
ibm.com/redbooks

Front cover

Integrating DB2 Universal Universal
Database for iSeries with for iSeries with
Microsoft ADO .NETcrosoft ADO .NETET

Hernando Bedoya
Carlos Carminati

Lorie DuBois
Jarek Miszczyk

Ajit Mungale

Discover the power of ADO .NET Data
Providers for the iSeries

Learn best practices, performance
tuning, and migrating from OLE DB

Master iSeries .NET
programming

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

International Technical Support Organization

Integrating DB2 Universal Database for iSeries with
Microsoft ADO .NET

April 2005

SG24-6440-00

© Copyright International Business Machines Corporation 2005. All rights reserved.
Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP Schedule
Contract with IBM Corp.

First Edition (April 2005)

This edition applies to Version 5, Release 3, Modification 0 of OS/400 (product number 5722-SS1).

Note: Before using this information and the product it supports, read the information in “Notices” on
page vii.

Contents

Notices . vii
Trademarks . viii

Preface . ix
The team that wrote this redbook. ix
Become a published author .x
Comments welcome. xi

Part 1. Background . 1

Chapter 1. Introduction to DB2 UDB for iSeries . 3
1.1 An integrated relational database . 4
1.2 DB2 UDB for iSeries: an overview . 4

1.2.1 DB2 UDB for iSeries basics . 5
1.3 Connectivity options to DB2 UDB for iSeries . 6

1.3.1 Multiplatform connectivity . 6
1.3.2 Windows platform connectivity . 7

1.4 DB2 UDB for iSeries sample schema . 8

Chapter 2. Introduction to the Microsoft .NET framework. 11
2.1 Description of .NET . 12

2.1.1 Architecture . 12
2.1.2 Platform support . 13

2.2 Common Language Runtime (CLR) . 14
2.2.1 Runtime execution environment . 14

2.3 Class libraries . 15

Chapter 3. ADO .NET object hierarchy . 17
3.1 Overview of ADO .NET . 18

3.1.1 Connection . 19
3.1.2 Command . 20
3.1.3 DataReader. 21
3.1.4 DataAdapter . 22
3.1.5 DataSet . 22

3.2 Connected mode. 23
3.3 Disconnected mode . 25

Part 2. Providers . 31

Chapter 4. IBM DB2 UDB for iSeries .NET provider . 33
4.1 Introduction . 34
4.2 IBM.Data.DB2.iSeries architecture . 34

4.2.1 ADO.NET interfaces . 34
4.2.2 Host server jobs . 35
4.2.3 Supported features . 36
4.2.4 Unsupported features . 38

4.3 Before we begin . 39
4.3.1 PC setup . 39
4.3.2 Host setup . 40

4.4 Getting started. 41

© Copyright IBM Corp. 2005. All rights reserved. iii

4.4.1 Displaying the technical reference . 41
4.4.2 Starting Visual Studio .NET . 42
4.4.3 Adding an assembly reference to the provider . 43
4.4.4 Adding a namespace directive . 44

4.5 Provider basics . 45
4.5.1 A simple connection example . 45
4.5.2 iDB2Connection and ConnectionString properties . 48
4.5.3 iDB2Command properties and methods . 65
4.5.4 Using parameters in your SQL statements . 74
4.5.5 Calling stored procedures . 79
4.5.6 Choosing your execute method . 86
4.5.7 Provider data types . 87
4.5.8 Handling exceptions . 102

4.6 Common tasks . 107
4.6.1 A DataReader example. 107
4.6.2 A simple DataAdapter with CommandBuilder example 110
4.6.3 Using transactions . 116
4.6.4 Calling a program by wrapping it in a stored procedure 120
4.6.5 Calling a program or CL command using QCMDEXC . 120
4.6.6 Choosing between iDB2DataReader and iDB2DataAdapter 127

4.7 Advanced topics . 129
4.7.1 Internationalization and support for multiple languages 129
4.7.2 Using large objects (LOBs) . 132
4.7.3 Updating DataSets . 136
4.7.4 Using iDB2CommandBuilder . 139
4.7.5 Using DataLinks . 141
4.7.6 Connection pooling . 143
4.7.7 Deploying your application . 146

4.8 Coding for performance and best practices . 146
4.9 Migrating from ADO and OLE DB to ADO.NET . 149

4.9.1 ADO objects and how they map to ADO.NET objects . 149
4.9.2 ADO recordsets versus ADO.NET DataReaders and DataAdapters 150
4.9.3 Updating tables . 150
4.9.4 Mapping OLE DB properties to ADO.NET . 151
4.9.5 Examples showing an OLE DB application rewritten to use ADO.NET 152

4.10 Troubleshooting . 166
4.10.1 Handle exceptions using try/catch blocks . 166
4.10.2 Make sure your server jobs are running . 167
4.10.3 Use provider traces via the cwbmptrc utility . 167
4.10.4 Enable server-side diagnostics . 168
4.10.5 Use communication traces via the cwbcotrc utility . 168
4.10.6 Overriding your ConnectionString. 168
4.10.7 Gathering information for IBM Support . 169

4.11 Writing code for provider independence . 171
4.11.1 Writing provider-independent code with ADO.NET 1.0 and 1.1 174
4.11.2 Writing provider-independent code with ADO.NET 2.0. 175

Chapter 5. IBM DB2 for LUW .NET provider . 177
5.1 DB2 Connect overview . 178
5.2 Installing and configuring DB2 Connect . 178

5.2.1 Host server jobs . 178
5.2.2 Prerequisites . 179
5.2.3 Installation procedure . 179

iv Integrating DB2 Universal Database for iSeries with Microsoft ADO .NET

5.2.4 Connecting to an iSeries database . 180
5.3 IBM DB2 Development Add-In overview. 182

5.3.1 Registering the IBM DB2 Development Add-In. 183
5.3.2 Unregistering the IBM DB2 Development Add-In . 183
5.3.3 DB2 Toolbar . 184
5.3.4 DB2 Database Project type. 184
5.3.5 IBM Explorer . 186

5.4 IBM DB2 data controls . 186
5.5 LUW provider features . 194

5.5.1 Classes to implement ADO.NET interfaces . 194
5.5.2 Data types. 196
5.5.3 Unsupported features . 196

5.6 Getting started. 197
5.6.1 Starting Visual Studio .NET . 197
5.6.2 Displaying the technical reference . 198
5.6.3 Adding an assembly reference to the provider . 198
5.6.4 Adding a namespace directive . 199
5.6.5 Using the DB2Connection object and the ConnectionString. 199
5.6.6 Using the DB2Command object . 201
5.6.7 Using the DB2DataReader object . 202
5.6.8 Using the DB2DataAdapter object . 203

5.7 Advanced topics . 204
5.7.1 Using large objects (LOBs) . 204
5.7.2 Using the DB2CommandBuilder object. 207
5.7.3 Performing transactions . 209

5.8 Best practices . 223
5.8.1 Connection pooling . 223

Chapter 6. Selecting the .NET provider . 225
6.1 ODBC .NET Data Provider . 226
6.2 OLE DB .NET Data Provider . 229
6.3 Provider performance . 230
6.4 Conclusions. 234

Part 3. Scenarios. 235

Chapter 7. ASP .NET scenario (Web forms) . 237
7.1 An overview of ASP.NET . 238

7.1.1 ASP .NET Web page (Web form) . 238
7.1.2 How does ASP .NET work? . 239
7.1.3 Configuration files in ASP .NET . 240

7.2 Web controls . 241
7.3 Using the IBM DB2 UDB for iSeries .NET provider. 242
7.4 Using the IBM DB2 for LUW .NET provider . 249

Appendix A. Sample programs . 257
Samples for the IBM DB2 UDB for iSeries .NET provider . 258
Sample for the IBM DB2 for LUW .NET provider . 259

Appendix B. Additional material . 261
Locating the Web material . 261
Using the Web material . 261

System requirements for downloading the Web material . 261
How to use the Web material . 262

 Contents v

Related publications . 263
IBM Redbooks . 263
Other publications . 263
Online resources . 263
How to get IBM Redbooks . 264
Help from IBM . 264

Index . 265

vi Integrating DB2 Universal Database for iSeries with Microsoft ADO .NET

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult
your local IBM representative for information on the products and services currently available in your area. Any
reference to an IBM product, program, or service is not intended to state or imply that only that IBM product,
program, or service may be used. Any functionally equivalent product, program, or service that does not
infringe any IBM intellectual property right may be used instead. However, it is the user's responsibility to
evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document. The
furnishing of this document does not give you any license to these patents. You can send license inquiries, in
writing, to:
IBM Director of Licensing, IBM Corporation, North Castle Drive Armonk, NY 10504-1785 U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where such provisions are
inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of
express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes will be incorporated in new editions of the publication. IBM may make
improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time
without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in any
manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the
materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without incurring
any obligation to you.

Information concerning non-IBM products was obtained from the suppliers of those products, their published
announcements or other publicly available sources. IBM has not tested those products and cannot confirm the
accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on the
capabilities of non-IBM products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations. To illustrate them
as completely as possible, the examples include the names of individuals, companies, brands, and products.
All of these names are fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:
This information contains sample application programs in source language, which illustrates programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating platform for which the sample
programs are written. These examples have not been thoroughly tested under all conditions. IBM, therefore,
cannot guarantee or imply reliability, serviceability, or function of these programs. You may copy, modify, and
distribute these sample programs in any form without payment to IBM for the purposes of developing, using,
marketing, or distributing application programs conforming to IBM's application programming interfaces.

© Copyright IBM Corp. 2005. All rights reserved. vii

Trademarks
The following terms are trademarks of the International Business Machines Corporation in the United States,
other countries, or both:

AIX®
AS/400®
DB2 Connect™
DB2 Universal Database™
DB2®
DRDA®
Eserver®
eServer™

i5/OS™
IBM®
ibm.com®
iSeries™
Operating System/400®
OS/390®
OS/400®
PartnerWorld®

Rational®
Redbooks™
Redbooks (logo) ™
WebSphere®
XDE™
z/OS®

The following terms are trademarks of other companies:

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Sun Microsystems,
Inc. in the United States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the
United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

Other company, product, and service names may be trademarks or service marks of others.

viii Integrating DB2 Universal Database for iSeries with Microsoft ADO .NET

Preface

Customers have been using the IBM® DB2® UDB for iSeries™ for many years with data
access technologies such as ODBC and OLE DB. The newest data access technology from
Microsoft® is called ADO.NET. Applications that use ADO.NET with the iSeries can work with
several different Microsoft .NET providers:

� The IBM.Data.DB2.iSeries provider, a .NET-managed provider new to iSeries Access for
Windows® in V5R3

� The IBM.Data.DB2 provider, a .NET provider that works with all IBM ^™
platforms, in conjunction with DB2 Connect™

� Microsoft System.Data.OleDb provider, as a bridge to one of the OLE DB providers
included with iSeries Access for Windows (IBMDA400, IBMDASQL, and IBMDARLA)

� Microsoft System.Data.Odbc provider, as a bridge to the ODBC driver included with
iSeries Access for Windows

This IBM Redbook shows customers how to effectively use ADO.NET to harness the power of
DB2 UDB for iSeries, showing examples, best practices, pitfalls, and comparisons between
the different ADO.NET data providers.

The team that wrote this redbook
This redbook was produced by a team of specialists from around the world working at the
International Technical Support Organization, Rochester Center.

Hernando Bedoya is an IT Specialist at the IBM ITSO in Rochester, Minnesota. He writes
extensively and teaches IBM classes worldwide in all areas of DB2 UDB for iSeries. Before
joining the ITSO more than four years ago, he worked for IBM Colombia as an AS/400® IT
Specialist doing pre-sales support for the Andean countries. He has 20 years of experience in
the computing field and has taught database classes in Colombian universities. He holds a
Masters degree in computer science from EAFIT, Colombia. His areas of expertise are
database technology, application development, and data warehousing.

Carlos Carminati is the IT Manager at d2B Network, a firm specializing in graphical design
and software development using Internet technologies. His firm has a development center in
Uruguay that serves customers in Argentina, Brazil, Colombia, Mexico, and Puerto Rico. He
has worked in software development for more than 25 years, using Cobol, C, C++, Java™,
and C#. He has important experience with the .NET Framework, architecting solutions that
integrate with other systems and platforms.

Lorie DuBois is a Software Engineer at the IBM development lab in Rochester, Minnesota.
She owns the development and design of the IBM DB2 UDB for iSeries .NET provider, and
has spent the past seven years working on various iSeries Access for Windows technologies,
including OLE DB. She holds a degree in Computer Science from the University of Minnesota
Institute of Technology and has 20 years of experience in the personal computing field. Her
areas of expertise include client database technologies, middleware software development,
C#, and C++.

Jarek Miszczyk is a Senior Software Engineer at the Solutions Enablement organization in
Rochester, Minnesota. His mission is to provide consulting services to Independent Software

© Copyright IBM Corp. 2005. All rights reserved. ix

Vendors, IBM customers, and other IBM organizations for issues related to DB2 UDB for
iSeries. He also writes extensively and teaches IBM classes in all areas of the iSeries
database.

Ajit Mungale is an IT Specialist in IBM and Microsoft MVP for C#. He is the author of several
other books about .NET on a wide variety of subjects. He has extensive experience with
Microsoft technologies and has worked with almost all languages and technologies. He also
has experience with such IBM products as WebSphere®, MQ Series, and DB2. He owns
patents in security and other areas.

Thanks to the following people for their contributions to this project:

Thomas Gray
Marvin Kulas
Joanna Pohl-Miszczyk
International Technical Support Organization, Rochester Center

David Dilling
Michael J Swenson
IBM Rochester Support Center

Yvonne Griffin
IBM Rochester Information Development

Brent Nelson
IBM Rochester Development Lab

Kent Milligan
IBM Rochester PartnerWorld®

Fredy Cruz
IBM Colombia - ISV Center

Brent Gross
IBM Toronto Lab

Become a published author
Join us for a two- to six-week residency program! Help write an IBM Redbook dealing with
specific products or solutions, while getting hands-on experience with leading-edge
technologies. You will team with IBM technical professionals, Business Partners, and/or
customers.

Your efforts will help increase product acceptance and customer satisfaction. As a bonus, you
will develop a network of contacts in IBM development labs, and increase your productivity
and marketability.

Find out more about the residency program, browse the residency index, and apply online at:

ibm.com/redbooks/residencies.html

x Integrating DB2 Universal Database for iSeries with Microsoft ADO .NET

http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/residencies.html

Comments welcome
Your comments are important to us because we want our Redbooks™ to be as helpful as
possible. Send us your comments about this or other Redbooks in one of the following ways:

� Use the online Contact us review redbook form found at:

ibm.com/redbooks

� Send your comments in an e-mail to:

redbook@us.ibm.com

� Mail your comments to:

IBM Corporation, International Technical Support Organization
Dept. JLU Building 107-2
3605 Highway 52N
Rochester, Minnesota 55901-7829

 Preface xi

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/contacts.html

xii Integrating DB2 Universal Database for iSeries with Microsoft ADO .NET

Part 1 Background

In this part we give a short introduction to DB2 Universal Database™ for iSeries. We also
introduce the Microsoft .NET framework, specifically the ADO .NET object hierarchy.

Part 1

© Copyright IBM Corp. 2005. All rights reserved. 1

2 Integrating DB2 Universal Database for iSeries with Microsoft ADO .NET

Chapter 1. Introduction to DB2 UDB for
iSeries

This chapter includes:

� An introduction to DB2 Universal Database for iSeries
� An overview of the contents in this publication
� A definition of the sample schema

1

© Copyright IBM Corp. 2005. All rights reserved. 3

1.1 An integrated relational database
Integration has been one of the major elements of differentiation of the iSeries server in the
information technology marketplace. The advantages and drawbacks of fully integrated
systems have been the subject of countless disputes over the past few years. The success of
the AS/400 system and iSeries server indicates that integration is still considered one of the
premier advantages of this platform. Security, communications, data management, backup,
and recovery: All of these vital components have been designed in an integrated way on the
AS/400 system and iSeries server. They work according to a common logic with a common
end-user interface. They fit together perfectly, because all are part of the same software: the
Operating System/400® (OS/400®) and now i5/OS™ on i5.

The integrated relational database manager has always been one of the most significant
features of the iSeries server. Relying on a database manager that is integrated into the
operating system means that virtually all user data on the iSeries server is stored in a
relational database, and that the access to the database is implemented by the operating
system itself. Some database functions are implemented at a low level in the iSeries server
architecture, and some are even performed by the hardware.

Several years ago a survey pointed out that a significant percentage of iSeries server
customers did not even know that all of their business data is stored in a relational database.
This might sound strange if you think consider the integrated database as one of the main
technological advantages of the iSeries platform. On the other hand, this means that
thousands of customers use, manage, back up, and restore a relational database every day
without even knowing that they have it installed on their system. This level of transparency
has been made possible by the integration and undisputed ease of use of this platform. These
have been key elements of the success of the AS/400 and iSeries server database system in
the marketplace.

During the past couple of years, each new release of OS/400 has enhanced the DB2
Universal Database for iSeries with a dramatic set of new functions. As a result of these
enhancements, the iSeries server has become one of the most functionally rich relational
platforms in the industry. Now we have the i5 and a number of connectivity options, as noted
in 1.3, “Connectivity options to DB2 UDB for iSeries” on page 6.

DB2 Universal Database for iSeries is a member of the DB2 Universal Database family of
products, which includes DB2 UDB for OS/390 and DB2 Universal Database. The DB2
Universal Database family is the IBM solution in the marketplace of relational database
systems. It guarantees a high degree of application portability and a sophisticated level of
interoperability among the various platforms that are participating in the family.

1.2 DB2 UDB for iSeries: an overview
This section provides a quick overview of the major features of DB2 UDB for iSeries. You can
find a full description of the functions that are mentioned in this section in several IBM
manuals, such as Database Programming and SQL Reference. For links to these and other
useful documentation, visit:

� DB2 Information Center

http://publib.boulder.ibm.com/infocenter/db2help/index.jsp

� IBM Publications Center

http://www.ibm.com/shop/publications/order

4 Integrating DB2 Universal Database for iSeries with Microsoft ADO .NET

http://publib.boulder.ibm.com/infocenter/db2help/index.jsp
http://www.ibm.com/shop/publications/order

1.2.1 DB2 UDB for iSeries basics
As previously mentioned, the major distinguishing characteristic of the DB2 UDB for iSeries
database manager is that it is part of the operating system. In practice, this means that a
large majority of your iSeries server data is stored in the relational database. Although the
iSeries server also implements other file systems in its design, the relational database on the
iSeries server is the one most commonly used by customers. Your relational data is stored in
the database, as is typical non-relational information such as the source of your application
programs.

Physical files and tables
Data on the iSeries server is stored in objects called physical files. Physical files consist of a
set of records with a predefined layout. Defining the record layout means that you define the
data structure of the physical file in terms of the length and the type of data fields that
participate in that particular layout.

These definitions can be made through the native data definition language of DB2 UDB for
iSeries, called Data Description Specifications (DDS). If you are familiar with other relational
database platforms, you are aware that the most common way to define the structure of a
relational database is by using the data definition statements provided by the Structured
Query Language (SQL). This is also possible on the iSeries server.

Logical files, SQL views, and SQL indexes
By using DDS, you can define logical files on your physical files or tables. Logical files
provide a different view of the physical data, enabling column subsetting, record selection,
joining multiple database files, and so on. They can also provide physical files with an access
path when you define a keyed logical file. Access paths can be used by application programs
to access records directly by key or for ensuring uniqueness.

On the SQL side, there are similar concepts. A SQL view is almost equivalent to a native
logical file. The selection criteria that you can apply in a SQL view is much more sophisticated
than in a native logical file. A SQL index provides a keyed access path for the physical data
exactly the same way that a keyed logical file does. Still, SQL views and indexes are treated
differently from native logical files by DB2 UDB for iSeries, and they cannot be considered to
exactly coincide.

Database file refers to any DB2 UDB for iSeries file, such as a logical or physical file, a SQL
table, or view. Any database file can be used by applications to access DB2 UDB for iSeries
data.

Terminology
Because the DB2 Universal Database for iSeries server evolved from the built-in database
present in the AS/400 that was born before SQL was widely-used, OS/400 and i5/OS use
different terminology from what SQL uses to refer to database objects. Table 1-1 on page 6
shows the terms and their SQL equivalents. The terms have been interchanged throughout
this book.

Attention: The SQL terminology can be mapped to the native DB2 UDB for iSeries
terminology for relational objects, and we use these terms interchangeably in this book:

� A SQL table is equivalent to a DDS-defined physical file.
� Table rows equate to physical file records for DB2 UDB for iSeries.
� SQL columns are synonymous with record fields.

Chapter 1. Introduction to DB2 UDB for iSeries 5

Table 1-1 SQL terms and OS/400 terms cross-reference

1.3 Connectivity options to DB2 UDB for iSeries
One of the key value propositions for DB2 UDB for iSeries is the large number of database
interfaces that are available to customers and programmers designing client/server or
multi-tier applications. In this section, we describe the multiplatform connectivity of DB2 UDB
for iSeries as well as the Windows client connectivity.

1.3.1 Multiplatform connectivity
Figure 1-1 shows the interfaces that are available from a range of platforms including other
iSeries, Linux®, AIX®, and Windows. The next few figures describe some of the
enhancements for users of the .NET, JDBC, ODBC, OLE DB, and CLI interfaces.

Figure 1-1 Multiplatform connectivity to iSeries

SQL term iSeries term

Schema Library, collection, schema

Table Physical file

View Non-keyed logical file

Index Keyed logical file

Column Field

Row Record

Log Journal

Isolation level Commitment control level

6 Integrating DB2 Universal Database for iSeries with Microsoft ADO .NET

1.3.2 Windows platform connectivity
Currently, there are four providers that can be used to access DB2 UDB for iSeries from .NET
applications:

� The new ADO.NET managed provider for iSeries Access for Windows,
IBM.Data.DB2.iSeries, which we discuss in Chapter 4, “IBM DB2 UDB for iSeries .NET
provider” on page 33.

� The DB2 for Linux, UNIX®, and Windows (LUW) managed provider implemented by IBM
software group, which we discuss in Chapter 5, “IBM DB2 for LUW .NET provider” on
page 177.

� ODBC: The Microsoft-supplied ODBC bridge provider using the iSeries Access for
Windows ODBC driver for underlying database connectivity.

