug cope only
with a moderate amount of changes.

Considering Upcoming Traffic Situations. Another challenge is to in-
corporate predictions for upcoming traffic conditions. I$pecedictions are
based on statistical/historical data and are expressdthbydependent cost
functions, which can project, for example, a slower aversgged during
the morning rush hour. A direct application of existing a@mhes would
fail since a time-expanded representation of a large roaganke would ex-
ceed the available memory. Furthermore, in a time-depdrmtemario, all
bidirectional search techniques face the problem that l&ameously per-
forming a forward and a backward search normally requirekitowledge
of both the exact departure and the exact arrival time.

Multi-Criteria Optimisations. A third challenge is to allow more flexible
cost models, dealing with individual compromises betweaous objec-
tive functions like time, financial costs, convenience,immmental pollu-
tion, and perhaps scenic value. Interestingly, this tapreliated to the prob-
lem of dealing with dynamically changing cost functionshe sense that a
solution for one problem can turn out to be useful for the ofiteblem as
well.
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A

Implementation

An exhaustive description of every single aspect of the é@m@ntation of
our route planning techniques would go beyond the scopeisftiiesis.
Thus, after some rather general statements in Se¢tihrinere, we want to
focus on some patrticularly interesting data structuresgivelsome details
on the respective realisation.

A.1 Graph Data Structures

Although highway hierarchies and highway-node routingctmeely related
so that it would be possible to design a common graph datatstey we
distinguish between two separate implementations, maiag/ to the fact
that we had to introduce a more flexible graph representédiohighway-
node routing in order to allow updates of the multi-level ey graph. Both
implementations share a common interface so that many adigorithms
can work on both graph types.

A.1.1 Highway Hierarchies

The graph is represented adjacency arraywhich is a very space-efficient
data structure that allows fast traversal of the graph. dhee two arrays,
one for the nodes and one for the edges. The e(lgas are grouped by
the source node and store only the ID of the target nodexnd the weight
w(u,v). Each node: stores the index of its first outgoing edge in the edge
array. In order to allow a search in the backward graph, we hastore
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an edge(u, v) also as backward edde, ) in the edge group of node.

In order to distinguish between forward and backward edegsh edge has
a forward and a backward flag. By this means, we can also starevay
edges{u, v} (which make up the large majority of all edges in a real-world
road network) in a space-efficient way: we keep only one cdgy. @) and
one copy of(v, u), in each case setting both direction flags.

The basic adjacency array has to be extended in order topoce the
level data that is specific to highway hierarchies. In addito the index of
the first outgoing edge, each nodstores its level-0 neighbourhood radius
ro(u). Moreover, for each node, all outgoing edgeséu, v) are grouped by
their level/(u, v). Between the node and the edge array, we insert another
layer: for each node: and each level > 0 thatw belongs to, there is a
level nodeu, that stores the radiug(u) and the index of the first outgoing
edge(u,v) in level £. All level nodes are stored in a single array. Each
nodeu keeps the index of the level nodg. FigureA.1 illustrates the graph
representation.

nodes To 0
i i
level nodes Ty o |\T2 (T3 T4 | T1 T2 (T3 |-
| |
edges

Figure A.1: An adjacency array, extended by a level-noderlay

During construction of the highway hierarchies, we use &wiof this
graph data structure where the level nodes are managedéd liists (since
the number of level nodes per node is not known in advancejer Affie
construction has been completed, we can put all level nauéisei right
order in the array that then represents the level-node.layer
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A.1.2 Highway-Node Routing

The graph data structure used for highway-node routing g sinilar to
the one used for highway hierarchies. Here, we list the ntogbitant
differences:

e For each node, there is a level node for level 0—in contrakighway
hierarchies, where the level-0 data is incorporated in tainmode.