� OLE DB: The Microsoft-supplied OLEDB bridge provider using one of the iSeries Access
for Windows OLE DB providers for underlying database connectivity.

If you are using the .NET framework to connect to an iSeries host, choose the
IBM.Data.DB2.iSeries database provider to support your PC and iSeries SQL application
development. This managed provider offers better performance than using the
System.Data.OleDb provider to bridge to an iSeries Access OLE DB provider, or using the
Microsoft.Data.Odbc provider to bridge to the iSeries Access ODBC driver.

The OLE DB .NET Data Provider uses native OLE DB through a COM interop module to
enable data access. This provider is a bridge that handles calls from .NET into a traditional
COM-style OLE DB Provider (IBMDA400, IBMDASQL, or IBMDARLA in the case of an
iSeries server). The IBM development lab in Rochester, Minnesota, has recently enhanced
these providers to interact with the OLE DB .NET Data Provider to facilitate access to the
iSeries database. The OLE DB bridge involves jumping in and out of the .NET Framework
environment for every interface call because, from the .NET point of view, OLE DB providers
constitute unmanaged code (meaning that it has been compiled directly into a binary
executable). Managed code is compiled into a .NET assembly that can be executed in the
context of the .NET Common Language Runtime (CLR). In order for managed code to call
unmanaged code, marshaling of data must take place, and this can have an impact on overall
performance. Therefore, Microsoft recommends that a managed provider be used in the .NET
environment.

Similar considerations apply when accessing iSeries through the ODBC .NET Data Provider.

Chapter 1. Introduction to DB2 UDB for iSeries 7

Figure 1-2 ADO .NET providers supporting iSeries

1.4 DB2 UDB for iSeries sample schema
Within the code of OS/400 starting with version V5R1M0, there is a stored procedure that
creates a fully functioning database. This database contains tables, indexes, views, aliases,
and constraints. It also contains data within these objects.

The database also helps with problem determination because the program is shipped with the
operating system code. By calling a simple program, you can create a duplicate of this
database on any system running most recent releases. This enables customers and support
staff to work on the same database for problem determination.

Throughout many parts of this book, examples are shown that use this sample database. To
set up this database, open iSeries Navigator (a part of the IBM iSeries Access for Windows
suite) and click Databases under the iSeries icon in the left panel. You should see
Databases task on bottom of this window. Click Run a SQL Script. This opens a new
window.

Create the database by issuing the following SQL statement:

CALL QSYS.CREATE_SQL_SAMPLE('SAMPLEDB')

You can find this statement in the example pull-down box of the Run SQL Script window
(Figure 1-3 on page 9).

8 Integrating DB2 Universal Database for iSeries with Microsoft ADO .NET

Figure 1-3 Example display showing the schema CREATE statement

Replace collection with a valid schema name and click Run → All from menu or press
Ctrl+R. Your sample database is created.

As a group, the tables include information that describes employees, departments, projects,
and activities. This information makes up a sample database demonstrating some of the
features of DB2 Universal Database for iSeries. Figure 1-4 on page 10 shows an
entity-relationship (ER) diagram of the database created with reverse engineering capabilities
of Rational® XDE™ for Visual Studio.

Important: The schema name you type here must be uppercase (all capital letters). This
sample schema will be used in future DB2 Universal Database for iSeries documentation.

Chapter 1. Introduction to DB2 UDB for iSeries 9

Figure 1-4 Sample schema: ER diagram

The tables are:

� Department Table (DEPARTMENT)
� Employee Table (EMPLOYEE)
� Employee Photo Table (EMP_PHOTO)
� Employee Resume Table (EMP_RESUME)
� Employee to Project Activity Table (EMPPROJACT)
� Project Table (PROJECT)
� Project Activity Table (PROJACT)
� Activity Table (ACT)
� Class Schedule Table (CL_SCHED)
� In Tray Table (IN_TRAY)

Indexes, aliases, and views are created for many of these tables. The view definitions are not
included here. Three other tables are created that are not related to the first set:

� Organization Table (ORG)
� Staff Table (STAFF)
� Sales Table (SALES)

Note: Many of the examples in this book use this SAMPLEDB database.

10 Integrating DB2 Universal Database for iSeries with Microsoft ADO .NET

Chapter 2. Introduction to the
Microsoft .NET framework

This chapter provides an overview of .NET, the .NET Framework, and capabilities,
technologies, and specifications.

This chapter discusses the following items:

� Description of .NET and its architecture

� The Common Language Runtime

� Class libraries shipped with the .NET Framework

2

© Copyright IBM Corp. 2005. All rights reserved. 11

2.1 Description of .NET
.NET is a language-neutral environment for writing programs that can easily interoperate. The
.NET programs run inside the .NET execution runtime rather than on a particular hardware or
operating system platform. .NET is also the collective name given to various software
components that are built on the .NET platform. The components that make up the .NET
environment are referred to as the .NET Framework.

2.1.1 Architecture
The .NET Framework has two main components: the common language runtime and the
unified .NET Framework class library.

The common language runtime (CLR) is the foundation of the .NET Framework. You can think
of the runtime as an agent that manages code at execution time, providing core services such
as memory management, thread management, and remoting, while also enforcing strict type
safety and security. In fact, the concept of code management is one of the cornerstones of
.NET architecture. Code that targets the runtime is known as managed code, and code that
does not target the runtime is known as unmanaged code.

The class library, the other main component of the .NET Framework, is a comprehensive,
object-oriented collection of reusable types that you can use to develop applications ranging
from traditional command-line or graphical user interface (GUI) applications to applications
based on the latest innovations provided by ASP.NET, such as Web Forms and XML Web
services.

Typically, .NET applications use ADO.NET classes to access and manipulate database
objects.

The common language runtime manages memory, thread execution, code execution, code
safety verification, compilation, and other system services. These features are intrinsic to the
managed code that runs on the common language runtime.

.NET programs are not compiled directly into executable code but are compiled into an
intermediary language known as Microsoft Intermediate Language (MSIL or IL). Later, at
program execution, the CLR loads the code into the runtime environment and a just-in-time
compiler (JIT) compiles the IL into native executable code. This native code is then executed
by the runtime’s execution engine.

12 Integrating DB2 Universal Database for iSeries with Microsoft ADO .NET

Figure 2-1 .NET Framework components

2.1.2 Platform support
The Microsoft .NET Framework is designed for Windows operating systems. To run any .NET
application, the client or server must have a runtime called the .NET redistributable, which is
freely available from the Microsoft Web site. For configuring server-side applications, the
recommendation is to use Windows 2000 Server or higher. The following list describes the
Windows platforms that are supported by the .NET framework and the two .NET managed
providers we discuss in this book.

Table 2-1 .NET and DB2 providers operating systems supported

Web Services Web Forms Windows Forms

Data, Database, and XML Classes
(ADO.NET, SQL, XSLT, XPath, XML, etc.)

Base Framework Classes
(IO, data types, threading, security, etc.)

Common Language Runtime (CLR)
(garbage collection, exceptions, type checking, JIT, etc.)

Operating System

Operating system .NET
Framework

IBM DB2 UDB
for iSeries .NET
provider

IBM DB2 for
LUW .NET
provider

Microsoft Windows 98 and Editions YES NO YES

Microsoft Windows Millennium Edition YES NO YES

Microsoft Windows NT® 4.0 Workstation
with Service Pack 6.0a or later

YES YES YES

Microsoft Windows NT 4.0 Server with
Service Pack 6.0a or later

YES YES YES

Microsoft Windows 2000 Professional YES YES YES

Microsoft Windows 2000 Server family YES YES YES

Microsoft Windows XP Home Edition YES NO YES

Microsoft Windows XP Professional YES YES YES

Microsoft Windows Server 2003 family YES YES YES

Chapter 2. Introduction to the Microsoft .NET framework 13

2.2 Common Language Runtime (CLR)
Microsoft .NET supports multiple languages on the Microsoft Windows platform. The .NET
languages follow the Common Language Specification (CLS), the minimum set of features
that compilers must support to target the .NET runtime. Currently, .NET supports more than
20 languages, including vendor-supported languages.

Visual Studio .NET comes with following languages developed and supported by Microsoft:

� Visual Basic .NET
� Microsoft C#
� Microsoft J#
� Visual C++

Moreover, Visual Studio .NET supports scripting languages such as JScript.NET and
VBScript. Numerous other third-party languages also are available.

The .NET Framework supports so many languages because each language compiler
translates the source code into MSIL, which is a CPU-independent set of instructions that can
be efficiently converted to native code.

2.2.1 Runtime execution environment
The CLR is the heart of the .NET Framework and provides a runtime environment for .NET
applications. The CLR provides a fundamental set of services that all programs can use. It
can compile managed code once, then run on any CPU and operating system that supports
the runtime. The CLR runs intermediate language, which is created from any .NET
programming language, such as VB.NET and C#. Figure 2-2 shows the role of the CLR when
executing managed code.

Figure 2-2 Common Language Runtime in .NET Framework

Common Language Specification

Compiler

MSIL

Common Language Runtime
JIT Compiler

Native

Unmanaged
Code

Compiler

Operating System

Managed
Code

14 Integrating DB2 Universal Database for iSeries with Microsoft ADO .NET

In the .NET Framework, managed code is the code that follows the CLS. The managed code
gets compiled into the Microsoft Intermediate Language (MSIL). The CLR provides a JIT
compiler that compiles the MSIL into the machine language and then runs it, because all
programs use the common services in the CLR, no matter which language they are written in.
The CLR follows the Common Type System (CTS), which is a master set of data types.
Because of the CTS, managed code written in one language can interoperate with programs
written in another CLR language.

Some of the features of Common Language Runtime are:

� Garbage collection
� Cross-language integration
� Base class library support
� Thread support
� Exception manager
� Security
� IL to native
� Class loader

2.3 Class libraries
The .NET Framework class library is a set of classes, interfaces, and value types providing a
foundation to develop controls, components, and applications. These classes are organized
into namespaces, and each namespace contains classes related to specific functionality.
Table 2-2 shows some of these namespaces and the functionality covered by their classes.

Table 2-2 Some of most widely used namespaces in .NET applications

Namespace Description

System Contains classes that define commonly used value and reference
data types, events and event handlers, interfaces, attributes, and
exceptions, and other classes that provide services supporting data
type conversion, method parameter manipulation, mathematics,
remote and local program invocation, application environment
management, and supervision of managed and unmanaged
applications.

System.Collections Contains interfaces and classes that define various collections of
objects, such as lists, queues, arrays, hash tables, and dictionaries.

System.Data Consists mostly of the classes that constitute the ADO.NET
architecture. We discuss ADO.NET in detail in Chapter 3, “ADO
.NET object hierarchy” on page 17.

System.Drawing Provides access to GDI+ basic graphics functionality.

System.Globalization Contains classes that define culture-related information, including
the language, the country or region, calendars in use, format patterns
for dates, currency, and numbers, and the sort order for strings.

System.IO Contains types that enable synchronous and asynchronous reading
and writing of data streams and files.

System.Net Provides a simple programming interface for many of the protocols
used with networks.

System.Reflection Contains classes and interfaces that provide a managed view of
loaded types, methods, and fields, with the ability to dynamically
create and invoke types.

Chapter 2. Introduction to the Microsoft .NET framework 15

System.Resources Provides classes and interfaces that enable developers to create,
store, and manage various culture-specific resources used in an
application.

System.Security Provides the underlying structure of the .NET Framework security
system, including base classes for permissions.

System.Threading Provides classes and interfaces that enable multi-threaded
programming.

System.Web Supplies classes and interfaces that enable browser-server
communication.

System.Web.Services Consists of classes that enable creation of XML Web services using
ASP.NET and XML Web service clients.

System.Windows.Forms Contains classes for creating Windows-based applications that take
full advantage of the rich user interface features that are available in
the Microsoft Windows operating system.

System.Xml Provides standards-based support for processing XML.

Namespace Description

16 Integrating DB2 Universal Database for iSeries with Microsoft ADO .NET

Chapter 3. ADO .NET object hierarchy

This chapter discusses the following topics:

� An overview of ADO.NET, explaining the principal components of the ADO.NET
architecture. The examples in this chapter use the IBM DB2 UDB for iSeries .NET provider
that is discussed in Chapter 4, “IBM DB2 UDB for iSeries .NET provider” on page 33.

� Using ADO.NET in connected mode.

� Using ADO.NET in disconnected mode.

3

© Copyright IBM Corp. 2005. All rights reserved. 17

3.1 Overview of ADO .NET
ADO.NET is a suite of data-access technologies that are included in the .NET Framework
class libraries. ADO.NET helps applications connect to a database and has been designed to
be the single data access model used by all server processes and applications running on the
Microsoft platform. Figure 3-1 shows the relationship between various applications based on
the .NET framework, ADO.NET, and a database.

Figure 3-1 ADO.NET

ADO.NET replaces the ADO Recordset object with a suite of objects (DataTable, DataSet,
DataAdapter, and DataReader) that interact to access relational database systems. A
DataTable is similar to the ADO Recordset representing a collection of rows from a single
table. A DataSet is a collection of DataTable objects with relationships and constraints that
bind these tables together. In disconnected mode, a DataSet is an in-memory relational
structure supporting database operations. This structure is natively disconnected; a DataSet
does not have to know the underlying data source that might have been used to populate it.

The DataAdapter is the object that enables DataSet-datasource communication, channeling
the data. It has batch update features that are ideal for a disconnected scenario. Figure 3-2
on page 19 shows the various components of ADO.NET.

Applications in .NET

Database

Windows Console

Application

 Win Forms

Web Forms
(ASP.NET)

 Web Services

 COM+

 Common Language Runtime (CLR)

 .NET Framework

 ADO.NET

18 Integrating DB2 Universal Database for iSeries with Microsoft ADO .NET

Figure 3-2 ADO.NET architecture

3.1.1 Connection
The Connection object in ADO.NET is used to connect to a database and can be used to
control the transactions. The Connection objects are different for different providers but they
serve one purpose. For example, the Connection object for the DB2 UDB for iSeries .NET
provider is called iDB2Connection; the Connection object for the DB2 for LUW .NET provider
is called DB2Connection; and the System.Data.OleDb provider’s Connection object is called
OleDbConnection.

Connections can be opened in one of two ways:

� Explicitly by calling the Open method on the connection
� Implicitly when using a DataAdapter

Table 3-1 and Table 3-2 on page 20 describe some important interfaces of the Connection
object.

Table 3-1 Connection object properties

DB

 DataReader

 Command

 Connection

 .NET Data Provider

D

ataA
dapter

 DataSet

DataTable Collection

DataTable

Public property Description

ConnectionString This is required for making a connection with a database. It requires the
database source name and other parameters. For example, with the DB2 UDB
for iSeries .NET provider you can specify a ConnectionString property with
Connection cnn as:

cnn.ConnectionString ="DataSource=myiSeries;";

Chapter 3. ADO .NET object hierarchy 19

Table 3-2 Connection object methods

3.1.2 Command
The Command object is used to execute SQL statements or Stored Procedures on a
database (data source). Example 3-1 shows how to create a command object and assign its
Connection property.

Example 3-1 Command object

//Create a command object
iDB2Command cmd = new iDB2Command();

//Assign the connection for where to perform the operation
cmd.Connection =cnn;

//Assign the CommandText
cmd.CommandText = "SELECT * FROM ORG";

//Open the command
cnn.Open();

//Read the data by executing the CommandText against the data source
iDB2DataReader reader = cmd.ExecuteReader();

Table 3-3 and Table 3-4 on page 21 describe some important interfaces of the Command
object.

Table 3-3 Command object properties

Public method Description

Open Opens a database connection to the data source that is specified in a
ConnectionString property, for example:

cnn.Open();
The Connection object throws an exception if it fails to open a database
connection.

Close Used to close the database connection. For example:
cnn.Close();

You should always close your connection when you are finished using it.

CreateCommand Returns a Command object associated with the connection, which can be
used to perform SQL operations on a database. For example:

iDB2Command cmd = cnn.CreateCommand();

BeginTransaction Begins a transaction at the local level.

Public property Description

CommandType Describes whether the Command object will execute an SQL statement or
Stored Procedure, or select from a set of tables.

CommandText Describes the SQL statement or Stored Procedure to execute against a
database. The default value of the CommandType property is
CommandType.Text. For example:

cmd.CommandText = "select * from STAFF";
cmd.CommandType = CommandType.Text;

20 Integrating DB2 Universal Database for iSeries with Microsoft ADO .NET

Table 3-4 Command object methods

3.1.3 DataReader
The DataReader class is used for reading data into your client application by reading a
forward-only stream of rows from a database. The code in Example 3-2 shows how to create
an iDB2DataReader object and populate it to display the result on the Windows console.

Example 3-2 Create iDB2DataReader object

iDB2DataReader reader;
 reader = cmd.ExecuteReader();
 // Populate result
 while (reader.Read())
 {
 Console.WriteLine(reader.GetString(1) + ", " + reader.GetString(2));
 }
 // close reader
 reader.Close();

Table 3-5 and Table 3-6 describe important properties and methods of the DataReader class.

Table 3-5 DataReader class properties

Table 3-6 DataReader methods

Public method Description

CreateParameter Used for handling parameters. The parameter could be input-only, output-only,
bidirectional, or a stored procedure return value parameter.

ExecuteNonQuery Can be used to perform INSERT, UPDATE, or DELETE SQL operations on a
database. This method returns the number of rows that are affected after
executing the SQL statement. For example:

cmd.Connection.Open();
cmd.ExecuteNonQuery();

ExecuteReader Used for reading results by executing a SELECT statement on a database or
calling a stored procedure that returns result data.

ExecuteScalar Used for retrieving a single value from a database. This reduces overhead
required for the ExecuteReader method when the result contains only a single
value. For example:

cmd.CommandText = "select count(*) from STAFF";
Int32 count = (Int32) cmd.ExecuteScalar();

Public property Description

FieldCount Returns the number of columns in the current row.

HasRows Indicates whether DataReader has one or more rows.

Public method Description

Read Used to read records one by one. This method automatically advances the
cursor to the next record and returns true or false, indicating whether the
DataReader read any rows.

Close Closes the DataReader. Always close your DataReader when you are through.

Getxxxx Used to get data of type xxxx. For example, the GetBoolean method is used to
get Boolean records, and the GetChar method is used to get char-type data.

Chapter 3. ADO .NET object hierarchy 21

3.1.4 DataAdapter
A DataAdapter is used between a DataSet and a database such as DB2 UDB for iSeries. The
DataAdapter performs SELECT, INSERT, UPDATE, and DELETE operations for loading or
unloading the data. Example 3-3 shows how to create an iDB2DataAdapter.

Example 3-3 Create an iDB2DataAdapter

iDB2Connection cnn =
new iDB2Connection("DataSource=myiSeries;DefaultCollection=SAMPLEDB");

DataSet ds = new DataSet();
iDB2DataAdapter adpt = new iDB2DataAdapter();
adpt.SelectCommand = new iDB2Command("select * from staff", cnn);
adpt.Fill(ds);
//--- Code to perform further Operations on a dataset---

Table 3-7 and Table 3-8 show some important DataAdapter public properties and methods.

Table 3-7 DataAdapter properties

Table 3-8 DataAdapter methods

3.1.5 DataSet
The DataSet class represents a in-memory cache of data retrieved from a database. The
DataSet is used to improve the overall performance of the application, because it minimizes
server trips to a database. Example 3-4 shows sample code using a DataSet.

Example 3-4 DataSet class

iDB2Connection cnn =
new iDB2Connection("DataSource=myiSeries;DefaultCollection=SAMPLEDB;");

DataSet ds = new DataSet();
iDB2DataAdapter adpt = new iDB2DataAdapter();
adpt.SelectCommand = new iDB2Command("select * from staff", cnn);
adpt.Fill(ds);
//---Code to perform further Operations on dataset---

Public property Description

DeleteCommand Deletes records from a database using a SQL statement or a Stored
Procedure. For example:

iDB2DataAdapter adpt = new iDB2DataAdapter ();
iDB2Command cmd;
cmd = new iDB2Command("DELETE FROM Customers WHERE CustomerID =
'', cnn);
adpt.DeleteCommand = cmd;

InsertCommand Inserts new records into a database using a SQL statement or Stored Procedure.

SelectCommand Selects records from a database using a SQL statement or Stored Procedure.

UpdateCommand Updates records in a database using a SQL statement or Stored Procedure.

Public method Description

Fill Used to fill records in a DataSet. For example:
adpt.Fill(dataset); //fills the dataset

Update Used to update rows in the DataSet and a database by performing INSERT,
DELETE, or UPDATE operations.

22 Integrating DB2 Universal Database for iSeries with Microsoft ADO .NET

Table 3-9 and Table 3-10 show some important DataSet public properties and methods.

Table 3-9 DataSet properties

Table 3-10 DataSet methods

3.2 Connected mode
In connected mode, we use SQL queries or stored procedures to directly select, insert,
update, and delete data objects in the iSeries DB2 UDB database.

The advantages of using stored procedures include:

� Reduced network usage between client and server
� Enhanced hardware and software capabilities
� Improved security
� Reduced development cost and increased reliability
� Centralized security, administration, and maintenance for common routines

Using the IBM DB2 UDB for iSeries .NET provider, you can call stored procedures, which take
input parameters and return results in output parameters. Stored procedures can also return
one or more result sets. A stored procedure call is demonstrated using the following steps:

1. Before starting actual coding, create the stored procedure in Example 3-5 on your iSeries
server. Our EMP_INFO procedure takes an employee ID as input, selects the employee’s
record from the STAFF table, and returns the employee’s salary, name, and job.

Example 3-5 Create stored procedure EMP_INFO

CREATE PROCEDURE SAMPLEDB.EMP_INFO (IN idno INT,
 OUT empsalary decimal(7, 2),
 OUT empname VARCHAR(9),
 OUT empjob CHAR(5)) LANGUAGE SQL
 BEGIN
 DECLARE year INT DEFAULT 0;
 DECLARE c1 CURSOR FOR
 SELECT salary, years, job, name FROM sampledb.staff WHERE ID =
 idno;
 OPEN c1;
 FETCH c1 INTO empsalary, year, empjob, empname;
 CLOSE c1;
 RETURN year;
 END

Public property Description

DataSetName Gets or sets the DataSet name.

Public method Description

AcceptChanges Used to commit changes made to the DataSet.

Clear Clears the contents of the DataSet.

GetXML Gets an XML representation of data in the DataSet.

ReadXml Reads XML schema and XML into the DataSet.

WriteXml Writes XML schema and XML into the DataSet.

Chapter 3. ADO .NET object hierarchy 23

In .NET code, we assume that a connection is already created. To create a command object
whose CommandType property is set to CommandType.StoredProcedure and CommandText
to the name of the stored procedure, use the code shown in Example 3-6.

Example 3-6 Create command object

iDB2Command cmd = cnn.CreateCommand();
cmd.CommandText = "SAMPLEDB.EMP_INFO";
cmd.CommandType = CommandType.StoredProcedure;

2. The input and output parameters can be assigned using the iDB2Parameter object. Here
you define details of each parameter including direction and type, as shown in
Example 3-7.

Example 3-7 Create in and out parameters

// create in and out parameters
iDB2Parameter parm = cmd.Parameters.Add("@empyears", iDB2DbType.iDB2Integer);
cmd.Parameters["@empyears"].Direction = ParameterDirection.ReturnValue;

parm = cmd.Parameters.Add("@empid", iDB2DbType.iDB2Integer);
cmd.Parameters["@empid"].Direction = ParameterDirection.Input;
cmd.Parameters["@empid"].Value = empId;

parm = cmd.Parameters.Add("@empsalary", iDB2DbType.iDB2Decimal);
cmd.Parameters["@empsalary"].Precision = 7;
cmd.Parameters["@empsalary"].Scale = 2;
cmd.Parameters["@empsalary"].Direction = ParameterDirection.Output;

parm = cmd.Parameters.Add("@empname", iDB2DbType.iDB2VarChar,9);
cmd.Parameters["@empname"].Direction = ParameterDirection.Output;

parm = cmd.Parameters.Add("@empjob", iDB2DbType.iDB2Char,5);
cmd.Parameters["@empjob"].Direction = ParameterDirection.Output;

3. Execute the stored procedure using the ExecuteNonQuery method of the command object
as shown in Example 3-8.

Example 3-8 Call the stored procedure

// Call the stored procedure
cmd.ExecuteNonQuery();

4. Finally, retrieve output parameters using the command object and display the output as
shown in Example 3-9.

Example 3-9 Retrieve output parameter using the command object

// Retrieve output parameters
Decimal salary = (Decimal)cmd.Parameters["@empsalary"].Value;
Int32 years = (Int32)cmd.Parameters["@empyears"].Value;
String name = (String)cmd.Parameters["@empname"].Value;
String job = (String)cmd.Parameters["@empjob"].Value;

// Display details of the employee
Console.WriteLine(" Employee Name : " + name);
Console.WriteLine(" Employee Job : " + job);
Console.WriteLine(" Employee Salary : " + String.Format("{0:f2}",salary));
Console.WriteLine(" Years Served : " + years);

24 Integrating DB2 Universal Database for iSeries with Microsoft ADO .NET

3.3 Disconnected mode
In disconnected mode, we use ADO.NET methods to add, edit, and remove data objects in a
cached DataRow, DataTable, or even an entire DataSet, then merge the changes back into
the data source. This technique is very useful when developing applications for smart devices
such as smart phones, PDAs, and other appliances.

We begin by writing a Winform application that shows a disconnected scenario:

1. Open Microsoft Visual Studio .NET and click New Project. Then select Visual C#
Projects and Windows Application Template. Fill out the Name text box and select a
location for your project. Click OK.

2. Open Form1.cs in design mode and drag a DataGrid and four buttons from the Toolbox.
Your design should be similar to the picture shown in Figure 3-3.

Figure 3-3 ADO.NET Disconnected Mode Windows form sample

3. Name the controls using the names shown in Table 3-11.

Table 3-11 DataSet methods

4. From the Toolbox, add an OpenFileDialog control and a SaveFileDialog control by
dragging these to your window design area.

5. Add a project reference to IBM.Data.DB2.iSeries.

6. Open the Form1.cs code view and add the following using directives as shown in
Example 3-10 on page 26.

Control Name Description

dgDept The DataGrid to show data.

btnGetFromDB Button with text “Get From iSeries”

btnSaveToDB Button with text “Save To iSeries”

btnGetFromXml Button with text “Get From Local File”

btnSaveToXml Button with text “Save To Local File”

Chapter 3. ADO .NET object hierarchy 25

Example 3-10 Using directives needed for ADO.NET Disconnected Mode sample

using System.Data;
using System.IO;
using System.Text;
using System.Xml;
using System.Diagnostics;
using IBM.Data.DB2.iSeries;

7. Add the following variables to Form1.cs as shown in Example 3-11:

Example 3-11 Attributes to add for ADO.NET Disconnected Mode sample

private iDB2DataAdapter da;
private iDB2CommandBuilder builder;
private DataSet dsDept = new DataSet();
private string connectionString = "DataSource=myiSeries;DefaultCollection=SAMPLEDB;";
private string tableName = "Department";

8. Build a method to log possible exceptions with our iSeries operations. Use the event log
provided by the Windows OS. The LogDB2Exception method is shown in Example 3-12.

Example 3-12 Log exceptions method for ADO.NET Disconnected Mode sample

private void LogDB2Exception(iDB2Exception ex)
{

EventLog el = new EventLog();
el.Source = "AdoDisconnectedApp";
string strMessage;
strMessage = "Exception Number : " + ex.MessageCode.ToString()

+ "(" + ex.MessageDetails + ") has occurred";
el.WriteEntry(strMessage, EventLogEntryType.Error);
foreach(iDB2Error er in ex.Errors)
{

strMessage = "Message : "+ er.Message
+ " Code : "+ er.MessageCode.ToString()
+ " State : "+ er.SqlState;

el.WriteEntry(strMessage, EventLogEntryType.Error);
}

}

9. Write your method to read data from the iSeries database. Use the LogDB2Exception
method in case of a problem connecting to or reading from the database (Example 3-13).

Example 3-13 Reading data for ADO.NET Disconnected Mode sample

private DataSet RetrieveDataSetFromDB()
{

DataSet ds = new DataSet();
try
{

using (iDB2Connection cnn =
 new iDB2Connection(this.connectionString))

{
iDB2Command cmd = new iDB2Command();
cmd.Connection = cnn;
cmd.CommandText = "Select DeptNo, DeptName, admrdept from Department order by DeptNo";
cnn.Open();

//create Data adapter
this.da = new iDB2DataAdapter(cmd.CommandText,cnn);
this.builder = new iDB2CommandBuilder(this.da);

26 Integrating DB2 Universal Database for iSeries with Microsoft ADO .NET

//fill DataSet with data
this.da.Fill(ds, this.tableName);
cnn.Close ();

}
}
catch (iDB2Exception iex)
{

this.LogDB2Exception(iex);
}
catch (Exception ex)
{

MessageBox.Show(ex.Message);
}
return ds;

}

10.Link this method with the button btnGetFromDB click event. Switch to design mode and
click Get From iSeries. Copy the code from Example 3-14 into your code.

Example 3-14 btnGetFromDB click event code for ADO.NET Disconnected Mode sample

private void btnGetFromDB_Click(object sender, System.EventArgs e)
{

this.dsDept = this.RetrieveDataSetFromDB();
this.dgDept.DataSource = this.dsDept;
this.dgDept.DataMember = this.dsDept.Tables[0].TableName;
this.dgDept.CaptionText = this.dsDept.Tables[0].TableName + " from iSeries";

}

11.You can now generate and run your application, but first, we show how to complete the
functionality. First, add a method to save a DataSet as an XML file in the local file system.
Copy the PersistDataSetToXml method shown in Example 3-15 into your code.

Example 3-15 Code to save DataSet as XML file for ADO.NET Disconnected Mode sample

private void PersistDataSetToXml(DataSet ds, string path)
{

if(ds == null)
return;

FileStream fs = new FileStream(path, FileMode.Create);
XmlTextWriter writer = new XmlTextWriter(fs, Encoding.Unicode);
ds.WriteXmlSchema(Path.ChangeExtension(path,".xsd"));
ds.WriteXml(writer, XmlWriteMode.DiffGram);
writer.Close();

}

12.Copy the RetrieveDataSetFromXml method shown in Example 3-16 into your code. This
method reads an XML file from the local file system into a DataSet.

Example 3-16 Code to Load a DataSet from a XML file for ADO.NET Disconnected Mode sample

private DataSet RetrieveDataSetFromXml(DataSet ds, string path)
{

FileStream fs = new FileStream(path, FileMode.Open);
XmlTextReader reader = new XmlTextReader(fs);
ds.ReadXmlSchema(Path.ChangeExtension(path,".xsd"));
ds.ReadXml(reader, XmlReadMode.DiffGram);
reader.Close();
return ds;

}

Chapter 3. ADO .NET object hierarchy 27

13.Copy the PersistDataSetToDB method shown in Example 3-17 into your code. This
method calls Update to update data on the iSeries database.

Example 3-17 Code to Update DataSet on iSeries for ADO.NET Disconnected Mode sample

private void PersistDataSetToDB(DataSet ds)
{

try
{

using (iDB2Connection cnn =
 new iDB2Connection(this.connectionString))

{
iDB2Command cmd = new iDB2Command();
cmd.Connection = cnn;
cmd.CommandText = "Select DeptNo, DeptName, admrdept from Department order by DeptNo";
cnn.Open();

//create Data adapter
this.da = new iDB2DataAdapter(cmd.CommandText,cnn);
this.builder = new iDB2CommandBuilder(this.da);

//update database
int rowsAffected = this.da.Update(ds, this.tableName);
MessageBox.Show(rowsAffected.ToString() + " rows affected by update.");
cnn.Close();

}
}
catch (iDB2Exception iex)
{

this.LogDB2Exception(iex);
}
catch (Exception ex)
{

MessageBox.Show(ex.Message.ToString());
}
this.dsDept = this.RetrieveDataSetFromDB();

}

14.Introduce the code for the click events of the other buttons. Copy the methods shown in
Example 3-18 into your code.

Example 3-18 Code for click events of buttons on Form1.cs for ADO.NET Disconnected Mode sample

private void btnSaveToXml_Click(object sender, System.EventArgs e)
{

if (this.saveFileDialog1.ShowDialog() == DialogResult.OK)
this.PersistDataSetToXml(this.dsDept, this.saveFileDialog1.FileName);

this.dgDept.CaptionText = this.dsDept.Tables[0].TableName + " saved to local XML
file";
}

private void btnGetFromXml_Click(object sender, System.EventArgs e)
{

if (this.openFileDialog1.ShowDialog() == DialogResult.OK)
{

this.RetrieveDataSetFromXml(this.dsDept, this.openFileDialog1.FileName);
this.dgDept.DataSource = this.dsDept;
this.dgDept.DataMember = this.dsDept.Tables[0].TableName;
this.dgDept.CaptionText = this.dsDept.Tables[0].TableName + " from local XML file";

}
}

28 Integrating DB2 Universal Database for iSeries with Microsoft ADO .NET

private void btnSaveToDB_Click(object sender, System.EventArgs e)
{

this.PersistDataSetToDB(this.dsDept);
this.dgDept.CaptionText = this.dsDept.Tables[0].TableName + " saved to iSeries";

}

15.Ensure that your changes are not lost by adding the code shown in Example 3-19.

Example 3-19 Code for Closing event of Form1.cs for ADO.NET Disconnected Mode sample

private void Form1_Closing(object sender, System.ComponentModel.CancelEventArgs e)
{

if(this.dsDept.HasChanges())
{

if(DialogResult.No == MessageBox.Show("You have changes not saved to the Database!
If you haven't saved to a local file, exiting now will result in your changes being lost.
Exit anyway?","Please Confirm", MessageBoxButtons.YesNo, MessageBoxIcon.Question))

e.Cancel = true;
}

}

16.We can now generate and run this project. Press the F5 key in Visual Studio. When the
program is running, click Get From iSeries. You may be prompted to log on to the iSeries
(if you do not include your credentials in connection string). A window appears that looks
similar to Figure 3-4.

Figure 3-4 ADO.NET Disconnected Mode Windows form with data from iSeries loaded

17.You can make changes on the DataGrid. For example, change the name of department
E01 from SUPPORT SERVICES to SUPPORT SERVICES CHANGED and click Save To Local
File. You are prompted for a location and a name for the local file. Type department.xml as
the file name and select a folder to save this file into, as shown in Figure 3-5 on page 30.

Chapter 3. ADO .NET object hierarchy 29

Figure 3-5 ADO.NET Disconnected Mode Save As window

18.Click Save to save the DataSet onto your local file system in DiffGram format. Another file
with .xsd extension is saved, too. See the formats in Figure 3-6 and Figure 3-7.

Figure 3-6 XML data fragment: note the DiffGram entries with the modified stamp

Figure 3-7 XML data fragment: note the DiffGram entries with prior data

19.Close the window and affirm to save changes.

20.Press F5, and when the application is running, click Get From Local File. The DataSet
will be restored from XML. You can see the changes made are there.

21.Click Save To iSeries to open a dialog informing you how many rows have been affected
by this update.

30 Integrating DB2 Universal Database for iSeries with Microsoft ADO .NET

Part 2 Providers

In this part we introduce and explain the .NET providers that are available to access DB2
UDB for iSeries:

� In Chapter 4, “IBM DB2 UDB for iSeries .NET provider” on page 33, we concentrate on the
native IBM DB2 UDB for iSeries .NET provider.

� In Chapter 5, “IBM DB2 for LUW .NET provider” on page 177, we discuss the IBM DB2 for
LUW (Linux, UNIX, and Windows) .NET provider.

� In Chapter 6, “Selecting the .NET provider” on page 225, we evaluate both providers.

Part 2

© Copyright IBM Corp. 2005. All rights reserved. 31

32 Integrating DB2 Universal Database for iSeries with Microsoft ADO .NET

Chapter 4. IBM DB2 UDB for iSeries .NET
provider

In this chapter we discuss the IBM DB2 UDB for iSeries .NET provider, which was first
included with the iSeries Access for Windows product (licensed program 5722-XE1) in its
V5R3M0 release.

We include information to help you get started, some coding examples, and a discussion of
more advanced topics. Because we understand performance is an important feature of any
application, we have some tips that will help you tune your application. Finally, we discuss
some differences between ADO.NET and OLE DB, and offer suggestions on how to migrate
from OLE DB to ADO.NET.

4

Note: The IBM DB2 UDB for iSeries .NET provider is also referred to by the namespace it
defines, IBM.Data.DB2.iSeries. The two terms are used interchangeably.

© Copyright IBM Corp. 2005. All rights reserved. 33

4.1 Introduction
The IBM DB2 UDB for iSeries .NET provider is part of the iSeries Access for Windows
product, starting in its V5R3M0 release. It uses the optimized host database server job
(QZDASOINIT) to perform database requests on the iSeries. Because it was written
especially for the iSeries and uses the optimized server, it can take advantage of
improvements that are made especially for the iSeries. The provider is a component of iSeries
Access for Windows that does not require the iSeries Access Family (5722-XW1) license.

The namespace for the provider is IBM.Data.DB2.iSeries, and it includes a full set of
ADO.NET classes that enable your .NET application to access an iSeries database using
commands, queries, and stored procedure calls. You can read more about ADO.NET at the
MSDN Library Web site:

http://msdn.microsoft.com/library/

When you reach this Web page, select .NET Development → Data Access and Storage →
ADO.NET.

The Microsoft Web site has a wealth of information about ADO.NET, including examples
using the Microsoft ADO.NET providers. In many cases, you can use the coding examples
provided on the site and substitute the iDB2- prefix for the Sql- or OleDb- prefix on the class
names. For instance, where their example references a SqlConnection or OleDbConnection,
you can change the example to instead reference iDB2Connection.

The IBM DB2 UDB for iSeries provider (IBM.Data.DB2.iSeries) has been tested with the
Microsoft .NET Framework 1.0 and 1.1.

4.2 IBM.Data.DB2.iSeries architecture
In this section, we discuss how the IBM DB2 UDB for iSeries provider fits into the ADO.NET
picture. We explain how the provider communicates with the iSeries server, and list the
features supported by the provider.

4.2.1 ADO.NET interfaces
The IBM.Data.DB2.iSeries provider supports all required interfaces of an ADO.NET provider.
Figure 4-1 on page 35 shows how the IBM.Data.DB2.iSeries provider classes fit into the
ADO.NET object model.

34 Integrating DB2 Universal Database for iSeries with Microsoft ADO .NET

http://msdn.microsoft.com/library/

Figure 4-1 IBM.Data.DB2.iSeries provider object model

4.2.2 Host server jobs
When you run applications that use the IBM.Data.DB2.iSeries .NET provider, much of the
work is performed by the iSeries server on behalf of your application. This is accomplished
with the help of host server jobs that run on the iSeries. The provider handles transferring the
commands and data back and forth between your PC and the host server jobs. Because it is
part of iSeries Access for Windows, the provider can take advantage of its security and
communication features.

The provider communicates with the iSeries by using the optimized host database server.
The host server has a prestart job, QZDASOINIT, which normally runs under the QUSRWRK
subsystem. When using secure connections (see “SSL” on page 50), the host server job
QZDASSINIT is used instead. Other host server jobs are also used when making a
connection. The host servers are installed as part of the operating system 5722SS1 option 12
(Host Servers).

Before you can use the IBM.Data.DB2.iSeries .NET provider to communicate with your
iSeries host server jobs, the server jobs must be active.

� To start the host servers, use the STRHOSTSVR CL command from your 5250
workstation or emulator, or from your PC desktop select Start → Programs → IBM
iSeries Access for Windows → iSeries Navigator. In the iSeries Navigator window,
select My Connections → myiSeries → Network → Servers → iSeriesAccess. The
server names and their status are listed in the right panel. To start or stop a server,
right-click the server and select Start or Stop. The iSeries Access server jobs are shown
in Figure 4-2 on page 36.

Note: Substitute your iSeries server name for myiSeries.

Chapter 4. IBM DB2 UDB for iSeries .NET provider 35

Figure 4-2 iSeries Access for Windows servers

� To verify that a host server prestart job is active, you can look at its status from the iSeries
Navigator window as shown in the previous item. Alternatively, you can use the cwbping
command from a PC command prompt:

cwbping myiSeries

The cwbping command is located in the folder where you installed iSeries Access for
Windows. If your PC’s path does not point to this folder, you may need to navigate into that
folder in order for the cwbping command to run.

� For more information about optimized host servers, go the iSeries Information Center at:

http://www.iseries.ibm.com/infocenter

Choose your region and version if asked, then select Connecting to iSeries → iSeries
Access → iSeries Access for Windows. In the right-side frame, click Administration →
Host server administration.

4.2.3 Supported features
The IBM.Data.DB2.iSeries provider includes the following features:

� Classes to implement ADO.NET interfaces, including:

– iDB2Connection
– iDB2Command
– iDB2Parameter and iDB2ParameterCollection
– iDB2DataReader
– iDB2DataAdapter
– iDB2CommandBuilder
– iDB2Transaction
– iDB2Exception, iDB2Error, and iDB2ErrorCollection
– iDB2Trace
– iDB2ProviderSettings

Note: The iDB2ProviderSettings class was added to the provider in V5R3M0 service
pack SI15176.

36 Integrating DB2 Universal Database for iSeries with Microsoft ADO .NET

http://www.iseries.ibm.com/infocenter

� Provider-specific data types that correspond to most iSeries data types:

– iDB2BigInt
– iDB2Binary
– iDB2Blob
– iDB2Char
– iDB2CharBitData
– iDB2Clob
– iDB2Date
– iDB2DbClob
– iDB2Decimal
– iDB2Double
– iDB2Graphic
– iDB2Integer
– iDB2Numeric
– iDB2Real
– iDB2Rowid
– iDB2SmallInt
– iDB2Time
– iDB2TimeStamp
– iDB2VarBinary
– iDB2VarChar
– iDB2VarCharBitData
– iDB2VarGraphic

� Provider-specific exceptions:

– iDB2CommErrorException
– iDB2ConnectionFailedException
– iDB2ConnectionTimeoutException
– iDB2ConversionException
– iDB2DCFunctionErrorException
– iDB2ExitProgramErrorException
– iDB2HostErrorException
– iDB2InvalidConnectionStringException
– iDB2MaximumPoolSizeExceededException
– iDB2SQLErrorException
– iDB2SQLParameterErrorException
– iDB2UnsupportedHostVersionException

� Provider-specific ConnectionString properties to enable you to better manage your
connection to the iSeries database:

– ConnectionTimeout
– CheckConnectionOnOpen
– Database
– DataCompression
– DataSource
– DefaultCollection
– DefaultIsolationLevel
– HexParserOption
– LibraryList
– MaximumDecimalPrecision
– MaximumDecimalScale

Note: Large Object data types (iDB2Blob, iDB2Clob, and iDB2DbClob) were added to
the provider in V5R3M0 Service Pack SI15176.

Chapter 4. IBM DB2 UDB for iSeries .NET provider 37

– MaximumInlineLobSize
– MaximumPoolSize
– MaximumUseCount
– MinimumDivideScale
– MinimumPoolSize
– Naming
– Password
– Pooling
– QueryOptionsFileLibrary
– SortLanguageId
– SortSequence
– SortTable
– SSL
– Trace
– UserID

4.2.4 Unsupported features
Although the IBM.Data.DB2.iSeries .NET provider supports most data types and features that
other DB2 UDB for iSeries data providers support, it has some limitations. The following
features are not supported as of this writing:

� Datalink data type: The provider does not have a datalink data type, although you can use
datalinks if you write special code. See 4.7.5, “Using DataLinks” on page 141 for
information about how you can read and write datalink values using the provider.

� User-defined types (UDTs): Although some features may work, extensive testing has not
been done using the IBM.Data.DB2.iSeries provider with UDTs.

� SQL packages (extended dynamic): For SQL packages, use the System.Data.OleDb
.NET provider to bridge to the IBMDASQL OLE DB provider included with iSeries Access
for Windows, V5R3M0 and later; or use the Microsoft ODBC .NET provider to bridge to the
iSeries Access for Windows ODBC driver.

� Record level access: For record level access, you can use the IBMDA400 or IBMDARLA
OLE DB provider included with iSeries Access for Windows. Testing of record level access
through the System.Data.OleDb bridge has not been performed.

� Data queues: For data queues, you can use the IBMDA400 OLE DB provider included with
iSeries Access for Windows. Testing of data queues through the System.Data.OleDb
bridge has not been performed.