e The nodes are grouped by level. In contrast to highway hibies, this
is easily possible because the node levels are known in aev@mnce
the highway-node sets are considered to be part of the indinis al-
lows dealing with nodes that belong to a certain level witltbe need of
scanning all nodes. Furthermore, we do not need to storeafdr rode
the index of the first level node. Instead, it is sufficient timre only the
respective index for the very first node: of each level. Then, for any
other nodev in level /, the index; of the first level node can be easily
computed;j =i+ (v —u) - (£+ 1), exploiting the fact that each node in
level ¢ has the same number of level nodes (nandely1). Note that in
this equation, we use andv to denote node IDs in the rangen — 1.

e Obviously, in case of highway-node routing, we do not needttwe
neighbourhood radii. Thus, the level nodewfor level ¢ contains only
the last index of the level-edge group of: in the edge array. We can
save some memory by storing only an offset that is added tfirdtedge
index ofu.

e In a multi-level overlay graph, an edgebelongs to some consecutive
rangek../ of levels, i.e.,e € Ex N Exy1 N ... N Ey. This property
has been formally proven irlf]. It is reasonable to store an edge that
belongs to several levels.¢ only once. We put it into the level-edge
group. For performing queries, only this maximum le/éivhich we just
call level/(e) of e) is relevant. For performing updates, however, we are
also interested in the minimum leveel(which we also caltreation level
since this is the level where the edge has been created;tladiterit has
only been upgraded to higher levels). Therefore, we exiylistore k at
each edge.

e Most importantly, we allow the addition and deletion of esigeany time.
Deletion is comparatively simple: we fill the emerging holetbe last
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edge in the same level, which leaves a new hole, which is,rim filled

by the last edge of the next level, and so on; of course, thd-lfesde
data has to be updated accordingly. In order to allow efficiditions
as well, we ensure that if a nodehasz edges, its edge group has a
capacity of at Ieaétmin{Qy | 2¥ > z}, i.e., we reserve some space for
additional edges. Note that for level-0 nodes, we do not needserve
additional space since their edge groups never change. atwing an
edge is straightforward provided that the capacity is naeeded—we
just have to move edges of higher levels to make room at thé sjapt for
the new edge. If, however, the capacity is exceeded, we ¢wpwhole
edge group to the end of the edge array (which is, in fact,iaalele STL
vector) and double its capacity. Of course, the first edgexrd v has to
be updated accordingly. Note that these memory managermatagies
employed by our flexible graph data structure are similanéosé¢ used by
an STL vector.

A.2 Miscellaneous Data Structures

A.2.1 Priority Queue

Specification. Manages a set of elements with associated totally ordered

priorities and supports the following operations:

e insert—insert an element,

e deleteMin- retrieve the element with the smallest priority and remgve

e decreaseKey set the priority of an element that already belongs to the
set to a new value that is less than the old value.

See also Sectiork2.1and2.2

Used byall variants of Dijkstra’s algorithm.

Implementation. We cannot use the priority queue implementation that
the Standard Template Library provides since deereaseKeyperation
is not supported. Therefore, we use our own straightforvidndry heap

The capacity can be even higher if edge deletions have tdkee.pThis is due to the
fact that the capacity is never reduced.
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implementation. We have already mentioned in Sectighlthat using a
more sophisticated priority queue implementation is whjiko bring any

significant speedup. We did a few preliminary experimentth i 4-ary

heap and found an improvement of only 3% for Dijkstra’s aldpon. It can

be expected that the improvement would be even much lowen applied

to one of our route planning techniques where the prioriguguoperations
are less dominant.

A.2.2 Multiple Vector

Specification. A (large) fixed-sized array of resizable arrays.

Used bythe contraction algorithm of highway hierarchies to tenapiby
store shortcuts and by highway-node routing to store thectdtl node sets.

Implementation. Of course, we could just use an STL vector of vectors.
However, if we massively add and remove elements from thesmss, we
incur serious memory fragmentation and waste. It is impotanote thatin
our applications, such a ‘multiple vector’ consists of savaillion vectors.
Alternatively, we could use an array of linked lists, whitlowever, would
not be very efficient, either.