� Remote command and program call: For remote command and remote program call, you
can use the IBMDA400 OLE DB provider included with iSeries Access for Windows.
Testing of remote command and program call through the System.Data.OleDb bridge has
not been performed. If your remote command or program does not contain any output
parameters, you may be able to run the command through IBM.Data.DB2.iSeries using
QCMDEXC. See 4.6.5, “Calling a program or CL command using QCMDEXC” on
page 120 for more information. Alternatively, you can wrap your command or program
using a stored procedure.

Note: The LibraryList and Naming properties were added to the provider in V5R3M0
Service Pack SI15176. The CheckConnectionOnOpen property was added to the
provider in V5R3M0 Service Pack SI17742.

These connection properties are covered in more detail in 4.5.2, “iDB2Connection and
ConnectionString properties” on page 48.

38 Integrating DB2 Universal Database for iSeries with Microsoft ADO .NET

� COM+, including Microsoft Distributed Transaction Coordinator (DTC) and Microsoft
Transaction Services (MTS): For Microsoft distributed transaction coordinator, you can use
the System.Data.OleDb .NET provider to bridge to the IBMDASQL OLE DB provider
included with iSeries Access for Windows, V5R3M0 and later; or use the Microsoft ODBC
.NET provider to bridge to the iSeries Access for Windows ODBC driver.

� Distributed relational database architecture (DRDA®), including the CONNECT and
DISCONNECT statements: For DRDA, you can use the Microsoft ODBC .NET provider to
bridge to the iSeries Access for Windows ODBC driver.

� SET TRANSACTION, COMMIT, and ROLLBACK statements: Instead, we recommend
using the built-in transaction support provided via the iDB2Connection.BeginTransaction()
method, and the iDB2Transaction object.

� SET PATH statement: Instead, use the LibraryList property in your iDB2Connection’s
ConnectionString.

� SET SCHEMA statement: Instead, use the DefaultCollection property in your
iDB2Connection’s ConnectionString.

4.3 Before we begin
Before we begin writing sample code for the IBM.Data.DB2.iSeries provider, we have to set
up the PC and iSeries host.

4.3.1 PC setup
The following software components must be installed onto your PC:

� Microsoft .NET Framework and Microsoft Visual Studio .NET: Visual Studio .NET will
install a version of the .NET Framework if a required version is not already installed. The
IBM.Data.DB2.iSeries provider does not require a particular version of the .NET
Framework; as of this writing, it has been tested with .NET Framework V1.0 and V1.1.

� iSeries Access for Windows (5722-XE1), V5R3M0 or later: Be sure to select the .NET
Data Provider Data Access component, and the Headers, Libraries, and
Documentation Toolkit component as shown in Figure 4-3 on page 40.

The Data Access .NET Data Provider component containing the runtime
IBM.Data.DB2.iSeries provider: The Toolkit Headers, Libraries, and Documentation
component contains the Technical Reference for the provider, which contains descriptions
of all classes for the IBM.Data.DB2.iSeries provider and some short coding samples.

Note: Some operations may work, but record level access, data queues, and remote
command and program call have not been tested through the System.Data.OleDb
bridge.

Tip: You can use iSeries Access for Windows Selective Setup to add or remove
components after your initial install.

Chapter 4. IBM DB2 UDB for iSeries .NET provider 39

Figure 4-3 iSeries Access for Windows install window

� Applicable service packs or fix packs. We recommend that you always run with the latest
iSeries Access for Windows service pack. Service packs can be downloaded and installed
by your administrator, or by selecting Service Packs (Fixes) from the iSeries Access for
Windows Web site at:

http://www.ibm.com/servers/eserver/iseries/access/windows/

After you apply a service pack, be sure to reboot your PC if asked to do so. Some new files
are not installed properly until after a reboot occurs (for example, if the file is locked by a
running application).

The rest of this chapter assumes that your iSeries Access for Windows is at least V5R3M0
with service pack level SI15176.

4.3.2 Host setup
In addition to the PC setup, you need the following host setup:

� Access to an iSeries host. Check the iSeries Access for Windows Web site for supported
host versions:

http://www.ibm.com/servers/eserver/iseries/access/windows/

� The database host server prestart jobs must be active on your iSeries. See 4.2.2, “Host
server jobs” on page 35 for more information about the host server jobs.

� The examples in this chapter assume that you have already created a SQL sample
schema on your iSeries called sampledb. The sampledb schema includes many different
types of tables used in our coding examples. See 1.4, “DB2 UDB for iSeries sample
schema” on page 8 for information about setting up the sample schema.

� Applicable host server PTFs or cumulative PTF levels. To help prevent problems that have
already been fixed, you should apply server-side fixes on a regular basis.

40 Integrating DB2 Universal Database for iSeries with Microsoft ADO .NET

http://www.ibm.com/servers/eserver/iseries/access/windows/
http://www.ibm.com/servers/eserver/iseries/access/windows/

4.4 Getting started
Now that you have set up your PC and iSeries, you can start. In this section, we show how to
prepare to write an application to use the IBM.Data.DB2.iSeries provider.

4.4.1 Displaying the technical reference
The IBM DB2 UDB for iSeries .NET provider Technical Reference is an important tool when
writing your application. It contains all of the class, data type, and exception definitions that
are available from the provider. It also contains some coding examples and additional
information to help you get started. To display the Technical Reference:

1. From the Windows desktop, select Start → Programs → IBM iSeries Access for
Windows → Programmer’s Toolkit → Programmer’s Toolkit.

2. In the left pane of the Programmer’s Toolkit window, select Database → .NET Framework
Classes (Figure 4-4).

3. In the right pane of the Programmer’s Toolkit window, select the IBM DB2 UDB for iSeries
.NET provider Technical Reference link.

Figure 4-4 iSeries Access for Windows Programmer’s Toolkit

The .NET provider Technical Reference (Figure 4-5 on page 42) opens. Keep this window
open if you want more information about any of the classes, methods, or properties that
are supported by the IBM.Data.DB2.iSeries provider.

Chapter 4. IBM DB2 UDB for iSeries .NET provider 41

Figure 4-5 IBM DB2 UDB for iSeries .NET provider Technical Reference

4.4.2 Starting Visual Studio .NET
To begin using the IBM.Data.DB2.iSeries provider, start Visual Studio .NET and create a new
Visual C# project. Most of the examples in this chapter use a Console application, so when
you see coding examples, you can assume that they are written to work with a Console
application unless we tell you to use a Windows application. For now, we use a Console
application, as shown in Figure 4-6 on page 43.

Tip: Because you might refer to the Technical Reference on many occasions, you can
create a shortcut that points to the location of the Technical Reference .hlp file, for example
c:\Program Files\IBM\Client Access\mri2924\cwbmptch.hlp. The actual location of the .hlp
file may differ depending on your installation.

42 Integrating DB2 Universal Database for iSeries with Microsoft ADO .NET

Figure 4-6 Create a C# Console Application

4.4.3 Adding an assembly reference to the provider
Before your application can use the IBM.Data.DB2.iSeries provider classes, you must add an
assembly reference so the .NET runtime knows where to find them.

1. From Visual Studio .NET, select View → Solution Explorer as shown in Figure 4-7.

Figure 4-7 Select Solution Explorer

2. In the Solution Explorer (Figure 4-8), right-click References and select Add Reference.

Figure 4-8 Solution Explorer

Note: The examples in this chapter use Visual C#. Most are available to download in both
Visual Basic and in C#. See Appendix B, “Additional material” on page 261 for information
about downloading the samples. Appendix A, “Sample programs” on page 257 contains a
list of all the sample programs.

Chapter 4. IBM DB2 UDB for iSeries .NET provider 43

3. The Add Reference dialog box opens, containing a list of .NET components your
application can use, as shown in Figure 4-9. From here:

a. Select IBM DB2 UDB for iSeries .NET provider and click Select.

Figure 4-9 Select the IBM DB2 UDB for iSeries .NET provider

b. Under Selected Components, select IBM DB2 UDB for iSeries .NET provider and
click OK as shown in Figure 4-10.

Figure 4-10 Select the IBM DB2 UDB for iSeries .NET provider again

Your application now has an assembly reference to the IBM.Data.DB2.iSeries .NET provider.

4.4.4 Adding a namespace directive
Finally, add a namespace directive for easier use of IBM.Data.DB2.iSeries classes. A
namespace directive enables you to refer to class names without having to fully qualify them.
For example, without the namespace directive, to use an iDB2Connection object, type:

IBM.Data.DB2.iSeries.iDB2Connection

By adding a namespace directive, you can refer to the object directly:

iDB2Connection

To add a namespace directive using C#, add a using directive to your C# source file:

using IBM.Data.DB2.iSeries;

To add a namespace directive using Visual Basic .NET, add an Imports statement to your
Visual Basic source file:

Imports IBM.Data.DB2.iSeries

Your application is now ready to use the IBM.Data.DB2.iSeries .NET provider.

44 Integrating DB2 Universal Database for iSeries with Microsoft ADO .NET

4.5 Provider basics
In this section, we explain some ADO.NET basics as they apply to the IBM.Data.DB2.iSeries
.NET provider, including coding examples and insight into some features of this provider.

4.5.1 A simple connection example
Now you can make a connection to the iSeries. Our simple connection example shows how to
connect to the iSeries with only a few lines of code.

Write the code
Copy the code from Example 4-1 into your Console application, substituting the name of your
iSeries server for myiSeries in the example.

Example 4-1 A simple iDB2Connection example

using System;
using IBM.Data.DB2.iSeries;

namespace SimpleConnectionExample
{

/// <summary>
/// A simple iDB2Connection example
/// </summary>
class Class1
{

/// <summary>
/// The main entry point for the application.
/// </summary>
[STAThread]
static void Main(string[] args)
{

iDB2Connection cn = new iDB2Connection("DataSource=myiSeries;");
cn.Open();
Console.WriteLine(cn.JobName);
cn.Close();

}
}

}

Run the first three statements of the connection example
Now run the small sample program we just created:

1. From Visual Studio .NET, save your application (File → Save All).

2. Build the application using Build → Rebuild solution.

3. Place your cursor on the line containing the text cn.Close();

4. Right-click and select Run To Cursor. This causes the first three statements to be
executed, and the cn.Close() statement is highlighted. At this point, you should have an
open connection to the iSeries.

Note: The first time you connect, you may see a logon window. Enter your iSeries user
ID and password, and click OK.

Chapter 4. IBM DB2 UDB for iSeries .NET provider 45

Examine the host job log
The JobName property corresponds to the iSeries host server job that processes requests for
your connection. Using this property makes it easier for you to find the host server job, which
is handy during problem determination.

When you run the connection example program, a window opens, and the connection’s
JobName property is printed; for example:

123456/QUSER/QZDASOINIT

Before you let the program continue, look at the host server job that corresponds to the
JobName property printed by the connection example program. To look at the server job
using iSeries Navigator:

1. From the Windows desktop, select Start → Programs → IBM iSeries Access for
Windows → iSeries Navigator.

2. From the iSeries Navigator window, expand My Connections → myiSeries → Work
Management, substituting the name of your iSeries for myiSeries.

3. Right-click Server Jobs, and select Customize this View → Include (Figure 4-11).

Figure 4-11 Customize the iSeries Navigator Server Jobs view

4. Enter the server job information from the JobName your program printed, as in
Figure 4-12 on page 47, and click OK. The right pane of your iSeries Navigator window is
updated with the job you selected.

Note: Your job number may be different from the one shown here. If you are using a secure
connection (SSL property), then your job name will be QZDASSINIT.

46 Integrating DB2 Universal Database for iSeries with Microsoft ADO .NET

Figure 4-12 Enter the server job information

5. Right-click the QZDASOINIT server job and select Job Log (Figure 4-13).

Figure 4-13 Select the job log

The Job Log window opens as in Figure 4-14.

Figure 4-14 iSeries Navigator Job Log window

End the program
Return to Visual Studio .NET and press F5 to let the program close the connection and run to
completion.

Hint: The JobName property is returned in the same format that WRKJOB uses, so if you
prefer to use a 5250 workstation or emulator, you can copy and paste the JobName directly
from your Console window to your WRKJOB statement; for example:

WRKJOB JOB(123456/QUSER/QZDASOINIT)

Chapter 4. IBM DB2 UDB for iSeries .NET provider 47

4.5.2 iDB2Connection and ConnectionString properties
The connection object for IBM.Data.DB2.iSeries is called iDB2Connection. The
iDB2Connection object implements the System.Data.IDbConnection interface. You must have
a connection object before performing any SQL operations on the iSeries using the .NET
provider. You typically create an iDB2Connection object, set the ConnectionString property,
open the connection, perform your work using commands, and then close the connection.

Each ADO.NET provider has its own unique set of attributes for initializing the connection.
While this makes it harder to write code to easily switch among different providers, it makes
sense because each provider “talks” to a different database. In this section, we explain how to
create an iDB2Connection object and initialize its ConnectionString.

Creating an iDB2Connection object
To create an iDB2Connection object, use the new operator. You can either create an empty
connection object and later initialize its ConnectionString, or you can create the object and
initialize its ConnectionString in one operation. Example 4-2 shows the two different ways to
create a connection.

Example 4-2 iDB2Connection: new operator

// Method 1: Create an empty connection and manually set the ConnectionString.
iDB2Connection cn1 = new iDB2Connection();
cn1.ConnectionString = "DataSource=myiSeries;";

// Method 2: Create a connection and initialize the ConnectionString
// in a single operation. This is a more efficient method.
iDB2Connection cn2 = new iDB2Connection("DataSource=myiSeries;");

Setting the ConnectionString property
The iDB2Connection object has only a single writable property: ConnectionString. This
property tells the provider which iSeries server to connect to, which schema to use as the
default schema, which user ID and password you want to authenticate with, and more.
Example 4-1 on page 45 shows how to quickly and easily create a connection to the iSeries
using the IBM.Data.DB2.iSeries .NET provider. The example creates an iDB2Connection
object and initializes its ConnectionString property using only the DataSource attribute:

"DataSource=myiSeries;"

The ConnectionString supports many more attributes for better control over managing a
connection. In this section, we explain these ConnectionString options in more detail, and
include sample ConnectionStrings to illustrate how you can use each option.

Read-only connection properties reflect ConnectionString attributes
Every attribute you set in the ConnectionString corresponds to an iDB2Connection property.
All connection properties except the ConnectionString are read-only. After your application
sets the ConnectionString property, the provider updates the iDB2Connection object’s
properties to correspond to these attributes.

Format of the ConnectionString
Items in the ConnectionString appear as name=value pairs, with each pair separated by a
semicolon. In this way, you can string together many different attributes in your
ConnectionString; for example:

“DataSource=myiSeries; DefaultCollection=sampledb; Naming=SQL; LibraryList=sampledb,
*USRLIBL;”

48 Integrating DB2 Universal Database for iSeries with Microsoft ADO .NET

ConnectionString properties explained
In this section we describe the properties you can use in your ConnectionString. Information
about most of these properties is in the iSeries Access for Windows .NET provider Technical
Reference. (See 4.4.1, “Displaying the technical reference” on page 41.)

Authentication on the iSeries
The ConnectionString must always include at least the DataSource property, which contains
the name or IP address of the iSeries server you want to connect to. To open a connection to
the specified iSeries data source, sign on. This is normally done with a user ID and password,
but you can also use Kerberos to authenticate. There are two ways to specify sign-on
information for use with the IBM.Data.DB2.iSeries .NET provider:

� Configure the data source using iSeries Navigator.

� Specify the user ID or password (or both) in your ConnectionString. Applications that run
on a Web server, such as the Microsoft Internet Information Services (IIS), should always
include both the user ID and the password in the ConnectionString to ensure that a logon
window is not displayed on the Web server PC. See Chapter 7, “ASP .NET scenario (Web
forms)” on page 237 for more about using IBM.Data.DB2.iSeries in a Web environment.

DataSource
The DataSource property is always a required element of the ConnectionString. It specifies
the name or IP address of the iSeries you want to connect to. The DataSource connection
name is resolved using the iSeries Access for Windows communication component.

Example 4-3 shows how you can use the DataSource property in your ConnectionString.

Example 4-3 Specifying the DataSource property in the ConnectionString

iDB2Connection cn = new iDB2Connection();
cn.ConnectionString = "DataSource=myiSeries;";

UserID
The UserID property specifies the user ID for logging on to the iSeries. If UserID is not
specified in the ConnectionString, then the iSeries Access for Windows configuration default
is used, and iSeries Access for Windows may display a logon prompt when the connection is
opened.

Example 4-4 shows how you can use the UserID property in your ConnectionString.

Example 4-4 Specifying the UserID property in the ConnectionString

iDB2Connection cn = new iDB2Connection();
cn.ConnectionString = "DataSource=myiSeries; UserID=myuserid;";

Password
The Password property specifies the iSeries password used for logging onto the iSeries. If
Password is not specified in the ConnectionString, then iSeries Access for Windows may
display a logon prompt when the connection is opened.

Example 4-5 shows how you can use the Password property in your ConnectionString.

Example 4-5 Specifying the Password property in the ConnectionString

iDB2Connection cn = new iDB2Connection();
cn.ConnectionString = "DataSource=myiSeries; UserID=myuserid; Password=mypassword;";

Chapter 4. IBM DB2 UDB for iSeries .NET provider 49

Using Kerberos authentication
Most applications connect to the iSeries using the UserID and Password connection
properties, but some applications prefer to use Kerberos authentication. Before opening a
connection using Kerberos, you must use iSeries Navigator to define the connection and
configure the connection for Kerberos. In your ConnectionString, do not specify either the
UserID or the Password property; the connection will use the configured default of Kerberos.

For more information about using Kerberos with iSeries Access for Windows, see the IBM
Redbook iSeries Access for Windows V5R2 Hot Topics: Tailored Images, Application
Administration, SSL, and Kerberos, SG24-6939. You can read more about Kerberos in the
iSeries Access for Windows User’s Guide. To display the User’s Guide from the Windows
desktop, select Start → Programs → IBM iSeries Access for Windows → User’s Guide.
In the User’s Guide, click the Index tab and type Kerberos.

SSL
The SSL property enables you to connect to the iSeries using an SSL (Secure Sockets Layer)
connection. If SSL is not specified in the ConnectionString, then the iSeries Access for
Windows configuration default will be used.

To connect using SSL, first you must install and configure the SSL component of iSeries
Access for Windows. If you try to open a connection using SSL when SSL is not installed and
configured on your PC, you will get an iDB2CommErrorException.

To verify that the host server connection is working properly with SSL configured, start a PC
command prompt, and type (substituting the name of your iSeries for iSeries):

cwbping iSeries /ssl:1

For more about using SSL with iSeries Access for Windows, see the IBM Redbook iSeries
Access for Windows V5R2 Hot Topics: Tailored Images, Application Administration, SSL, and
Kerberos, SG24-6939. Read more about SSL in the iSeries Access for Windows User’s
Guide. From the Windows desktop, select Start → Programs → IBM iSeries Access for
Windows → User’s Guide. In the User’s Guide, click on the Index tab and type SSL.

Example 4-6 shows how you can use the SSL property in your ConnectionString.

Example 4-6 Specifying the SSL property in the ConnectionString

iDB2Connection cn = new iDB2Connection();
cn.ConnectionString = "DataSource=myiSeries; SSL=true;";

ConnectionTimeout
The ConnectionTimeout property can be used to specify the longest time (in seconds) to wait
for the connection to open. A value of 0 means that the connection will wait indefinitely. In
some cases, the default value of 30 (seconds) may not be long enough; for example, if your
communication link is especially slow. If ConnectionTimeout is not specified in the
ConnectionString, then the iSeries Access for Windows configuration default will be used.

Example 4-7 shows how to use the ConnectionTimeout property in your ConnectionString.

Example 4-7 Specifying the ConnectionTimeout property in the ConnectionString

iDB2Connection cn = new iDB2Connection();
cn.ConnectionString = "DataSource=myiSeries; ConnectionTimeout=60;";

50 Integrating DB2 Universal Database for iSeries with Microsoft ADO .NET

Database
One of the outstanding features of the iSeries is its database. Unlike some other platforms,
the DB2 UDB for iSeries is fully integrated with the operating system. Because of this, the
IBM.Data.DB2.iSeries .NET provider does not require you to specify a Database property
when you connect. Instead, the provider uses the Database property to enable you to connect
to an independent auxiliary storage pool (IASP), which is sometimes referred to as a catalog,
database, relational database, or RDB.

In most cases, you should not specify the Database in the ConnectionString. The only time
you should use Database is when you want your application to connect to an IASP other than
the system default *SYSBAS. The only way your application can reference a schema that
resides in an IASP is to connect to that IASP via the Database connection property.

If you do not specify the Database in the ConnectionString, the database will be determined
by the job description. After a connection is opened, the provider updates the Database
property to reflect the database that was connected to.

Example 4-8 shows how you can use the Database property in your ConnectionString.

Example 4-8 Specifying the Database property in the ConnectionString

iDB2Connection cn = new iDB2Connection();
cn.ConnectionString = "DataSource=myiSeries; Database=myIASP;";

Naming, DefaultCollection, LibraryList, and unqualified object names
These properties control how the iSeries server resolves unqualified object names such as
tables, external programs, and stored procedures. Unqualified object names refer to an object
without specifying the schema the object resides in:

� Example of a qualified object name: sampledb.employee or sampledb/employee
� Example of an unqualified object name: employee

When the iSeries server is given a request, it must determine which schema that object
resides in. For qualified object names, the schema is included in the request. For unqualified
object names, the iSeries server must use a different method to determine the schema. Some
objects (such as tables, external programs, and views) are resolved using the concept of a
default schema, but other objects (such as stored procedures) use the library list to resolve
unqualified object names. This topic is discussed in greater detail in the DB2 Universal
Database for iSeries SQL Reference, which you can find in the iSeries Information Center at:

http://www.iseries.ibm.com/infocenter

Select Database → Reference → SQL Reference → Language elements → Naming
conventions.

Naming
The Naming property is used to set the iSeries naming convention used for SQL requests. It
affects how the host server resolves unqualified object names, and it can also affect how the
DefaultCollection property is used (see “DefaultCollection” on page 52).

� When Naming is set to SQL (the default), object names containing a schema use a period
(.)to separate the schema name from the object name; for example:

schema.object

Hint: You can determine the RDB (Database) name for your iSeries by using the
WRKRDBDIRE command. The system database is indicated by a Remote Location of
*LOCAL.

Chapter 4. IBM DB2 UDB for iSeries .NET provider 51

http://www.iseries.ibm.com/infocenter

� When Naming is set to System, object names containing a schema use a forward slash (/)
to separate the schema name from the object name; for example:

schema/object

Example 4-9 shows how you can use the Naming property in your ConnectionString.

Example 4-9 Specifying the Naming property in the ConnectionString

iDB2Connection cn = new iDB2Connection();
cn.ConnectionString = "DataSource=myiSeries; Naming=System;";

DefaultCollection
The DefaultCollection property corresponds to the default schema that is used to resolve
some unqualified object names such as tables and external programs.

If your application sets the DefaultCollection property in the ConnectionString, then that
becomes the default schema for your connection and is used to resolve many unqualified
object types, for both SQL and System naming.

If the application does not set the DefaultCollection property, then the behavior depends on
the naming convention in use:

� With SQL naming, the provider sets the DefaultCollection property to the user ID that
opened the connection. This reflects the iSeries server’s notion of a run-time
authorization identifier.

� With System naming, the provider does not change the DefaultCollection property after a
connection is opened. In this case, the iSeries server resolves unqualified object names
using the host server job’s library list.

Example 4-10 shows how to use the DefaultCollection property in your ConnectionString.

Example 4-10 Specifying the DefaultCollection property in the ConnectionString

iDB2Connection cn = new iDB2Connection();
cn.ConnectionString = "DataSource=myiSeries; DefaultCollection=sampledb;";

LibraryList
On the iSeries server, each job has a library list associated with it. Each job’s library list is
composed of several different parts, including the server portion of the library list, the user
portion of the library list, product libraries, and the current library.

The LibraryList property enables you to set the user portion of the library list for the iSeries
host server job. LibraryList is a list of schema names separated by commas. The list can
include the special schema name *USRLIBL, which is a placeholder for the library list
associated with the user profile of the current host server job. By placing other schema
names before or after *USRLIBL, your application can control the order in which these
schemas are referenced. If *USRLIBL is not included in the LibraryList, the library list
associated with the user profile of the current host server job is replaced. To add to the library
list, instead of replacing it, your application must specify *USRLIBL somewhere in the
LibraryList.

The Database host server always includes the user profile’s current library setting in the job
library list.

Note: The Naming property was added to iSeries Access for Windows V5R3M0 in
service pack SI15176.

52 Integrating DB2 Universal Database for iSeries with Microsoft ADO .NET

The provider does not automatically include the DefaultCollection in the library list. If you want
the DefaultCollection added to the library list, you must set it using the LibraryList property.

One reason to use the LibraryList property is when you want to test some SQL objects before
they are ready to go into production. You can create the test objects into a test schema and
add this test schema before your production schema in the LibraryList. When your testing is
complete, you can move the test objects into your production schema and remove the test
schema from your LibraryList. Another reason to use LibraryList is when you want different
users to use different schemas. This way, you need only a single line of code to change which
schema your application uses.

Example 4-11 shows how you can use the LibraryList property in your ConnectionString.
Before running this example, perform the following setup on your iSeries host:

1. Create three schemas called SCHEMA1, SCHEMA2, and SCHEMA3:

CREATE COLLECTION SCHEMA1
CREATE COLLECTION SCHEMA2
CREATE COLLECTION SCHEMA3

2. Create a table called TEST in each of the three schemas:

CREATE TABLE SCHEMA1/TEST (CHAR1 CHAR(20))
CREATE TABLE SCHEMA2/TEST (CHAR1 CHAR(20))
CREATE TABLE SCHEMA3/TEST (CHAR1 CHAR(20))

3. Insert different data into each of the three tables:

INSERT INTO SCHEMA1/TEST VALUES('Data from SCHEMA1')
INSERT INTO SCHEMA2/TEST VALUES('Data from SCHEMA2')
INSERT INTO SCHEMA3/TEST VALUES('Data from SCHEMA3')

Example 4-11 Specifying the LibraryList property in the ConnectionString

iDB2Connection cn = new iDB2Connection();
iDB2Command cmd = cn.CreateCommand();
String dataFromTable;

// We have not specified the schema for the TEST table here.
// The schema that will be used will depend upon the
// LibraryList setting.
cmd.CommandText = "select char1 from test";

// Set the LibraryList so SCHEMA1 appears first.
// Read the data from the TEST table.
// Because SCHEMA1 is first in the library list, we should
// see the data from SCHEMA1/TEST.
cn.ConnectionString = "DataSource=myiSeries; Naming=System; LibraryList=SCHEMA1, SCHEMA2,
SCHEMA3, *USRLIBL;";
cn.Open();
dataFromTable = (String)cmd.ExecuteScalar();
Console.WriteLine(" This should be data from SCHEMA1: " + dataFromTable);
cn.Close();

// Set the LibraryList so SCHEMA2 appears first.
// Read the data from the TEST table.
// Because SCHEMA2 is first in the library list, we should
// see the data from SCHEMA2/TEST.

Note: The LibraryList property was added to iSeries Access for Windows V5R3M0 in
service pack SI15176.

Chapter 4. IBM DB2 UDB for iSeries .NET provider 53

cn.ConnectionString = "DataSource=myiSeries; Naming=System; LibraryList=SCHEMA2, SCHEMA1,
SCHEMA3, *USRLIBL;";
cn.Open();
dataFromTable = (String)cmd.ExecuteScalar();
Console.WriteLine(" This should be data from SCHEMA2: " + dataFromTable);
cn.Close();

// Set the LibraryList so SCHEMA3 appears first.
// Read the data from the TEST table.
// Because SCHEMA3 is first in the library list, we should
// see the data from SCHEMA3/TEST.
cn.ConnectionString = "DataSource=myiSeries; Naming=System; LibraryList=SCHEMA3, SCHEMA2,
SCHEMA1, *USRLIBL;";
cn.Open();
dataFromTable = (String)cmd.ExecuteScalar();
Console.WriteLine(" This should be data from SCHEMA3: " + dataFromTable);
cn.Close();

// Dispose the command
cmd.Dispose();

Connection pooling
The IBM.Data.DB2.iSeries .NET provider supports connection pooling. This support is turned
on by default. Connection pooling enables applications that open and close connections
frequently to reuse connections so the connections open more quickly. In some cases, you
may want to disable connection pooling; for instance, when doing problem determination or
when you know your application only opens and closes a single connection once. In most
cases, the pooling defaults can be used.

The provider uses the ConnectionString as a key to determining whether a connection can be
reused out of the connection pool. For connection pooling to work, the ConnectionString for
the connection must be identical to a ConnectionString in the pool. If the ConnectionStrings
are not identical, then the connection will not be taken from the pool; instead, a new pool will
be created and the new connection will be taken from the new pool. Connection pooling is
discussed in greater detail in 4.7.6, “Connection pooling” on page 143.

Pooling
Use the Pooling property to turn connection pooling on or off.

Example 4-12 shows how you can use the Pooling property in your ConnectionString.

Example 4-12 Specifying the Pooling property in the ConnectionString

iDB2Connection cn = new iDB2Connection();
cn.ConnectionString = "DataSource=myiSeries; Pooling=false;";

MaximumPoolSize
In some cases, you may want to limit the number of iSeries host server jobs that can service
your .NET application. By default, the provider enables you to create as many connections as
you need in a connection pool. With the MaximumPoolSize property, you can limit the pooled
connections. If your application tries to open more than the maximum number of connections,
an iDB2MaximumPoolSizeExceededException results. A value of -1 (the default) is used to
indicate no maximum.

Example 4-13 on page 55 shows how to use the MaximumPoolSize property in your
ConnectionString.

54 Integrating DB2 Universal Database for iSeries with Microsoft ADO .NET

Example 4-13 Specifying the MaximumPoolSize property in the ConnectionString

iDB2Connection cn = new iDB2Connection();
cn.ConnectionString = "DataSource=myiSeries; MaximumPoolSize=5;";

MaximumUseCount
Sometimes, due to unforeseen problems, host server jobs can become “stale” and in need of
recycling. The MaximumUseCount property enables you to specify how many times a pooled
connection is used before it is recycled. When the use count reaches this maximum, the
provider creates a new pooled connection and deletes the one whose count has reached the
maximum. Because creating a new connection is more time-consuming than using a pooled
connection, when MaximumUseCount is reached you will see a longer delay the first time the
new connection is opened.

Example 4-14 shows how to use the MaximumUseCount property in your ConnectionString.

Example 4-14 Specifying the MaximumUseCount property in the ConnectionString

iDB2Connection cn = new iDB2Connection();
cn.ConnectionString = "DataSource=myiSeries; MaximumUseCount=100;";

MinimumPoolSize
The MinimumPoolSize property is used for cases where you know ahead of time that you will
likely use a certain minimum number of connections all at once. In this case, you can set
MinimumPoolSize to that number. The first time you open one of the pooled connections, all
of the pooled connections make a connection to the iSeries. This means a longer start-up
time, and later when the other pooled connections are opened, the startup time will be
reduced. When you use MinimumPoolSize, the provider always makes sure that at least that
many pooled connections exist.

Example 4-15 shows how to use the MinimumPoolSize property in your ConnectionString.

Example 4-15 Specifying the MinimumPoolSize property in the ConnectionString

iDB2Connection cn = new iDB2Connection();
cn.ConnectionString = "DataSource=myiSeries; MinimumPoolSize=5;";

CheckConnectionOnOpen
The CheckConnectionOnOpen property can be used to guard against communication errors
that result from trying to open a pooled connection whose host server job has ended. These
communication errors could occur, for example, if you leave your application running
overnight, and the iSeries server is IPLed for maintenance. When your application tries to
Open a pooled connection, it gets a communication error because the pooled host server job
has ended. The normal recovery for a communication error is to Close and then Open (or
re-Open) the failing connection; but when there are potentially many pooled connections
whose server jobs have ended, you could still end up with communication errors when the
connection is re-opened if you pick up a different broken pooled connection.

Setting CheckConnectionOnOpen=true in your ConnectionString causes the provider to send a
small amount of data to the host server when you Open the connection. If the provider detects
that the host server job is not responding, it opens a new connection to the server. Otherwise
it returns the pooled connection. Note that in the case of a persistent communication error,
you may still see communication errors on Open, even when using the
CheckConnectionOnOpen property.

Chapter 4. IBM DB2 UDB for iSeries .NET provider 55

Example 4-16 shows how you can use the CheckConnectionOnOpen property in your
ConnectionString.

Example 4-16 Specifying the CheckConnectionOnOpen property in the ConnectionString

iDB2Connection cn = new iDB2Connection();
cn.ConnectionString = “DataSource=myiSeries; CheckConnectionOnOpen=true;”;

SortSequence
The iSeries host server enables you to customize how string values are compared or sorted.
The sort method used by the host server job processing requests on behalf of your
application can be configured by using the SortSequence property. There are four different
ways strings can be sorted on the iSeries:

� Sort based on hexadecimal values, where the hexadecimal values of the characters are
compared. (This is the default sort method.) You can set this sort method using the
SortSequence property as in Example 4-17.

Example 4-17 Specifying SortSequence=Hex property in the ConnectionString

iDB2Connection cn = new iDB2Connection();
cn.ConnectionString = "DataSource=myiSeries; SortSequence=Hex;";

� Sort based on a shared weight table, where uppercase and lowercase characters
compare and sort the same. To sort this way, you must specify both the SortSequence
property and the SortLanguageId property. SortLanguageId is the three-letter language
identifier. Example 4-18 shows a ConnectionString that uses a shared weight table.

Example 4-18 Specifying SortSequence=SharedWeight property in the ConnectionString

iDB2Connection cn = new iDB2Connection();
cn.ConnectionString = "DataSource=myiSeries;SortSequence=SharedWeight;SortLanguageId=ENU;";

� Sort based on a unique weight table, where uppercase and lowercase characters
compare and sort differently. To sort this way, you must specify both the SortSequence
property and the SortLanguageId property. SortLanguageId is the three-letter language
identifier. Example 4-19 shows a unique weight table.

Example 4-19 Specifying the SortSequence=UniqueWeight property in the ConnectionString

iDB2Connection cn = new iDB2Connection();
cn.ConnectionString = "DataSource=myiSeries;SortSequence=UniqueWeight;SortLanguageId=ENU;";

� Sort based on your own user-specified preferences. This sort method requires you to
specify both the SortSequence property and the SortTable property. SortTable is the
schema and table name of a sort sequence table. For more information, see “SortTable”
on page 57. Example 4-20 shows a ConnectionString that specifies a user defined sort
sequence table.

Example 4-20 Specifying the SortSequence=UserSpecified property in the ConnectionString

iDB2Connection cn = new iDB2Connection();
cn.ConnectionString = "DataSource=myiSeries; SortSequence=UserSpecified;
SortTable=myschema/mytable;";

Note: The CheckConnectionOnOpen property was added to iSeries Access for Windows
V5R3M0 in service pack SI17742.

56 Integrating DB2 Universal Database for iSeries with Microsoft ADO .NET

SortLanguageId
The SortLanguageId property is used only when SortSequence is either SharedWeight or
UniqueWeight. It is a three-character identifier from a list of languages supported by the
system.

Example 4-21 shows how to use the SortLanguageId property in your ConnectionString.

Example 4-21 Specifying the SortLanguageId property in the ConnectionString

iDB2Connection cn = new iDB2Connection();
cn.ConnectionString = "DataSource=myiSeries;SortSequence=SharedWeight;SortLanguageId=ENU;";

SortTable
The SortTable property is used only when SortSequence is UserSpecified. It enables you to
define your own sort preferences. For information about creating your own sort sequence
table, read about the iSeries CRTTBL command in the iSeries Information Center at:

http://www.iseries.ibm.com/infocenter

Select Programming → CL → Alphabetic list of commands → Create table (CRTTBL)
command.

Example 4-22 shows how you can use the SortTable property in your ConnectionString.

Example 4-22 Specifying the SortTable property in the ConnectionString

iDB2Connection cn = new iDB2Connection();
cn.ConnectionString = "DataSource=myiSeries; SortSequence=UserSpecified;
SortTable=myschema/mytable;";

DataCompression
In the ADO.NET environment, your application may send and receive large amounts of data
to and from your iSeries server. Because the communications link is often a bottleneck for
application performance, it is desirable to reduce the amount of data that must be sent and
received over the communications link.

To help alleviate this problem, the IBM.Data.DB2.iSeries provider supports the
DataCompression property. Setting DataCompression to true (the default) turns on record
length encoding (RLE) compression. RLE compression can significantly reduce the amount
of data, and therefore the time, that is needed to send or receive data to and from the iSeries.

Example 4-23 shows how to use the DataCompression property in your ConnectionString.

Example 4-23 Specifying the DataCompression property in the ConnectionString

iDB2Connection cn = new iDB2Connection();
cn.ConnectionString = "DataSource=myiSeries; DataCompression=True;";

Tip: The supported language identifiers are the same identifiers that are supported when
you use interactive SQL and select Change Session Attributes. To see this list, press F4
from the Change Session Attributes Language identifier field.

Note: The SortTable must be in the form schema/table (not schema.table), even when
SQL naming convention is being used. Both the schema and table name must be
specified, and they can each be up to 10 characters long.

Chapter 4. IBM DB2 UDB for iSeries .NET provider 57

http://www.iseries.ibm.com/infocenter

MaximumInlineLobSize
Large objects (LOBs) are used to hold very large binary or character data. When using LOBs,
you run an inherent risk of overloading your system resources (such as memory and disk
space). The iSeries server provides two ways to handle LOB data:

� As inline data
� By using locators

With inline LOBs, large data is sent and received as-is in the data stream. For instance, if a
large object is 500,000 bytes in size, accessing a record containing that LOB means that the
entire 500,000 bytes is sent all at once, regardless of whether your application ever reads the
data.

When using LOB locators, only a four-byte locator is sent and received for each large object.
The entire large object is read from or written to only when your application requires it.

The MaximumInlineLobSize property helps you tune the way you send and receive LOB data
by controlling the threshold at which LOB data is transferred using LOB locators, instead of as
inline data. LOB data that is smaller than the MaximumInlineLobSize is transferred as inline
data, and LOB data that is larger than the MaximumInlineLobSize is transferred using
locators. MaximumInlineLobSize is an integer in the range of 0 to 15360 that specifies the
maximum size (in kilobytes) of a LOB that can be retrieved from the host server in a single
operation.

Example 4-24 shows how you can use the MaximumInlineLobSize property in your
ConnectionString.

Example 4-24 Specifying the MaximumInlineLobSize property in the ConnectionString

iDB2Connection cn = new iDB2Connection();
cn.ConnectionString = "DataSource=myiSeries; MaximumInlineLobSize=32;";

For more information about using LOBs with the IBM.Data.DB2.iSeries provider, see 4.7.2,
“Using large objects (LOBs)” on page 132.

HexParserOption
Use the HexParserOption to configure the way you want hexadecimal constants to be treated
by the iSeries server. The iSeries deviates from the ISO and ANSI SQL standards, and by
default treats hexadecimal constants as character data instead of as binary data. To change
this default, set the HexParserOption to Binary. HexParserOption corresponds to the
SQLCURRULE parameter of the SET OPTION statement.

Example 4-25 on page 59 shows how to use the HexParserOption property in your
ConnectionString.

Note: Because a DataAdapter always reads all of the query data into memory at once, the
MaximumInlineLobSize property is most useful when used with a DataReader.

Tip: You cannot mix binary and character data in the same statement if they both use
hexadecimal literal strings. The HexParserOption (and SQLCURRULE) allow hexadecimal
constants to be used either with character columns or with binary columns. When using
the IBM.Data.DB2.iSeries .NET provider, you can avoid this problem by using parameter
markers instead of using hard-coded literal strings. See 4.5.4, “Using parameters in your
SQL statements” on page 74 for more information.

58 Integrating DB2 Universal Database for iSeries with Microsoft ADO .NET

Example 4-25 Specifying the HexParserOption property in the ConnectionString

iDB2Connection cn = new iDB2Connection();
cn.ConnectionString = "DataSource=myiSeries; HexParserOption=Binary;";

DefaultIsolationLevel
This property is used to set the default isolation level used when a new transaction is started
via the iDB2Connection object’s BeginTransaction() method call. Figure 4-1 shows how .NET
Framework IsolationLevel enumeration values map to the iSeries isolation levels.

Table 4-1 How IBM.Data.DB2.iSeries maps System.Data.IsolationLevel to iSeries isolation levels

When your application is not in transaction mode (before starting a transaction, and after a
transaction has been committed or rolled back), the provider runs with an isolation level of
*NONE.

For more information about isolation levels, see the DB2 Universal Database for iSeries SQL
Reference, which you can find in the iSeries Information Center at:

http://www.iseries.ibm.com/infocenter

Select Database → Reference → SQL Reference → Concepts → Isolation level.

Example 4-26 shows how to use the DefaultIsolationLevel property in your ConnectionString.

Example 4-26 Specifying the DefaultIsolationLevel property in the ConnectionString

iDB2Connection cn = new iDB2Connection();
cn.ConnectionString = "DataSource=myiSeries; DefaultIsolationLevel=ReadCommitted;";

QueryOptionsFileLibrary
The iSeries enables you to use the CHGQRYA command to change attributes used for
database queries. You can use the QueryOptionsFileLibrary property to specify a query
options file library, which contains a query options file called QAQQINI that can be used to
control your query options via a trigger program. When you use the QueryOptionsFileLibrary
property, the provider issues the following command on behalf of your application:

CHGQRYA QRYOPTLIB(QueryOptionsFileLibary)

This property should be used with caution, because it can adversely affect your performance.
For more information, go to the iSeries Information Center at:

http://www.iseries.ibm.com/infocenter

Select Database → Performance and optimization → Optimizing query performance
using optimization tools → Change the attributes of your queries with the Change
Query Attributes (CHGQRYA) command → Control queries dynamically with the query
options file QAQQINI.

System.Data.IsolationLevel enumeration iSeries isolation level

Chaos No commit (*NONE)

ReadCommitted Cursor Stability (*CS)

ReadUncommitted Uncommitted Read (*CHG)

RepeatableRead Read Stability (*ALL)

Serializable Repeatable Read (*RR)

Chapter 4. IBM DB2 UDB for iSeries .NET provider 59

http://www.iseries.ibm.com/infocenter
http://www.iseries.ibm.com/infocenter

Example 4-27 shows how you can use the QueryOptionsFileLibrary property in your
ConnectionString.

Example 4-27 Specifying the QueryOptionsFileLibrary property in the ConnectionString

iDB2Connection cn = new iDB2Connection();
cn.ConnectionString = "DataSource=myiSeries; QueryOptionsFileLibrary=myschema;";

Attributes affecting decimal and numeric result data
In its V5R3M0 release, the iSeries enhanced its support for decimal and numeric data types,
expanding the maximum precision and scale for these data types from 31 to 63 digits. With
these increased maximums, arithmetic operations involving decimal and numeric data can
possibly return values with greater precision and scale. The MaximumDecimalPrecision,
MaximumDecimalScale, and MinimumDivideScale properties affect how the iSeries server
returns data resulting from arithmetic operations on decimal or numeric data. These
properties are ignored when the iSeries server version is not V5R3M0 or greater.

MaximumDecimalPrecision
This property is used to configure the largest precision returned by the iSeries server when
performing arithmetic operations on decimal and numeric data. MaximumDecimalPrecision
can be set to either 31 (the default), or 63, the largest decimal or numeric value supported by
the iSeries. The setting affects the size of the result data returned.

Example 4-28 shows how you can use the MaximumDecimalPrecision property in your
ConnectionString.

Example 4-28 Specifying the MaximumDecimalPrecision property in the ConnectionString

iDB2Connection cn = new iDB2Connection();
cn.ConnectionString = "DataSource=myiSeries; MaximumDecimalPrecision=63;";

MaximumDecimalScale
The MaximumDecimalScale is used to configure the largest scale of decimal or numeric
result data returned from arithmetic operations. This value can be in the range of 0 to
MaximumDecimalPrecision.

Example 4-29 shows how you can use the MaximumDecimalScale property in your
ConnectionString.

Example 4-29 Specifying the MaximumDecimalScale property in the ConnectionString

iDB2Connection cn = new iDB2Connection();
cn.ConnectionString = "DataSource=myiSeries; MaximumDecimalPrecision=63;
MaximumDecimalScale=63;";

MinimumDivideScale
MinimumDivideScale is used to indicate the smallest scale that will be returned for result data
when dividing decimal or numeric data. MinimumDivideScale can be any value from 0 to 9,
but must not be greater than the MaximumDecimalScale.