We prefer an implementation that is somehow a combinatidheofwo
just mentioned possibilities. We manage a vector of datelkistceach block
can contain a small fixed number of elements. The blocks cdinked. In
the beginning, all allocated blocks are ‘free’. We keep e fist of all free
blocks. Now, instead of using an array of vectors or an arfdinked lists,
we employ an array of linked blocks. When an element is addddree cur-
rent block is full, a new block is requested from the freedistl appended.
Similarly, empty blocks can be returned. The advantage aygain linked
listimplementation is that we do not have to follow a poirftereach single
element, which can cause a lot of cache misses. The advamtaga vector
of vectors implementation is that the memory overhead isicé=d to the
number of vectors times the (small) block size.



220 Appendix A. Implementation

A.2.3 Multiple Hash Map

Specification. A (large) fixed-sized array of static hash maps.
Used bytransit-node routing to store all distance tables but thentust one.

Implementation. For transit-node routing, we keep larpartial distance
tables, i.e., for a transit-node s&t,/ < L, we have to store aubsetof
the distanceqd(s,t) | (s,t) € T2} (cp. Sectior6.2). The data structure
should allow fast access times and should be space-effishantecided to
use for each node € 7, a hash map that maps a potential target 7, to
the distancei(s, t). Of course, we could use the hash maps that are part of
the STL TR1 extension. However, we are aiming at a more spiogent
solution, which is possible since we can exploit severaliegion-specific
properties: the hash maps are static, i.e., we can build there and for
all; many distances are very small since we want to store thielylistances
that cannot be obtained using higher levels of transit-modéng; the dis-
tribution of the node IDs allows the usage of a very simplehHasiction
(namely the least significant bits); two close nodes typicahve similar
IDs, i.e., the difference of the node IDs is small.

Conceptually, we manage for each node 7, its own hash map with
chaining that map$ to the distancel from s to t. However, the actual
representation is a bit unusual: all hash maps are kept @etbommon
arrays without using any linked lists, as illustrated inUfigA.2.

Let us consider an arbitrary but fixed nodec 7, and assume that
the map fors should containy entries—since we are dealing with static
hash maps, this numbgris known before we construct the hash map. We
computez := |log,(y)| and store it in thenainarray at indexs. We keep
2% buckets fors and use ther least significant bits of as hash function:
we denote the hash ofby h. The elements of a bucket are not stored in
a linked list, but they are placed one after the other in thealled data
array. Since there is only a single data array that contdlieteanents of all
buckets, we need an index structure that allows accessifiyshentry of a
particular bucket. For this purpose, we haveiraiexarray. A consecutive
range of this array, consisting ®f entries, represents the buckets o he
beginninga of this range is stored in the main array (in addition:jo The
sum ofa andh is used to address the index array, which contains the index
c of the first entry of the corresponding bucket in the datayareéative to
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Figure A.2: Using a multiple hash map to look up the distasdhrem s to ¢.

the indexb of the first entry of the very first bucket ¢f The indexb is
stored in the main array as well so that we can easily competegtquired
indexb + c.

Since a bucket can contain several elements with the sanmehhiaist
different keyst, we have to store not only the valdebut also the key so
that we can scan the bucket, compare the keys and returngtitevalue.
At this point, we want to exploit some of the facts mentionbdwe to get
a very space-efficient implementation. Originalky, ¢, andd are 32-bit
values. Note that we need not store théeast significant bits of since
all keys in the bucket agree on these bits anyway. Furthermormany
cases the (32 x) most significant bits ok andt¢ are very similar so that
the difference’ gets very small. It is sufficient to store only this differenc
which in most cases requires no more than 16 bits. Often,dhed is so
small that it fits in 16 bits as well. Therefore, our data arcagsists of 16-
bit entries, and we store the compressed #e&nd the corresponding value
d in two consecutive entries. In the exceptional case thegquires more
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than 16 bits, we fall back on an additional out-of-the-bosthenap (which
is not explicitly depicted in Figuré.2) that maps the paifs, ¢) to d. In the
case of the European road network and the generous varisnainsft-node
routing, this exceptional case applies to only 0.00011%lIdéeel-2 table
entries.

In the other exceptional case thtis sufficiently small, but/ is too
large, we store an escape value insteadlafid use the next two data entries
to represend.

For the same example as above (Europe, generous, levele, taking
standard hash maps with chaining would require at4eh862 MB, while
using our multiple hash map occupies only 645 MB, which is than 50%.

A.2.4 Fast Set

Specification. Manages a set of integers from a not too large range.
Should be optimised for speed, not for space efficiency.

Used bythe update procedure of highway-node routing to tempagregip-
resent the set of nodes where the preprocessing step sheuiepbated
from.

Implementation. Let us assume that the set contains only integers from
0..(k — 1). We represent the set by a bit vector of sizewhich has the
property that the-th bit is set iffi belongs to the set, and an additional
element vector that explicitly stores the elements. Checkihether an
element belongs to the set can be done in constant time usrigjttvector.

If an element should be inserted, we check whether it already belongs to
the set. If not, we set theth bit and add to the element vector, which can
be done in amortised constant time. Scanning through atiei¢s can be
done using the element vector in time linear in the size ok#éte

2We disregard empty buckets.
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A.2.5 Fast Edge Expander

Specification. Provides data structures to unpack shortcut edges, i.e., to
determine the paths in the original graph that corresporldeiehortcuts.

Used by highway hierarchies, highway-node routing, and transiden
routing.

Implementation. As already mentioned in Sectidé4.3 we do not store
a sequence of node (or edge) IDs to describe a path, but vegrgipiindices,
i.e., for each edge = (u, v) on the path, we storgz — f), wheref denotes
the ID of u’s first edge. We put all hops of all represented paths into one
large hopsvector, which consists of 4-bit entries. Since the degremadt
nodes is quite small, one such entry is usually sufficienbtd b hop index.
In exceptional cases, we write an escape value and use nzoretie entry
to store the hop index.

We need an index structure to access the first entry of the dauesce
that we want to read. Note that we do not need an additionaitgroto
the end of the sequence since we know that we have gotten enthas
soon as the target of the shortcut edge has been reached.ndirall edges
are shortcut edges, it would be wasteful to build an index witentries.
Instead, we use a multi-level index, as depicted in FiguBe
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all hops that represent
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>

Figure A.3: Using the fast edge expander to access the hapsefresent
the shortcut edge = (u,v). The ID ofu’s first edge is denoted by.
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We keep a node hash map that contains entries only for nodekdtie
outgoing shortcuts. Only for edges of such nodes, we stonedax for the
hops vector. However, since these indices are very sinulaalf edges of
the same node, we store only smalbffsetsand add the index of the first
hop ofu’s first shortcut edge to obtain the actual index. The offgetgor
consists of 8-bit entries. If an offset does not fit, we stareescape value
and use an additional hash map to store the direct mappingtfie ID of
the shortcut to the right index in the hops vector. Note thi éxception
hash map is not included in Figue3.

Optionally, we use additional, quite similar data struetuto store the
complete, non-recursive descriptions of the shortcutskiéiang to the top-
most level (cp. Sectiof.4.3 Variant 3).

A.2.6 Search Spaces

Specification. A space-efficient representation of search spaces.

Used bytransit-node routing during preprocessing. Could alsodsal by
the many-to-many algorithrh.

Implementation. As mentioned in Sectio®.4.3 during the backward
searches, we manage a single resizable array represdrgisgtf (u, t, d) |

t € T A (u,d) € T(t)}. Inaddition to a vector that stores its elements
(u,t,d) in three 32-bit integers, we have one vector whose elementsist

of one 32-bit and two 16-bit integers. Similarly to Sectir2.3, we want

to exploit the fact that the difference of the IDs @fand¢ is often quite
small. Thus, if possible, we stofe, ¢ — u, d) in the more compact vector;
if not, we use the normal vector. The order of the search selereents is
irrelevant. Therefore, when processing the search spatags\ve just scan
the two vectors one after the other.