Example 4-30 shows how to use the MinimumDivideScale property in your ConnectionString.

Example 4-30 Specifying the MinimumDivideScale property in the ConnectionString

iDB2Connection cn = new iDB2Connection();
cn.ConnectionString = "DataSource=myiSeries;MaximumDecimalScale=20;MinimumDivideScale=5;";

60 Integrating DB2 Universal Database for iSeries with Microsoft ADO .NET

MaximumDecimalPrecision and MaximumDecimalScale Example
This example shows how to illustrate these decimal and numeric result data properties,
substituting your own schema and table name for MYSCHEMA.MYTABLE:

1. Create a table on your iSeries:

CREATE TABLE MYSCHEMA.MYTABLE (DEC1 DECIMAL(63, 62))

2. Insert a large decimal value into the table:

INSERT INTO MYSCHEMA.MYTABLE
VALUES(1.23456789012345678901234567890123456789012345678901234567890123)

3. Copy the code sample from Example 4-31 into a C# Console application.

Example 4-31 MaximumDecimalPrecision and MaximumDecimalScale

static void Main(string[] args)
{

// Input args:
// precision = Value to use for MaximumDecimalPrecision (31 or 63)
// scale = Value to use for MaximumDecimalScale (0 to precision)

// Validate the input args
if (args.GetUpperBound(0) != 1)
{

Console.WriteLine("Valid arguments: MaximumDecimalPrecision MaximumDecimalScale");
return;

}
int prec = Int32.Parse(args[0]);
int scale = Int32.Parse(args[1]);

if (((prec != 31) && (prec != 63)) ||
(scale < 0) || (scale > prec))

{
Console.WriteLine("Invalid argument. Precision must be 31 or 63, and scale must be 0

to precision.");
return;

}

// Open a connection to the iSeries
String ConnectionString = "DataSource=myiSeries; MaximumDecimalPrecision=" +

prec.ToString() + "; "
+ " MaximumDecimalScale=" + scale.ToString() + "; ";

iDB2Connection cn = new iDB2Connection(ConnectionString);
cn.Open();

// Read the result data as an arithmetic result
iDB2Command cmd = new iDB2Command("select (dec1/2) from myschema.mytable", cn);
iDB2DataReader dr = cmd.ExecuteReader();

// Display the result of the query.
while (dr.Read())

Console.WriteLine(dr.GetiDB2Decimal(0).ToString());

dr.Close();

// Close the connection
cn.Close();

}

Chapter 4. IBM DB2 UDB for iSeries .NET provider 61

1. Save the application (File → Save All), and build the application (Build → Rebuild
solution).

2. Run the application, and pass different values for the precision and scale parameters. You
will see that the result data you get back changes depending on how you set the
MaximumDecimalPrecision and MaximumDecimalScale properties. Table 4-2 shows
some sample outputs from the program.

Table 4-2 Sample outputs from the sample program

Properties that reflect the state of the connection
While most of the iDB2Connection properties are a reflection of values you specify in the
ConnectionString, some properties are set by the IBM.Data.DB2.iSeries .NET provider
independent of the ConnectionString. These properties are Provider, State, ServerVersion,
and JobName.

Provider
The Provider property is a constant string value that always returns the value
IBM.Data.DB2.iSeries. It is not particularly useful, but is provided so you can
programmatically determine the name of the provider.

Example 4-32 shows how you can use the Provider property.

Example 4-32 Using the Provider property

iDB2Connection cn = new iDB2Connection();
cn.ConnectionString = "DataSource=myiSeries;";
Console.WriteLine(cn.Provider);

State
The State property reflects the state of the connection. Before you open your
iDB2Connection, and after you close it, the state is ConnectionState.Closed. After the
connection is successfully opened, the State property changes to ConnectionState.Open.

Example 4-33 shows how you can use the State property.

Example 4-33 Using the State property

void closeConnection(iDB2Connection cn)
{

if (cn.State == System.Data.ConnectionState.Open)
cn.Close();

}

ServerVersion
This property reflects the iSeries server version. It is returned as a string of the form
vv.rr.mmmm, so for example V5R3M0 is returned as 05.03.0000. This property can be used if
you want to take advantage of iSeries features that are only available starting with a certain
release. As an example of this, you can check the ServerVersion, and if the server is at least

Program
parameters

Resulting output

63 63 .61728394506172839450617283945061728394506172839450617283945061

63 12 .617283945061

31 31 .6172839450617283945061728394506

62 Integrating DB2 Universal Database for iSeries with Microsoft ADO .NET

V5R3M0, then you can use the true Binary data type, which is first available in that release.
To check the server version in this manner, try the code sample shown in Example 4-34.

Example 4-34 Using the ServerVersion property

iDB2Connection cn = new iDB2Connection();
cn.ConnectionString = "DataSource=myiSeries;";
cn.Open();

// Get the ServerVersion and convert it to an integer
String ver = cn.ServerVersion;
int vvrrmmmm = (Int32.Parse(ver.Substring(0, 2)) * 10000) + (Int32.Parse(ver.Substring(3,
2)) * 100) + (Int32.Parse(ver.Substring(6, 4)));
if (vvrrmmmm >= 50300)
{

// Do work that is specific to V5R3M0 and later
}

JobName
The JobName property is a useful tool to help you determine which iSeries server job
services your SQL requests. This property is valid only after the connection is open.
Example 4-35 shows how you can use the JobName property.

Example 4-35 Using the JobName property

iDB2Connection cn = new iDB2Connection();
cn.ConnectionString = "DataSource=myiSeries;";
cn.Open();
Console.WriteLine("Job Name: " + cn.JobName);

ConnectionString attributes used for problem determination
Even when we write “perfect” code, things may not go according to plan, and we must
determine the source of the problem. The IBM.Data.DB2.iSeries .NET provider supports a
ConnectionString attribute called Trace that enables you to easily turn on various server-side
traces. For more about problem determination, see 4.10, “Troubleshooting” on page 166.

Trace
When the Trace property is specified in the ConnectionString, the provider sends commands
to the iSeries to enable the specified traces. This property should only be used when you are
doing problem determination, or when recommended by IBM Service. Turning traces on
affects performance and should not be used during normal processing.

Because connection pooling is enabled by default, the Trace property causes traces to be
turned on the first time the pooled connection is opened, and turned off only when the pooled
connection is released, either when the MaximumUseCount is reached or when the
iDB2Connection object is disposed of. Because of this, we recommend that when using any
of the Trace options, you turn off connection pooling unless the problem can only be
reproduced with connection pooling enabled.

The Trace options are described in the IBM.Data.DB2.iSeries Technical Reference (see 4.4.1,
“Displaying the technical reference” on page 41). To turn on several host traces at the same
time, put them all in the ConnectionString, separated by commas, as in Example 4-36 on
page 64.

Reminder: Because ServerVersion reflects the iSeries server version, it only contains
meaningful information after you open your connection.

Chapter 4. IBM DB2 UDB for iSeries .NET provider 63

Example 4-36 Specifying the Trace property in the ConnectionString

iDB2Connection cn = new iDB2Connection();
cn.ConnectionString = "DataSource=myiSeries; Trace=TraceJob, StartDebug, PrintJoblog;";

Table 4-3 describes the trace data that results when your connection ends.

Table 4-3 Output files resulting from using Trace property with your iDB2Connection

iDB2Connection methods
In this section, we discuss some of the methods you can call on your iDB2Connection object.

BeginTransaction
BeginTransaction is used to start a transaction on the iSeries server. For more information
about transactions and isolation levels, see “DefaultIsolationLevel” on page 59, “Transaction”
on page 69, and 4.6.3, “Using transactions” on page 116.

There are two ways to call BeginTransaction. In the first example, BeginTransaction is called
with no parameters. This will begin a new transaction, and the new transaction will run using
the transaction isolation level specified by the connection’s DefaultIsolationLevel property, as
shown in Example 4-37.

Example 4-37 BeginTransaction()

// Create and open a connection to the iSeries.
iDB2Connection cn = new iDB2Connection("DataSource=myiSeries;");
cn.Open();

// Begin a transaction. The new transaction will inherit the
// connection's DefaultIsolationLevel.
iDB2Transaction txn = cn.BeginTransaction();

In Example 4-38, we call BeginTransaction and pass an IsolationLevel parameter.

Example 4-38 BeginTransaction(IsolationLevel)

// Create and open a connection to the iSeries.
iDB2Connection cn = new iDB2Connection("DataSource=myiSeries;");
cn.Open();

// Begin a transaction. The new transaction will use the
// isolation level ReadCommitted.
iDB2Transaction txn = cn.BeginTransaction(System.Data.IsolationLevel.ReadCommitted);

Important: If you use the StartDebug trace option, you must ensure your job log is saved;
otherwise, the debug information from the job log is lost when your job ends. To save the
job log, include the PrintJoblog option when you specify Trace in your ConnectionString.

Trace option Output file

DatabaseMonitor File QUSRSYS/QNETxxxxxx, where xxxxxx is your QZDASOINIT job number.

StartDebug Debug statements are placed into your QZDASOINIT job log.

PrintJoblog The QZDASOINIT job log is spooled.

TraceJob The job trace information is spooled.

64 Integrating DB2 Universal Database for iSeries with Microsoft ADO .NET

ChangeDatabase
The ChangeDatabase method is part of the ADO.NET interface definition. It is meant for
changing the database your application connects to. Because the iSeries database is an
integral part of the operating system, there is no separate database to connect to, so you
never need to call the ChangeDatabase method, and in most cases your application will
receive an exception if you try to call it. It is provided only for compatibility reasons.

Close
After you have finished using your iDB2Connection object, you should always call Close().
Keeping a connection open when it is no longer needed wastes system resources and may
prevent others from being able to connect. If a transaction is still in progress when Close() is
called, the transaction is rolled back.

The behavior of Close depends on whether the connection is pooled. By default, the provider
always uses connection pooling. When you open a pooled connection, the provider takes an
iDB2Connection object out of the pool for use. When you close the pooled connection, that
connection is released back into the pool so it can be reused. If you do not close the
connection, it will not be returned to the pool and cannot be reused.

When connection pooling is turned off (Pooling=false in the ConnectionString), Close()
releases the host server job servicing that connection. If you do not close the connection, the
host server job is not released by the provider.

Example 4-39 is an example of using the Close method to close a connection.

Example 4-39 Open() and Close() a connection

// Create and open a connection to the iSeries.
iDB2Connection cn = new iDB2Connection("DataSource=myiSeries;");
cn.Open();

// Do some work ...

// Close the connection.
cn.Close();

CreateCommand
The CreateCommand method is one way to create an iDB2Command object. The new
command object is associated with this connection, and if a transaction was previously
started on this connection, the new command object is automatically initialized to run under
that transaction. See Example 4-40 on page 66 for an example of using CreateCommand().

Open
Before you can do any work on the iSeries, you must have an open connection. After you
create your iDB2Connection object and initialize the ConnectionString property, call the
Open() method to make the connection to the iSeries. Your connection must be open before
you can begin a transaction or execute a command. See Example 4-39, for an example of
how to open your connection.

4.5.3 iDB2Command properties and methods
When you want to run a SQL statement, perform a query, or call a stored procedure on the
iSeries, use a command object. With IBM.Data.DB2.iSeries, the command object is called
iDB2Command. This object implements the System.Data.IDbCommand interface.

Chapter 4. IBM DB2 UDB for iSeries .NET provider 65

Creating an iDB2Command object
There are many different ways to create a command, including:

� Call iDB2Connection’s CreateCommand() method as shown in Example 4-40.

Example 4-40 iDB2Connection.CreateCommand() method

iDB2Connection myconnection = new iDB2Connection("DataSource=myiSeries;");
iDB2Command cmd = myconnection.CreateCommand();

When you use the CreateCommand() method, the resulting iDB2Command object is
automatically associated with the iDB2Connection. (In this example, the cmd object is
associated with myconnection.) This method of creating a command object is particularly
useful when your connection is in transaction mode, because the new command
automatically becomes part of the transaction.

� Use the new operator to create the object. The IBM.Data.DB2.iSeries .NET provider
includes many different ways to construct a new command object. Example 4-41 shows
some variations.

Example 4-41 iDB2Command, new operator

static void Main(string[] args)
{

// Create a connection, open it, and start a transaction
iDB2Connection cn = new iDB2Connection("DataSource=myiSeries;");
cn.Open();
iDB2Transaction txn = cn.BeginTransaction(System.Data.IsolationLevel.ReadCommitted);

// This is the CommandText we will use for our example
String cmdtext = "select * from sampledb.employee";

// Create an empty command. The command is not associated with a connection.
// To use this command, you need to set the CommandText, Connection,
// and Transaction properties (if your connection is in transaction mode).
iDB2Command cmd1 = new iDB2Command();

// Create a command and include the command text.
// The command is not associated with a connection.
// To use this command, you need to set the Connection and
// Transaction properties (if your connection is in transaction mode).
iDB2Command cmd2 = new iDB2Command(cmdtext);

// Create a command and include the command text.
// The command is associated with connection 'cn'.
// To use this command, you need to set the Transaction property
// (if your connection is in transaction mode).
iDB2Command cmd3 = new iDB2Command(cmdtext, cn);

// Create a command and include the command text.
// The command is associated with connection 'cn'.
// The command type is initialized to indicate a stored procedure call.
// To use this command, you need to set the Transaction property
// (if your connection is in transaction mode)
iDB2Command cmd4 = new iDB2Command("mysp", System.Data.CommandType.StoredProcedure, cn);

// Close the connection.
cn.Close();

}

66 Integrating DB2 Universal Database for iSeries with Microsoft ADO .NET

iDB2Command properties
The iDB2Command object has several properties, some of which we showed in previous
examples.

CommandText
The CommandText property contains the SQL statement you want to run on the iSeries.
CommandText can be almost any valid SQL statement, including a query (SELECT
statement), a stored procedure call, or a statement that does not return any results, such as
an INSERT statement. See 4.2.4, “Unsupported features” on page 38 for a list of statements
that are not supported. The CommandText can include parameter markers, which enable you
to provide variable data each time you execute the command. Parameter markers are
specified in the CommandText with the @ sign followed by the parameter name, such as
@param-name. We talk about parameter markers more in 4.5.4, “Using parameters in your SQL
statements” on page 74. For information about calling stored procedures with the
IBM.Data.DB2.iSeries provider, see 4.5.5, “Calling stored procedures” on page 79.
Example 4-42 shows how to use the CommandText property.

Example 4-42 Setting the CommandText property

// Create a new command.
// Set the CommandText to a SELECT statement.
iDB2Connection cn = new iDB2Connection("DataSource=myiSeries;");
iDB2Command cmd = cn.CreateCommand();
cmd.CommandText = "select * from sampledb.employee";

CommandTimeout
The CommandTimeout property can be used to set a limit on the amount of time (in seconds)
the iSeries server may spend processing the command. CommandTimeout on the iSeries is
not a true timeout; rather, it is used by the iSeries to estimate whether to attempt to execute
the command. If the iSeries server determines that the command may take longer than the
CommandTimeout, it will not attempt the command. In this case, an iDB2SqlErrorException
will be thrown, indicating a timeout condition. The default CommandTimeout value is 30
(seconds), but you can specify a value of 0 to indicate no timeout. Example 4-43 shows how
to use the CommandTimeout property.

Example 4-43 Setting the CommandTimeout property

// Create a new command and associate it with our connection.
// Set the CommandTimeout to "no timeout".
iDB2Connection cn = new iDB2Connection("DataSource=myiSeries;");
iDB2Command cmd = new iDB2Command("select * from sampledb.employee", cn);
cmd.CommandTimeout = 0;

CommandType
The CommandType property is a System.Data.CommandType enumeration value. The
CommandType determines how the provider interprets the CommandText. The default
CommandType is Text, indicating a regular SQL statement. Use the default in most cases.

� CommandType.Text: With CommandType.Text, the CommandText contains the actual
statement you want to execute on the iSeries. The provider does not have to manipulate
the CommandText (much) before sending it to the iSeries. Example 4-44 illustrates the
use of the CommandType.Text.

Example 4-44 Setting CommandType=Text

// Create a command, set the command text, and use
// CommandType.Text.

Chapter 4. IBM DB2 UDB for iSeries .NET provider 67

iDB2Command cmd = new iDB2Command();
cmd.CommandText = "select firstnme, lastname from employee";
cmd.CommandType = System.Data.CommandType.Text;

� CommandType.StoredProcedure: With CommandType.StoredProcedure, the
CommandText contains a stored procedure name. Using CommandType.StoredProcedure
is not as efficient as using CommandType.Text, even when you want to call a stored
procedure. We talk more about calling stored procedures in 4.5.5, “Calling stored
procedures” on page 79. Example 4-45 illustrates the use of
CommandType.StoredProcedure:

Example 4-45 Setting CommandType=StoredProcedure

// Create a command, set the command text, and use
// CommandType.StoredProcedure
iDB2Command cmd = new iDB2Command();
cmd.CommandText = "sampledb.empinfo";
cmd.CommandType = System.Data.CommandType.StoredProcedure;

� CommandType.TableDirect: With CommandType.TableDirect, the CommandText contains
a list of table names separated by commas. The provider simply adds SELECT * in front of
the list, resulting in a query that returns a join of all the specified tables. You can
accomplish the same effect by using CommandType.Text and setting your CommandText
to the SELECT statement:

"SELECT * FROM TABLE1, SAMPLEDB.EMPLOYEE" or "SELECT * FROM EMPLOYEE"

Example 4-46 illustrates the use of CommandType.TableDirect.

Example 4-46 Setting CommandType=TableDirect

// Create a command, set the command text, and use
// CommandType.TableDirect
iDB2Command cmd = new iDB2Command();
cmd.CommandText = "sampledb.employee";
cmd.CommandType = System.Data.CommandType.TableDirect;

// You can also specify a list of tables, like this:
cmd.CommandText = "sampledb.employee, anotherTable, aThirdTable";

Connection
Before you can execute any command, the command must be associated with an
iDB2Connection object. There are three ways to do this. The second method is the most
efficient because it sets the Connection property and the CommandText at the same time.

� Create the command using the iDB2Connection.CreateCommand() method, for example:

iDB2Command cmd = myconnection.CreateCommand();

� Specify the connection when you construct the command, for example:

iDB2Command cmd = new iDB2Command(“mySQLcommandText”, myconnection);

� Set the iDB2Command’s Connection property, as shown in Example 4-47.

Example 4-47 Setting the Connection property

iDB2Connection cn = new iDB2Connection("DataSource=myiSeries;");
iDB2Command cmd = new iDB2Command();
cmd.Connection = cn;

68 Integrating DB2 Universal Database for iSeries with Microsoft ADO .NET

Parameters
Each iDB2Command object has a collection of iDB2Parameters associated with it. The
Parameters property is used to reference this parameter collection. This property is read-only.
The parameter collection may be empty. Parameters can be added to or deleted from the
command by using the Parameters.Add method, or by using the command’s
DeriveParameters() method. We discuss Parameters more in 4.5.4, “Using parameters in
your SQL statements” on page 74.

Transaction
Transactions are used to ensure that groups of database operations are performed with
integrity. Operations that are grouped in a transaction can be committed permanently to the
database or rolled back in case of failure. We discuss transactions in more detail in 4.6.3,
“Using transactions” on page 116.

With IBM.Data.DB2.iSeries, transactions affect all the commands that run under the
connection that started the transaction. Because of this, you must ensure that any
iDB2Command object that runs under a connection uses the same iDB2Transaction object as
the iDB2Connection. There are two ways to set the Transaction property of an
iDB2Command object:

� Create the command using a connection that has begun a transaction (Example 4-48).

Example 4-48 Setting the Transaction property using CreateCommand()

// Create a connection, open it, and begin a transaction.
iDB2Connection cn = new iDB2Connection("DataSource=myiSeries;");
cn.Open();
iDB2Transaction txn = cn.BeginTransaction(System.Data.IsolationLevel.ReadCommitted);

// Create a new command using this connection.
// The command will be associated with this connection,
// and the command's Transaction property is automatically
// set to the 'txn' transaction.
iDB2Command cmd = cn.CreateCommand();

� Manually set the Transaction property (Example 4-49).

Example 4-49 Setting the transaction property manually

// Create a new command.
// Manually associate the command with our connection,
// and manually set the command's Transaction property.
iDB2Command cmd = new iDB2Command();
cmd.Connection = cn;
cmd.Transaction = txn;

UpdatedRowSource
The UpdatedRowSource property is used only when your command is used with an
iDB2DataAdapter. It tells the iDB2DataAdapter how to apply the result data and output
parameters of the command to the DataRow when iDB2DataAdapter.Update is called. For
more information, read about IDbCommand.UpdatedRowSource property in the MSDN
Library Web site:

http://msdn.microsoft.com/library/

Select .NET Development → .NET Framework SDK → .NET Framework → Reference →
Class Library → System.Data → IDbCommand Interface → Properties →
UpdatedRowSource Property.

Chapter 4. IBM DB2 UDB for iSeries .NET provider 69

http://msdn.microsoft.com/library/

iDB2Command methods
In this section, we discuss some of the methods you can call on your iDB2Command object.
Most of these methods are covered in more detail in other examples in this chapter.

Cancel
For the IBM.Data.DB2.iSeries provider, the Cancel method is a no-op. It is included for
compatibility purposes only because the IDbCommand interface defines a Cancel method.
Calling Cancel() in effect does nothing.

DeriveParameters
Many of the commands you execute through the provider use parameters (see 4.5.4, “Using
parameters in your SQL statements” on page 74). Before executing the command, the
provider must map the parameter data you provide to the parameter value on the iSeries. To
make this job easier, use the DeriveParameters() method. DeriveParameters is an extremely
useful feature of the IBM.Data.DB2.iSeries provider. Some providers require you to create a
CommandBuilder in order to derive parameter information (and then they only derive
parameter information for stored procedures), but the IBM.Data.DB2.iSeries provider can
derive parameter information for any command. In fact, we recommend using
DeriveParameters() instead of defining parameters yourself. Because the provider always
obtains a statement’s parameter information before executing a command, you do not save a
trip to the host by defining your own parameters.

Example 4-50 illustrates the use of the DeriveParameters() method. This example uses the
STAFF table in the SAMPLEDB schema. See 1.4, “DB2 UDB for iSeries sample schema” on
page 8 for information about setting up the SAMPLEDB schema.

Example 4-50 Using the DeriveParameters method

// Create and open a connection to the iSeries.
iDB2Connection cn = new iDB2Connection("DataSource=myiSeries;DefaultCollection=sampledb;");
cn.Open();

// Create a command object with parameter markers.
String s = "insert into staff values(@id, @name, @dept, @job, @years, @salary, @comm)";
iDB2Command cmd = new iDB2Command(s, cn);

// Derive the parameter information
cmd.DeriveParameters();

// Display the parameter descriptions
for (int i=0; i<cmd.Parameters.Count; i++)
{

iDB2Parameter p = cmd.Parameters[i];
Console.WriteLine("Parameter name: " + p.ParameterName);
Console.WriteLine(" type: " + p.iDB2DbType.ToString());
Console.WriteLine(" direction: " + p.Direction.ToString());

switch(p.iDB2DbType)
{

case iDB2DbType.iDB2Decimal:
case iDB2DbType.iDB2Numeric:

Console.WriteLine(" precision: " + p.Precision.ToString());
Console.WriteLine(" scale: " + p.Scale.ToString());
break;

case iDB2DbType.iDB2Binary:
case iDB2DbType.iDB2Char:
case iDB2DbType.iDB2CharBitData:

70 Integrating DB2 Universal Database for iSeries with Microsoft ADO .NET

case iDB2DbType.iDB2Graphic:
case iDB2DbType.iDB2VarBinary:
case iDB2DbType.iDB2VarChar:
case iDB2DbType.iDB2VarCharBitData:
case iDB2DbType.iDB2VarGraphic:

Console.WriteLine(" size: " + p.Size.ToString());
break;

default:
break;

}
}

// Dispose the command since we no longer need it.
cmd.Dispose();

// Close the connection.
cn.Close();

When you run this example, you can see that the provider knows the data type of each
parameter and it knows that these are input parameters. The parameter name is the same
name that was specified in the command text (in this example, @id, @name, @dept). We could
call these parameters anything we want, such as @abxkas1, @abxkas2, and @abxkas3. We
chose to make our parameter names match the column names from the table to make the
code easier to read.

Dispose
When you are finished using any .NET object, it is a good idea to call its Dispose() method if
one exists. Dispose cleans up resources associated with the object. For the iDB2Command
object, Dispose cleans up the iSeries host resources used by the command (for example, any
result data structure and request handle still in use). See Example 4-50 on page 70, for a
sample that shows the Dispose() method.

ExecuteNonQuery, ExecuteReader, and ExecuteScalar
Most of the work you perform on the iSeries with the IBM.Data.DB2.iSeries .NET provider is
done when you execute a command. There are three ways to execute a command. The
method you choose will depend on whether the command returns result data, which is data
returned in an iDB2DataReader object when you call ExecuteReader to execute a query
(such as a SELECT statement), or execute a stored procedure that returns a result set. Read
more about choosing a method in 4.5.6, “Choosing your execute method” on page 86.

Before calling an execute method, you must make the command ready. Follow these steps to
execute your command:

1. Create the iDB2Command object (see “Creating an iDB2Command object” on page 66).

2. Set the CommandText property (see “CommandText” on page 67).

3. Set the Connection property (see “Connection” on page 68).

4. Set other command properties as needed (see 4.5.3, “iDB2Command properties and
methods” on page 65).

5. Create or generate the parameter information if the command has parameters (see
“DeriveParameters” on page 70).

6. Execute the command using one of the execute methods: ExecuteNonQuery(),
ExecuteReader(), or ExecuteScalar().

Chapter 4. IBM DB2 UDB for iSeries .NET provider 71

Next we show three coding examples that demonstrate these execute methods. These
examples use the ACT table in the SAMPLEDB schema. See 1.4, “DB2 UDB for iSeries
sample schema” on page 8 for information about setting up the SAMPLEDB schema.

� Example 4-51 inserts three rows of data into the ACT table.
� Example 4-52 reads all the data in the table using a DataReader.
� Example 4-53 on page 73 returns a count of the number of rows in the table.

Example 4-51 Using the ExecuteNonQuery method

// This example shows how you can use ExecuteNonQuery
// to run a command that does not return any result data.

// Create and open a connection to the iSeries.
iDB2Connection cn = new iDB2Connection("DataSource=myiSeries;DefaultCollection=sampledb;");
cn.Open();

// Create a command object, and initialize its
// CommandText to an INSERT statement that has
// three parameters.
String cmdText = "insert into act values(@actno, @actkwd, @actdesc)";
iDB2Command cmd = new iDB2Command(cmdText, cn);

// Derive the parameter information
cmd.DeriveParameters();

// Execute the insert statement three times,
// using variable parameter data.
cmd.Parameters["@actno"].Value = 190;
cmd.Parameters["@actkwd"].Value = "DESIGN";
cmd.Parameters["@actdesc"].Value = "DESIGN PROGRAMS";
cmd.ExecuteNonQuery();

cmd.Parameters["@actno"].Value = 200;
cmd.Parameters["@actkwd"].Value = "ARCH";
cmd.Parameters["@actdesc"].Value = "ARCHITECT PRODUCT";
cmd.ExecuteNonQuery();

cmd.Parameters["@actno"].Value = 210;
cmd.Parameters["@actkwd"].Value = "PLAY";
cmd.Parameters["@actdesc"].Value = "PLAN FUN STUFF";
cmd.ExecuteNonQuery();

// Dispose the command since we no longer need it.
cmd.Dispose();

// Close the connection.
cn.Close();

Example 4-52 reads all the data in the table using a DataReader.

Example 4-52 Using the ExecuteReader method

// This example shows how you can use ExecuteReader
// to run a command that returns result data.

// Create and open a connection to the iSeries.
iDB2Connection cn = new iDB2Connection("DataSource=myiSeries;DefaultCollection=sampledb;");
cn.Open();

// Create a command object, and initialize its

72 Integrating DB2 Universal Database for iSeries with Microsoft ADO .NET

// CommandText to a SELECT statement.
iDB2Command cmd = new iDB2Command("select * from act", cn);

// Execute the SELECT statement. Because this command returns
// query result data, we use ExecuteReader() to read the
// data into an iDB2DataReader.
iDB2DataReader dr = cmd.ExecuteReader();

// Now, read the data back and print the results.
Console.WriteLine("ACTNO ACTKWD ACTDESC");
Console.WriteLine("----- ------ --------------------");
while (dr.Read() == true)
{

Console.WriteLine("{0} {1} {2}",
dr.GetInt16(0).ToString("d3"),
dr.GetString(1),
dr.GetString(2));

}

// Close the DataReader since we are done reading the data.
dr.Close();

// Dispose the command since we no longer need it.
cmd.Dispose();

// Close the connection.
cn.Close();

Example 4-53 returns a count of the number of rows in the table.

Example 4-53 Using the ExecuteScalar method

// This example shows how you can use ExecuteScalar
// to run a command that returns the first column of
// the first row of a query.

// Create and open a connection to the iSeries.
iDB2Connection cn = new iDB2Connection("DataSource=myiSeries;DefaultCollection=sampledb;");
cn.Open();

// Create a command object, and initialize its
// CommandText to a SELECT COUNT(*) statement.
// This returns the number of rows in the table.
iDB2Command cmd = new iDB2Command("select count(*) from act", cn);

// Execute the SELECT statement. Because this command returns
// only a single value, we use ExecuteScalar() to read the
// result. While we could use ExecuteReader() instead,
// ExecuteScalar is more efficient, because there is less
// overhead.
int rowcount = (int)cmd.ExecuteScalar();
Console.WriteLine("There are {0} rows in the table.", rowcount);

// Dispose the command since we no longer need it.
cmd.Dispose();

// Close the connection.
cn.Close();

Chapter 4. IBM DB2 UDB for iSeries .NET provider 73

Prepare
The Prepare() method is used by the provider to prepare the statement for execution. With
IBM.Data.DB2.iSeries, your application does not have to call Prepare directly. The provider
always prepares statements on your behalf before executing them. It also prepares the
statement when you call DeriveParameters(). Prepare can be used if you want to verify that
the command is valid before calling one of the iDB2Command’s Execute methods. A
command that is not valid will throw an exception when Prepare() is called. For example, this
could happen if you prepare a statement that issues a SELECT from a table, and that table
does not exist. Example 4-54 illustrates an application that uses Prepare() to show that a valid
statement prepares successfully and an invalid statement generates an error. It uses the
EMPLOYEE table in the SAMPLEDB schema. See 1.4, “DB2 UDB for iSeries sample
schema” on page 8 for information about setting up the SAMPLEDB schema.

Example 4-54 Using the Prepare method

// Create and open a connection to the iSeries.
iDB2Connection cn = new iDB2Connection("DataSource=myiSeries;DefaultCollection=sampledb;");
cn.Open();

// Create a command object, and initialize its
// CommandText to something that is valid.
iDB2Command cmd1 = new iDB2Command("select * from employee", cn);

// Create a command object, and initialize its
// CommandText to something that is invalid.
iDB2Command cmd2 = new iDB2Command("select * from oops", cn);

// Prepare the commands to see if they are valid.
try
{

cmd1.Prepare();
Console.WriteLine("Command1 (" + cmd1.CommandText + ") is valid.");
cmd2.Prepare();
Console.WriteLine("Command2 (" + cmd2.CommandText + ") is valid.");

}
catch (Exception e)
{

Console.WriteLine("The command was not prepared because an exception occurred.");
Console.WriteLine("Exception: " + e.Message);

}

// Dispose the commands since we no longer need them.
cmd1.Dispose();
cmd2.Dispose();

// Close the connection.
cn.Close();

4.5.4 Using parameters in your SQL statements
Many of our previous examples use simple SQL statements without parameters. In this
section, we discuss how to use SQL statements that contain parameters. We use the
CL_SCHED table in the SAMPLEDB schema. See 1.4, “DB2 UDB for iSeries sample
schema” on page 8 for information about setting up the SAMPLEDB schema.

74 Integrating DB2 Universal Database for iSeries with Microsoft ADO .NET

Why you should use parameters in your SQL statements
When sending SQL statements to the iSeries to perform work on your behalf, it is often
helpful to use variable parameters. Parameters can improve your performance and make your
application more flexible. For example, say you want to execute the following three statements
to insert data into the CL_SCHED table:

INSERT INTO CL_SCHED VALUES('043:LLD', 7, '08:00:00', '10:00:00')
INSERT INTO CL_SCHED VALUES('047:DRD', 4, '07:45:00', '08:30:00')
INSERT INTO CL_SCHED VALUES('008:AMD', 5, '09:10:00', '10:40:00')

To accomplish this, you could write the code shown in Example 4-55.

Example 4-55 Calling INSERT using literal values

// Create a connection and open it.
iDB2Connection cn = new iDB2Connection("DataSource=myiSeries;DefaultCollection=sampledb;");
cn.Open();

// Insert three records into the table.
iDB2Command cmd = new iDB2Command();
cmd.Connection = cn;
cmd.CommandText = "INSERT INTO CL_SCHED VALUES('043:LLD', 7, '08:00:00', '10:00:00')";
cmd.ExecuteNonQuery();
cmd.CommandText = "INSERT INTO CL_SCHED VALUES('047:DRD', 4, '07:45:00', '08:30:00')";
cmd.ExecuteNonQuery();
cmd.CommandText = "INSERT INTO CL_SCHED VALUES('008:AMD', 5, '09:10:00', '10:40:00')";
cmd.ExecuteNonQuery();

// Dispose the command since we no longer need it.
cmd.Dispose();

// Close the connection.
cn.Close();

While this approach works, it does not give you the most efficient performance on the iSeries.
Instead, a more efficient approach uses parameters, as in Example 4-56.

Example 4-56 Calling INSERT using parameters

// Create a connection and open it.
iDB2Connection cn = new iDB2Connection("DataSource=myiSeries;DefaultCollection=sampledb;");
cn.Open();

// Create a command using parameter markers, and
// let the iSeries derive the parameter information.
iDB2Command cmd = cn.CreateCommand();
cmd.CommandText = "insert into cl_sched values(@code, @day, @start, @end)";
cmd.DeriveParameters();

// Insert three records into the table using parameters.
cmd.Parameters["@code"].Value = "043:LLD";
cmd.Parameters["@day"].Value = 7;
cmd.Parameters["@start"].Value = "08:00:00";
cmd.Parameters["@end"].Value = "10:00:00";
cmd.ExecuteNonQuery();

cmd.Parameters["@code"].Value = "047:DRD";
cmd.Parameters["@day"].Value = 4;
cmd.Parameters["@start"].Value = "07:45:00";
cmd.Parameters["@end"].Value = "08:30:00";

Chapter 4. IBM DB2 UDB for iSeries .NET provider 75

cmd.ExecuteNonQuery();

cmd.Parameters["@code"].Value = "008:AMD";
cmd.Parameters["@day"].Value = 5;
cmd.Parameters["@start"].Value = "09:10:00";
cmd.Parameters["@end"].Value = "10:40:00";
cmd.ExecuteNonQuery();

// Dispose the command since we no longer need it.
cmd.Dispose();

// Close the connection.
cn.Close();

Although the second example (Example 4-56 on page 75) looks like more work, it is the
preferred method.

Every time you execute a new statement on the iSeries, the iSeries SQL optimizer must do
extra work to build a plan for executing the statement. Therefore, executing the three INSERT
statements in Example 4-55 on page 75 causes the optimizer to build plans for three different
statements. By comparison, if you use a single statement and simply change the parameter
values each time, as in Example 4-56 on page 75, the optimizer only has to generate the
statement information the first time. Using parameters in this way can help your performance
when the statement is executed many times.

Using parameters in your SQL statements also gives you more flexibility. For instance, you
could write an application that takes as input a number corresponding to the day of the week
(1-7), and select all of the classes in the CL_SCHED table that occur on that day. Your
parameterized statement might look like this:

SELECT * FROM CL_SCHED WHERE (DAY = @day)

How to use parameters in your SQL statements
This section is about using parameters in SQL statements. As in the previous examples, we
insert values into the CL_SCHED table in the SAMPLEDB schema. See 1.4, “DB2 UDB for
iSeries sample schema” on page 8 for information about setting up the SAMPLEDB schema.
Table 4-4 describes column names and data types in the CL_SCHED table.

Table 4-4 Column names and data types in the CL_SCHED table

To use parameters, follow these steps:

1. Include parameter markers in your CommandText. A parameter marker tells the provider
that you will use a parameter to fill in the specified value. With IBM.Data.DB2.iSeries,
parameter markers are names prefixed with the @ character. In Example 4-57 on
page 77, @code, @day, @start, and @end are parameter markers.

Column name Column data type

CLASS_CODE CHAR(7)

DAY SMALLINT

STARTING TIME

ENDING TIME

76 Integrating DB2 Universal Database for iSeries with Microsoft ADO .NET

Example 4-57 CommandText that includes parameter markers

cmd.CommandText = "insert into sampledb.cl_sched values(@code, @day, @start, @end)";

2. Define an iDB2Parameter object to go with each parameter marker. The easiest way to
create iDB2Parameter objects is to use the command’s DeriveParameters() method, as
shown in Example 4-58. DeriveParameters() gets the parameter information from the
iSeries host and creates an iDB2Parameter for each parameter marker in the
CommandText. It initializes the parameter information and adds the parameters to the
command’s Parameters collection.

Example 4-58 Adding parameters to your command using DeriveParameters()

// Create a command object that uses parameter markers.
String cmdText = "insert into sampledb.cl_sched values(@code, @day, @start, @end)";
iDB2Command cmd = new iDB2Command(cmdText, cn);

// Derive the parameter information.
cmd.DeriveParameters();

If you instead want to create your own parameter definitions, you can manually create the
parameters and add them to the collection as shown in Example 4-59.

Example 4-59 Adding parameters to your command using Parameters.Add

// Define the parameters.
cmd.Parameters.Add("@code", iDB2DbType.iDB2Char, 7);
cmd.Parameters.Add("@day", iDB2DbType.iDB2SmallInt);
cmd.Parameters.Add("@start", iDB2DbType.iDB2Date);
cmd.Parameters.Add("@end", iDB2DbType.iDB2Date

3. After you have defined your parameters, you must set the parameter values before calling
your Execute method, as shown in Example 4-60.

Example 4-60 Setting parameter values

// Set the parameter values
cmd.Parameters["@code"].Value = "043:LLD";
cmd.Parameters["@day"].Value = 7;
cmd.Parameters["@start"].Value = "08:00:00";
cmd.Parameters["@end"].Value = "10:00:00";

4. Execute your command. When you call one of the Execute methods, the parameter values
are sent to the iSeries host. Example 4-61 on page 78 puts all of the steps together to
show how you can insert the variable data into your table.

Note: There are different ways to create your own parameters. The provider supports
several versions of the Parameters.Add method and different ways to construct an
iDB2Parameter object. This example shows only one way to create parameters.

Tip: If you want to send a null parameter value, set the parameter value to DBNull; for
example:

cmd.Parameters["@day"].Value = System.DBNull.Value;

Chapter 4. IBM DB2 UDB for iSeries .NET provider 77

Example 4-61 Executing the command

// Create a connection and open it.
iDB2Connection cn = new iDB2Connection("DataSource=myiSeries;");
cn.Open();

// Create a command object that uses parameter markers.
String cmdText = "insert into sampledb.cl_sched values(@code, @day, @start, @end)";
iDB2Command cmd = new iDB2Command(cmdText, cn);

// Define the parameters.
cmd.Parameters.Add("@code", iDB2DbType.iDB2Char, 7);
cmd.Parameters.Add("@day", iDB2DbType.iDB2SmallInt);
cmd.Parameters.Add("@start", iDB2DbType.iDB2Date);
cmd.Parameters.Add("@end", iDB2DbType.iDB2Date);

// Set the parameter values
cmd.Parameters["@code"].Value = "043:LLD";
cmd.Parameters["@day"].Value = 7;
cmd.Parameters["@start"].Value = "08:00:00";
cmd.Parameters["@end"].Value = "10:00:00";

// Execute the command.
cmd.ExecuteNonQuery();

// Dispose the command since we no longer need it.
cmd.Dispose();

// Close the connection.
cn.Close();

With the IBM.Data.DB2.iSeries provider, parameter markers in your CommandText are
prefixed with the @ character. To refer to a parameter, use the parameter name (@code or
@day in the previous example). We call this type of parameter a named parameter. Named
parameters are easy to use because we can assign meaningful names to our parameters and
refer to them by name instead of by their position in the Parameters collection; for example:

cmd.Parameters[“@param-name”].Value = 1;

If you are familiar with OLE DB or ODBC, you may recall that in those interfaces, parameter
markers are indicated by using a question mark; for example:

insert into cl_sched values(?, ?, ?, ?)

We call this type of parameter an unnamed parameter. Although you can use the ? character
to mark your parameters with the IBM.Data.DB2.iSeries provider, this method is not as
flexible as using named parameters. If you use the ? character to mark your parameters, then
you can only refer to the parameter by its index in the collection; for example:

cmd.Parameters[1].Value = 1;

This usage can be problematic. For example, if you want to add more parameters before
existing parameters, you must make sure to renumber all of the existing parameter indexes to
refer to their new position within the Parameters collection. Also, if you have a large number of
parameters to keep track of, it is easier to make a mistake and refer to the wrong parameter.

Note: You cannot mix named parameters and unnamed parameters in the same
command. You must use one or the other.

78 Integrating DB2 Universal Database for iSeries with Microsoft ADO .NET

4.5.5 Calling stored procedures
Many applications can benefit from using stored procedures. Stored procedures enable you
to perform many operations on the iSeries by using a single CALL statement. They also give
you a way to call a program on the iSeries written in a supported programming language,
even if the program does not contain any SQL statements. For more information about stored
procedures, go to the iSeries Information Center at:

http://www.iseries.ibm.com/infocenter

Select Database → Programming → SQL programming → Routines → Stored
Procedures.

Another good reference is the IBM Redbook Stored Procedures, Triggers and User Defined
Functions on DB2 Universal Database for iSeries, SG24-6503. It includes a wealth of
information about stored procedures on the iSeries.

With the IBM.Data.DB2.iSeries .NET provider, you can call a stored procedure using either of
two methods:

� Use CommandType.Text, and set the CommandText to include the CALL statement, the
stored procedure name, and the parameter markers.

� Use CommandType.StoredProcedure, and set the CommandText to the stored procedure
name only.

The first method is preferred. It gives better performance overall and requires less work to
generate parameter information.

In this section, we show how to call a stored procedure using both methods. First, we create a
stored procedure called EMPINFO that pulls records from the EMPLOYEE table in the
SAMPLEDB schema. See 1.4, “DB2 UDB for iSeries sample schema” on page 8 for
information about setting up the SAMPLEDB schema. We also show examples of how to call
this stored procedure using both CommandType.Text and CommandType.StoredProcedure.
Our examples use input, output, and return value parameter types.

Before we begin, run the code in Example 4-62 to create the EMPINFO stored procedure.

Example 4-62 Creating the EMPINFO stored procedure

// Create and open a connection to the iSeries.
iDB2Connection cn = new iDB2Connection("DataSource=myiSeries;");
cn.Open();

// Create a stored procedure.
// In: employee number
// Out: first name, last name, salary
// Return value: recommended salary increase
iDB2Command cmd = cn.CreateCommand();
cmd.CommandText = "create procedure sampledb.empinfo (" +

"in empnum char(6), out fname varchar(12), " +
"out lname varchar(15), out current decimal(9, 2)) " +
"language sql " +
"begin " +
" select firstnme, lastname, salary into " +
" fname, lname, current from sampledb.employee " +
" where empno = empnum;" +
" return 5000;" +
"end";

cmd.ExecuteNonQuery();

Chapter 4. IBM DB2 UDB for iSeries .NET provider 79

http://www.iseries.ibm.com/infocenter

// Dispose the command since we no longer need it.
cmd.Dispose();

// Close the connection.
cn.Close();

Calling stored procedures with CommandType.Text
The easiest way to call a stored procedure with IBM.Data.DB2.iSeries is to use
CommandType.Text, and include the CALL statement, the stored procedure name, and the
parameter markers in your CommandText. Using this method has several advantages,
especially when you want to use DeriveParameters() to have the provider automatically
generate the parameter information for you.