3In the current version of the many-to-many implementatibie, compression features
are switched off since the size of the search spaces is it#glighen compared to the size
of the distance table.
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A.2.7 Access Nodes

Specification. A space-efficient representation of access nodes.
Used bytransit-node routing.

Implementation. Basically, we use a data structure that is very similar to
an adjacency array, i.e., we have one large data vectorinogaall the
access node information and one index vector that contairesaich node:

the index of the first access node in the data vector. For twlesw < v, it

is not always true that the access nodes pfecede the access nodesvof

in the data vectdt. Therefore, in such cases, we cannot use the index stored
for the successor node to determine the end of the accessseqdence.
Instead, we use an explicit end marker, i.e., a value thadtisised by any
regular access node.

The data vector consists of 16-bit entries. We have to ke ttof the
access node and the distances to and from the access node.nestore
the ID w.r.t. the original graph, but we have a list of all s@modes and we
store only an index within this list. A level-3 access nodst@ed using 14
bits, a level-2 access node using 16 + 14 bits, which limigsrtraximum
number of transit nodes in the current implementaﬁdn. both cases, we
have two remaining bits to indicate whether this particalecess node can
be used only in forward or backward direction or in both dimts, and in
the latter case, whether both directions share the sanmadest Depending
on these direction flags, we store one or two distances; giples using
one 16-bit entry each; if not, writing an escape value andgusio 16-bit
entries each.

When we apply the generous variant of transit-node routiniipé Eu-
ropean road network, storing the level-3 access nodesipdweuld take
2512 MB. With our space-efficient representation, howewerneed only
1101 MB.

“This is due to the fact that usually, we do not determine tlcesgnodes of node 0, then
the access nodes of node 1, and so on, but we determine tres amxies of the nodes that
belong to a certain transit-node set (which may have arpittade 1Ds) and then hand the
access nodes down to all other nodes.

50f course, this restriction could be easily changed.

5i.e., forward and backward access nodes separately, 38rcgess node ID and 32 bit
per distance
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Zusammenfassung

Die Bestimmung einer optimalen Route in einem Strallennatizeinem
gegebenen Start- zu einem gegebenen Zielpunkt ist eind?nolalas viele
Menschen taglich beschatftigt. Als Hilfsmittel werden meitiveile verbrei-
tet Navigationsgerate eingesetzt oder die Routenberaghfindet im Vor-
aus am Computer statt, beispielsweise unter Verwendures €ier zahlrei-
chen im Internet verfligbaren Dienste. Neben der Routenptarfir den
einzelnen PKW gibt es weitere wichtige Anwendungen belispigise im
Bereich der Logistik.

Esist naheliegend, ein Stral3ennetz als Graphen zu refigisan Dabei
entspricht eine Stralenkreuzung einem Knoten und ein®&tadschnitt
einer Kante. Aus Sicht der Graphentheorie handelt es sioh Oai der
Routenplanung um das sogenankiiiezeste Wege ProblerVir betrachten
zwei Varianten: die Berechnung des kiirzesten Weges vomeStart- zu
einem Zielpunkt und — fir gegebene Knotenmen§amd 7" — die Berech-
nung einer Distanztabelle, die fur jedes Knotengaat) € S x T die Lange
des kurzesten Weges enthalt. Prinzipiell konnten wir finld&roblemvari-
anten auf die ‘klassische’ Losung aus der Graphentheorigckgreifen,
den Algorithmus von Dijkstra. Fir grof3e Stral3ennetze wispielsweise
das von Westeuropa mit ca. 18 Millionen Stral3enkreuzungére wieses
Verfahren allerdings fir viele praktische Anwendungenangsam. Kom-
merzielle Anbieter setzen daher vielfach schnelle, hgscise Verfahren
ein, die darauf verzichten, optimale Routen zu berechneies DBat nicht
nur offensichtliche Nachteile fir den Benutzer, sonderohdiiir die Ent-
wickler, da bei jeder Anderung des Programms aufwendigigeprerden
muss, ob sich die Qualitéat der berechneten Routen noch eémegewissen
Rahmen bewegt.

Aus diesen Grinden besteht ein grol3es Interesse an exakten u
schnellen Routenplanungstechniken. Ein Grundansatzeidieh, zun&chst
etwas Zeit in einen einmaligen Vorberechnungsschritt mestieren, um
Hilfsdaten zu erzeugen, die dann bei allen Routenplanufigsgen ver-
wendet werden kdnnen, um schnelle Suchzeiten zu erreitharauch mit
groRen Straf3ennetzen unter Einsatz von begrenzten Resaurgehen zu
kdénnen, sollten sowohl der Vorberechnungsaufwand als dechendtigte
Speicherplatz fur die Hilfsdaten mdglichst klein sein. W@ar hinaus wird
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angestrebt, Verfahren zu entwicklen, die mit dem gesampskiBim an
moglichen Anfragen gut zurecht kommen, also sowohl mit llxkaAnfra-

gen innerhalb der gleichen Stadt als auch mit Routenbevecjam quer
durch einen Kontinent. Des Weiteren ist eine gewisse Hlégibwin-

schenswert: Dazu gehdren das Einbeziehen von unerwaiesignissen
wie beispielsweise Staus oder der Wechsel des Geschwaitdigkofils, um
optimale Routen fUr verschiedene Fahrzeugtypen berechnkénnen.

In dieser Arbeit stellen wir drei verschiedene beweisbardide und
effiziente Verfahren fir die Punkt-zu-Punkt Berechnug valle mit un-
terschiedlichen Vorziigen — und ein generisches VerfahuerDistanzta-
bellenberechnung. Dabei folgen wir dem Ansatz ddgorithm Engi-
neering Neben den traditionellen Aspekten der Algorithmeneritivieg,
dem Entwurf und der theoretischen Analyse, umfasst diessatx auch
die Implementierung und die experimentelle Auswertungvwasentliche
Bestandteile des Entwicklungsprozesses, den man alsl&remsuffassen
kann, bei dem experimentelle Ergebnisse neue Impulsedifatbesserung
des entworfenen Algorithmus liefern kdnnen. Die Auswegtenfolgt in
Form einer umfangreichen experimentellen Studie, bei dalerStralien-
netze mit vielen Millionen StraRenkreuzungen zum Einsataiken. Dabei
betrachten wir nicht nur durchschnittliche Suchzeitemdson beschéfti-
gen uns auch mit Anfragen mit unterschiedlichem Schwieitggrad, be-
stimmen obere Suchraumschranken fiir gegebene Stral¥enmedzfiihren
Vergleiche zwischen verschiedenen Routenplanungstesmrdurch. Im
Einzelnen haben wir die folgenden Verfahren entwickelt.

Highway Hierarchien. Wahrend der Algorithmus von Dijkstra keinerlei
spezielle Annahmen Uber den Graphen macht, nutzen wir lg&igen-
schaften realer Straennetze aus. Eine solche Eigenssthaifte vorhan-
dene Hierarchie der Stral3en: Manche Strafl3en werden nuokaleh An-
wohnern benétigt, um ihr Wohngebiet zu verlassen, manctef3&t sind
wichtige Verbindungen zwischen verschiedenen Stadtteiled manche
Stral3en werden sogar fur Fernverbindungen benétigt. keneiorverar-
beitungsschritt berechnen wir eine feinkérnige Klassfizing aller Stral3en,
die der Routenplanungsalgorithmus dann ausnutzen kanharieelt sich
dabei um eine Anpassung der bidirektionalen Variante dger&hmus von
Dijkstra, die den Suchraum deutlich einschrankt: Mit zunehder Entfer-
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nung von Start und Ziel miissen nur noch wichtigere StraReadiget wer-
den, um immer noch beweisbar optimale Ergebnisse zu enhd&ire Kom-
bination der Highway Hierarchien mit zielgerichteter Said¢tihrt zu einer
Reduktion der Suchzeiten, die insbesondere dann nenngnistyevenn
man sich ausnahmsweise mit Naherungslésungen begniugivederman
der Suche eine Distanzmetrik zugrunde legt anstatt dechidii Reisezeit-
metrik.

Highway-Node Routing ist ein mit den Highway Hierarchien ver-
wandtes, bidirektionales und hierarchisches Verfahreristkonzeptionell
sehr einfach und unterstiitzt die schnelle Aktualisieruaigvdrberechneten
Daten, um auf Kantengewichtsanderungen zu reagieren.

Transit-Node Routing basiert auf folgender Beobachtung: Wenn man
einen weit entfernten Zielpunkt ansteuert, wird man sef@@mtpunkt im-
mer Uber einen von wenigen wichtigen Verkehrsknotenpumktzlassen.
Am Beispiel von Karlsruhe kdnnten dies die Auffahrten a@f Ai5 und die
Rheinbriicke sein. Wenn man zum einen die Reisezeiten ven BRilink-
ten zu den zugehdorigen wichtigen Verkehrsknotenpunktelrzum anderen
die Reisezeiten zwischen allen wichtigen Verkehrsknaiahkfen berechnet
und speichert, kann man eine Reisezeitanfrage zwischenhmveichend
entfernten Knoten auf wenige Tabellenzugriffe reduzietém auch Anfra-
gen zwischen lokalen Knotenpaaren effizient beantwortekbnnen, wer-
den weitere Schichten des gleichen Ansatzes bendtigt. 8s&Bmung der
wichtigen Verkehrsknotenpunkte der verschiedenen Stahictibernimmt
hierbei der Konstruktionsalgorithmus der Highway Hielaeo.

Distanztabellen. Bei unserem Verfahren zur Distanztabellenberechnung
handelt es sich um einen generischen Algorithmus, der asthiedene
Weisen instantiiert werden kann, beispielsweise basieaeinden Highway
Hierarchien oder auf Highway-Node Routing. Unsere Methemahedglicht

die Berechnung einer vollstandigési x |7'| Distanztabelle und fuhrt dazu
im Wesentlichen lediglich S| Vorwarts- plus|T'| Rickwértssuchen aus
anstelle vorj.S| mal |T'| bidirektionalen Suchen.
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Bewertung. Das Thema “Routenplanung in Stral3ennetzen” istin den letz-
ten Jahren in der Forschung heil3 umkampft: Zahlreiche Nesfakon-
kurrieren miteinander. Nach unserem Kenntnisstand waredies ersten,
die die StralRennetze Westeuropas und der USA, besteheid.al bzw.
24 Millionen Knotenpunkten, vollstandig und effizient vdraiten konnten.
Bei einer Beurteilung der Leistungsfahigkeit betrachtatrim der Regel die
Suchzeiten, die Vorberechnungszeiten und den zusatalgpeicherbedarf.
Transit-Node Routing halt den Rekord fir die schnellstech3eiten: Diese
sind mehr als eine Million mal schneller als die von Dijkstralgorith-
mus. Die Highway Hierarchien verfiigen tber vergleichseveigdrige Vor-
berechnungszeiten von ca. 15 Minuten auf unserem 2,0 GHz Qidteron.
Eine Variante von Highway-Node Routing kommt mit ledigliblv Byte
zusatzlichem Speicher pro Knoten aus und ist dabei immen noghr als
4000 mal schneller als Dijkstras Algorithmus. Dartber bhsaandelt es
sich beim Highway-Node Routing um eines der ersten Verfghdée ef-
fizient mit Kantengewichtséanderungen in sehr grol3en Strafieen umge-
hen kénnen.

Auch sehr groBe Distanztabellen kénnen schnell berecheeten,
beispielsweise bendétigen wir nicht viel mehr als eine Menutm eine
20000 x 20000 Tabelle zu berechnen; das sind weniger alg:®,@ro
Tabelleneintrag. Dijkstras Algorithmus wirde mehr als zhage fir die
gleiche Berechnung in Anspruch nehmen.
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