To call a stored procedure using CommandType.Text, follow these steps:

1. Set your CommandText to CALL followed by the stored procedure name and parameters, if
the procedure takes parameters. If the procedure returns a return value, indicate that by
using a return value parameter. Here are some sample CommandText values:

cmd.CommandText = "call sampledb.empinfo('000010', @fname, @lname, @salary)";
cmd.CommandText = "@rc = call empinfo(@empnum, @fname, @lname, @salary)";
cmd.CommandText = "call myschema.noparms()";

2. Set your CommandType to CommandType.Text (note, this is the default CommandType):

cmd.CommandType = System.Data.CommandType.Text;

3. Define your parameters (the preferred method uses DeriveParameters but you can also
add them manually; see Example 4-59 on page 77):

cmd.DeriveParameters();

4. Set your input and input/output parameter values, for example:

cmd.Parameters["@empnum"].Value = "000010";

5. Call your stored procedure using one of the Execute methods, for example:

cmd.ExecuteNonQuery();

Example 4-63 that calls the EMPINFO stored procedure we created earlier.

Example 4-63 Calling the EMPINFO stored procedure using CommandType.Text

// Create and open a connection to the iSeries.
iDB2Connection cn = new iDB2Connection("DataSource=myiSeries;");
cn.Open();

// Setup the command to call the stored procedure EMPINFO.
iDB2Command cmd = cn.CreateCommand();
cmd.CommandText = "@rc = call sampledb.empinfo(@employeeId, @firstname, @lastname,
@current_salary)";

// Let the provider generate the parameter information
cmd.DeriveParameters();

// Set the input parameter to one of the employees in the
// SAMPLEDB.EMPLOYEE table. For this example, we hard-code
// the employee id.
cmd.Parameters["@employeeId"].Value = "000180";

// Execute the command. Because the command does not return
// a result set, we use ExecuteNonQuery.
cmd.ExecuteNonQuery();

80 Integrating DB2 Universal Database for iSeries with Microsoft ADO .NET

// Now, print out the employee first name, last name,
// and current salary.
Console.WriteLine("{0} {1}'s current salary: {2}",

cmd.Parameters["@firstname"].Value,
cmd.Parameters["@lastname"].Value,
cmd.Parameters["@current_salary"].Value.ToString());

// The return value from our sample stored procedure is the
// recommended salary increase. Display that now.
Console.WriteLine("Recommended salary increase: " +
cmd.Parameters["@rc"].Value.ToString());

// Dispose the command since we no longer need it.
cmd.Dispose();

// Close the connection.
cn.Close();

In the previous example, you can see that we handle the input parameter (@employeeId), the
output parameters (@firstname, @lastname, @current_salary), and the return value (@rc).
Because we use DeriveParameters(), the provider determines the parameter types for us.

Calling stored procedures with CommandType.StoredProcedure
This section explains how to use CommandType.StoredProcedure. As we discuss earlier,
when calling a stored procedure with the IBM.Data.DB2.iSeries provider, it is more efficient to
use CommandType.Text (see “Calling stored procedures with CommandType.Text” on
page 80). When you use CommandType.StoredProcedure, you should manually define the
parameters using Parameters.Add instead of DeriveParameters(), and you should include
both the stored procedure name and the schema name. Using DeriveParameters() with
CommandType.StoredProcedure will cause at least one extra trip to the iSeries host (to
determine the parameter count). If you do not qualify the stored procedure name with the
schema name (for instance, if you use empinfo instead of sampledb.empinfo), then two
additional trips to the iSeries host are made in order to determine the CURRENT_PATH
setting, and to query the QSYS2/SYSPROCS view to see how many parameters exist for the
stored procedure. You can save a lot of trouble by using CommandType.Text instead.

To call a stored procedure using CommandType.StoredProcedure, follow these steps:

1. Set your CommandText to the schema name and stored procedure name:

cmd.CommandText = "sampledb.empinfo";

2. Set your CommandType to CommandType.StoredProcedure:

cmd.CommandType = System.Data.CommandType.StoredProcedure;

3. Define your parameters manually, for example:

cmd.Parameters.Add("@employeeId", iDB2DbType.iDB2Char, 6);
cmd.Parameters["@employeeId"].Direction = System.Data.ParameterDirection.Input;
cmd.Parameters.Add("@firstname", iDB2DbType.iDB2VarChar, 12);
cmd.Parameters["@firstname"].Direction = System.Data.ParameterDirection.Output;

4. Set your input and input/output parameter values, for example:

cmd.Parameters["@employeeId"].Value = "000010";

5. Call your stored procedure using one of the Execute methods, for example:

cmd.ExecuteNonQuery();

Example 4-64 on page 82 calls the EMPINFO stored procedure that we created earlier.

Chapter 4. IBM DB2 UDB for iSeries .NET provider 81

Example 4-64 Calling the EMPINFO stored procedure using CommandType.StoredProcedure

// Create and open a connection to the iSeries.
iDB2Connection cn = new iDB2Connection("DataSource=myiSeries;");
cn.Open();

// Setup the command to call the stored procedure EMPINFO.
iDB2Command cmd = new iDB2Command("sampledb.empinfo", cn);
cmd.CommandType = System.Data.CommandType.StoredProcedure;

// Create the parameter definitions.
cmd.Parameters.Add("@rc", iDB2DbType.iDB2Integer);
cmd.Parameters["@rc"].Direction = System.Data.ParameterDirection.ReturnValue;

cmd.Parameters.Add("@employeeId", iDB2DbType.iDB2Char, 6);
cmd.Parameters["@employeeId"].Direction = System.Data.ParameterDirection.Input;

cmd.Parameters.Add("@firstname", iDB2DbType.iDB2VarChar, 12);
cmd.Parameters["@firstname"].Direction = System.Data.ParameterDirection.Output;

cmd.Parameters.Add("@lastname", iDB2DbType.iDB2VarChar, 15);
cmd.Parameters["@lastname"].Direction = System.Data.ParameterDirection.Output;

cmd.Parameters.Add("@current_salary", iDB2DbType.iDB2Decimal);
cmd.Parameters["@current_salary"].Precision = 9;
cmd.Parameters["@current_salary"].Scale = 2;
cmd.Parameters["@current_salary"].Direction = System.Data.ParameterDirection.Output;

// Set the input parameter to one of the employees in the
// SAMPLEDB.EMPLOYEE table. For this example, we hard-code
// the employee id.
cmd.Parameters["@employeeId"].Value = "000180";

// Execute the command. Because the command does not return
// a result set, we use ExecuteNonQuery.
cmd.ExecuteNonQuery();

// Now, print out the employee first name, last name,
// and current salary.
Console.WriteLine("{0} {1}'s current salary: {2}",

cmd.Parameters["@firstname"].Value,
cmd.Parameters["@lastname"].Value,
cmd.Parameters["@current_salary"].Value.ToString());

// The return value from our sample stored procedure is the
// recommended salary increase. Display that now.
Console.WriteLine("Recommended salary increase: " +
cmd.Parameters["@rc"].Value.ToString());

// Dispose the command since we no longer need it.
cmd.Dispose();

// Close the connection.
cn.Close();

We handle the input parameter (@employeeId), the output parameters (@firstname,
@lastname, @current_salary), and the return value (@rc). Because we create the parameter
definitions, more work is required. We must specify the parameter data type, direction (input,
output, input/output, or return value), and size if it is a variable-length data type.

82 Integrating DB2 Universal Database for iSeries with Microsoft ADO .NET

Using return value parameters
Example 4-63 on page 80 and Example 4-64 on page 82 showed how to use a return value
parameter. If you define your own parameters, take special care with the return value
parameter. The return value parameter (if you choose to use one) must be the first parameter
in the Parameters collection. This means that you must either add it before you add the other
parameters or use cmd.Parameters.Insert and insert the return value parameter at the first
location (index value 0) in the parameters collection.

If you use DeriveParameters() to generate the parameter information, you must use
CommandType.Text and specify the return value parameter in the call statement as in
Example 4-63 on page 80; otherwise, no return value parameter is generated.

Calling stored procedures that return results
Example 4-63 on page 80 and Example 4-64 on page 82 call a stored procedure that uses
input, output, and return value parameters. Now we show how to call a stored procedure that
returns a result set. As with any stored procedure call, you can use input, output, input/output,
and return value parameters as needed.

Create a stored procedure called JOBINFO that pulls records from the EMPLOYEE table in the
SAMPLEDB schema and returns them as result data. See 1.4, “DB2 UDB for iSeries sample
schema” on page 8 to set up the SAMPLEDB schema. Our example uses an input parameter
to select all employees in the EMPLOYEE table whose job matches the input parameter.

First, run the code shown in Example 4-65 to create the JOBINFO stored procedure.

Example 4-65 Creating the JOBINFO stored procedure

// Create and open a connection to the iSeries.
iDB2Connection cn = new iDB2Connection("DataSource=myiSeries;");
cn.Open();

// Create a stored procedure that selects records
// from the EMPLOYEE table.
iDB2Command cmd = cn.CreateCommand();
cmd.CommandText = "create procedure sampledb.jobinfo (" +

"in jobdesc char(8)) result sets 1 language sql " +
"begin " +
" declare c1 cursor for select * from " +
" sampledb.employee where job=jobdesc; " +
" open c1; " +
" set result sets cursor c1; " +
"end";

cmd.ExecuteNonQuery();

// Dispose the command since we no longer need it.
cmd.Dispose();

// Close the connection.
cn.Close();

Next, call the stored procedure that we just created. Because this stored procedure returns
result data, we use ExecuteReader to read the results, as shown in Example 4-66 on page 84.

Note: When you add your own parameters with CommandType.StoredProcedure, you are
not required to prefix the parameter names with the @ character because you are not
using parameter markers in your CommandText. We use the @ here for consistency.

Chapter 4. IBM DB2 UDB for iSeries .NET provider 83

Example 4-66 Calling a stored procedure that returns a result set

// Create and open a connection to the iSeries.
iDB2Connection cn = new iDB2Connection("DataSource=myiSeries;");
cn.Open();

// Set up the stored procedure call.
// Let the provider generate the parameter information.
iDB2Command cmd = new iDB2Command("call sampledb.jobinfo(@jobdesc)", cn);
cmd.DeriveParameters();

// Set the input parameter to "DESIGNER".
cmd.Parameters["@jobdesc"].Value = "DESIGNER";

// Call the stored procedure. Because the procedure returns
// result data, we use ExecuteReader.
iDB2DataReader dr = cmd.ExecuteReader();

// Now, read each record and display the employee information.
Console.WriteLine("EMPNO First Name Last Name DPT Date hired Salary");
Console.WriteLine("------ ------------ --------------- --- ---------- --------");

while (dr.Read())
{

Console.WriteLine("{0} {1} {2} {3} {4} {5}",
dr.GetiDB2Char(0).Value, // EMPNO (first field)
dr.GetiDB2VarChar(1).Value.PadRight(12), // FIRSTNAME (second field)
dr.GetiDB2VarChar(3).Value.PadRight(15), // LASTNAME (fourth field)
dr.GetiDB2Char(4).Value, // WORKDEPT (fifth field)
dr.GetiDB2Date(6).ToNativeFormat(), // HIREDATE (seventh field)
dr.GetiDB2Decimal(11).ToString()); // SALARY (12th field)

}

// Close the DataReader since we're done using it.
dr.Close();

// Dispose the command since we no longer need it.
cmd.Dispose();

// Close the connection.
cn.Close();

Calling stored procedures that return multiple results
There are times when you want to return more than one result set from a stored procedure.
This is easy to do using the iDB2DataReader with the NextResult method.

Create a stored procedure called DEPTINFO that pulls records from the EMPLOYEE and
DEPARTMENT tables in the SAMPLEDB schema and returns them as two result sets. See
1.4, “DB2 UDB for iSeries sample schema” on page 8 to set up the SAMPLEDB schema. Our
stored procedure uses an input parameter to select these result sets:

� SELECT * FROM EMPLOYEE WHERE WORKDEPT=@dept
� SELECT * FROM DEPARTMENT WHERE DEPTNO=@dept

The stored procedure takes a three-character department number as input and returns two
result sets. The first result set includes all of the employees in the department, and the
second result set includes all of the information about the department.

First, run the code in Example 4-67 on page 85 to create the DEPTINFO stored procedure.

84 Integrating DB2 Universal Database for iSeries with Microsoft ADO .NET

Example 4-67 Creating the DEPTINFO stored procedure

// Create and open a connection to the iSeries.
iDB2Connection cn = new iDB2Connection("DataSource=myiSeries;");
cn.Open();

// Create a stored procedure that selects records
// from the EMPLOYEE table and the DEPARTMENT table.
iDB2Command cmd = cn.CreateCommand();
cmd.CommandText = "create procedure sampledb.deptinfo (" +

"in dept char(3)) result sets 2 language sql " +
"begin " +
" declare c1 cursor with return for select * from " +
" sampledb.employee where workdept=dept; " +
" declare c2 cursor with return for select * from " +
" sampledb.department where deptno=dept; " +
" open c1; open c2; " +
"end";

cmd.ExecuteNonQuery();

// Dispose the command since we no longer need it.
cmd.Dispose();

// Close the connection.
cn.Close();

Now call the stored procedure that we just created. Because this stored procedure returns
result data, we use ExecuteReader to read the results, as shown in Example 4-68.

Example 4-68 Calling a stored procedure that returns multiple results

// Create and open a connection to the iSeries.
iDB2Connection cn = new iDB2Connection("DataSource=myiSeries;");
cn.Open();

// Set up the stored procedure call.
// Let the provider generate the parameter information.
iDB2Command cmd = new iDB2Command("call sampledb.deptinfo(@dept)", cn);
cmd.DeriveParameters();

// Set the input parameter to department "A00".
cmd.Parameters["@dept"].Value = "A00";

// Call the stored procedure. Because the procedure returns
// result data, we use ExecuteReader.
iDB2DataReader dr = cmd.ExecuteReader();

// Now, read each record from the first result set,
// and display the employee information.
Console.WriteLine("First result set: Employee information.");
Console.WriteLine("");
Console.WriteLine("EMPNO First Name Last Name DPT Date hired Salary");
Console.WriteLine("------ ------------ --------------- --- ---------- --------");

while (dr.Read())
{

Console.WriteLine("{0} {1} {2} {3} {4} {5}",
dr.GetiDB2Char(0).Value, // EMPNO (first field)
dr.GetiDB2VarChar(1).Value.PadRight(12), // FIRSTNME (second field)
dr.GetiDB2VarChar(3).Value.PadRight(15), // LASTNAME (fourth field)
dr.GetiDB2Char(4).Value, // WORKDEPT (fifth field)

Chapter 4. IBM DB2 UDB for iSeries .NET provider 85

dr.GetiDB2Date(6).ToNativeFormat(), // HIREDATE (seventh field)
dr.GetiDB2Decimal(11).ToString()); // SALARY (12th field)

}

// Now that we're done reading the employees in the
// department, display the department information from the
// second result set.
if (dr.NextResult() == true)
{

Console.WriteLine("");
Console.WriteLine("Second result set: Department information.");
Console.WriteLine("DEPT DEPTNAME MGRNO ADMRDEPT");
Console.WriteLine("---- ---------------------------- ------ --------");

if (dr.Read())
{

Console.WriteLine("{0} {1} {2} {3}",
dr.GetString(0), // DEPTNO (first field)
dr.GetString(1), // DEPTNAME (second field)
dr.GetString(2), // MGRNO (third field)
dr.GetString(3)); // ADMRDEPT (fourth field)

}
}

// Close the DataReader since we're done using it.
dr.Close();

// Dispose the command since we no longer need it.
cmd.Dispose();

// Close the connection.
cn.Close();

If your stored procedure returns more than two result sets, call the DataReader’s NextResult
method to continue to the next result set. When there are no more, NextResult() returns false.

4.5.6 Choosing your execute method
As with any ADO.NET provider, IBM.Data.DB2.iSeries provides three ways to execute SQL
statements: ExecuteNonQuery, ExecuteReader, and ExecuteScalar. The method you choose
is determined by answering these questions:

� Does the statement return any result data?
� If result data is returned, is it a single item (say, one column of one row) or multiple items?

Result data is data returned from a query, such as the result of executing a SELECT
statement. Result data can also be returned from a stored procedure call. If your statement
does not return result data, then use ExecuteNonQuery. ExecuteNonQuery has an interesting
side effect: If the statement you execute is an INSERT, UPDATE, or DELETE statement, then
ExecuteNonQuery returns the number of rows inserted, updated, or deleted; otherwise, it
returns -1. Here are some examples of statements that are best used with ExecuteNonQuery:

UPDATE EMPLOYEE SET SALARY=SALARY+5000 WHERE EMPNO='200340'
INSERT INTO SAMPLEDB.DEPARTMENT VALUES(@DEPTNO, @DEPTNAME, @ADMRDEPT, @LOCATION)

Tip: If you want to call a stored procedure that either does not return result data or returns
result data that you do not care to read, use ExecuteNonQuery, because it uses less
overhead than the other execute methods.

86 Integrating DB2 Universal Database for iSeries with Microsoft ADO .NET

If your statement does return result data, then you must choose between ExecuteReader and
ExecuteScalar. Use ExecuteScalar when your result data consists of a single item.
ExecuteScalar uses much less overhead than ExecuteReader because it simply returns an
object representing the first column of the first row of your result data. After calling
ExecuteScalar, you have the data you need and no further work is required. An example of
when you might want to use ExecuteScalar is when you execute the following queries:

SELECT COUNT(*) FROM SAMPLEDB.EMPLOYEE
SELECT SUM(SALARY) FROM SAMPLEDB.EMPLOYEE

Because ExecuteReader returns an iDB2DataReader object, it requires more work on your
part. You must read the result data, retrieve the results you want, and then close the
iDB2DataReader object when you are done. ExecuteReader is the choice for most queries.

Use the flow chart in Figure 4-15 to help you choose your Execute method.

Figure 4-15 Choosing your Execute method

Sometimes when your command returns result data, you will choose to use an
iDB2DataAdapter instead of using an iDB2DataReader. See 4.6.6, “Choosing between
iDB2DataReader and iDB2DataAdapter” on page 127 for more information.

4.5.7 Provider data types
The IBM.Data.DB2.iSeries provider supports most data types that are supported by DB2
UDB for iSeries. Each of the supported data types has a corresponding provider data type.
When performing operations with iSeries data, you may need to use these provider data
types to take full advantage of the iSeries functionality. Table 4-5 on page 88 shows the
supported iSeries data types and the provider and .NET framework types they correspond to.

Does your SQL

Does
the result

data consist of
a single

item?

statement return
result data?

Use ExecuteNonQuery

Use ExecuteScalar

Use ExecuteReader

no

yes

no

yes

Chapter 4. IBM DB2 UDB for iSeries .NET provider 87

Table 4-5 Data types supported by the IBM.Data.DB2.iSeries provider

The fixed-length string and binary types are always the same length, but variable-length types
can vary in size. For example, if you read data from a CHAR(10) column that has only three
characters of data, the provider returns the full 10 characters of data, including seven blanks
at the end. If you do not want to see the blanks at the end, use the String .Trim() method to
trim the blanks off. If you read data from a VARCHAR(10) column that has only three
characters of data, the provider returns only the three characters of data.

Often, you can use provider data types interchangeably with the built-in .NET framework data
types shown in Table 4-5. To illustrate this feature, we use the EMPLOYEE table in the
SAMPLEDB schema. See 1.4, “DB2 UDB for iSeries sample schema” on page 8.

iSeries data type IBM.Data.DB2.iSeries provider
data type name

Similar .NET framework
data type

BIGINT iDB2BigInt Int64

BINARY iDB2Binary Byte[]

BLOB iDB2Blob Byte[]

CHAR iDB2Char String

CHAR with CCSID 65535 or
CHAR FOR BIT DATA

iDB2CharBitData Byte[]

CLOB iDB2Clob String

DATE iDB2Date DateTime

DBCLOB iDB2DbClob String

PACKED DECIMAL iDB2Decimal Decimal

DOUBLE iDB2Double Double

GRAPHIC iDB2Graphic String

INTEGER iDB2Integer Int32

ZONED DECIMAL iDB2Numeric Decimal

REAL or SINGLE iDB2Real Single

ROWID iDB2Rowid Byte[]

SMALLINT iDB2SmallInt Int16

TIME iDB2Time DateTime

TIMESTAMP iDB2TimeStamp DateTime

VARBINARY iDB2VarBinary Byte[]

VARCHAR iDB2VarChar String

VARCHAR with CCSID 65535 or
VARCHAR FOR BIT DATA

iDB2VarCharBitData Byte[]

VARGRAPHIC iDB2VarGraphic String

Note: The DATALINK data type is not supported by the IBM.Data.DB2.iSeries provider as
of this writing. For more information, read 4.7.5, “Using DataLinks” on page 141.

88 Integrating DB2 Universal Database for iSeries with Microsoft ADO .NET

The EMPLOYEE table contains a CHAR(6) column called EMPNO. If you execute a query
against the EMPLOYEE table using an iDB2DataReader, there are several ways to read the
EMPNO column and get similar results. Example 4-69 shows how to read the CHAR(6)
column into either a String or an iDB2Char variable and get the same results. It also shows
that you can read EDLEVEL, a SMALLINT, into either an Int16 or an iDB2SmallInt variable
and get the same results.

Example 4-69 Different ways to read a column using an iDB2DataReader

// Create and open a connection to the iSeries.
iDB2Connection cn = new iDB2Connection("DataSource=myiSeries;
DefaultCollection=sampledb;");
cn.Open();

// Create a command which will select records from the EMPLOYEE table
iDB2Command cmd = new iDB2Command("select * from employee", cn);

// Execute the command and get a DataReader we can use
// to read the data from the table.
iDB2DataReader dr = cmd.ExecuteReader();

if (dr.Read())
{

// Read the first field, EMPNO, into a String variable.
// Print the result.
String empnoString = dr.GetString(0);
Console.WriteLine("EMPNO as a String: " + empnoString);

// Read the first field, EMPNO, into an iDB2Char variable.
// Print the result.
iDB2Char empnoiDB2Char = dr.GetiDB2Char(0);
Console.WriteLine("EMPNO as an iDB2Char: " + empnoiDB2Char);

// Read the ninth field, EDLEVEL, into an Int16 variable.
// Print the result.
Int16 edlevelInt16 = dr.GetInt16(8);
Console.WriteLine("EDLEVEL as an Int16: " + edlevelInt16);

// Read the ninth field, EDLEVEL, into an iDB2SmallInt variable.
// Print the result.
iDB2SmallInt edleveliDB2SmallInt = dr.GetiDB2SmallInt(8);
Console.WriteLine("EDLEVEL as an iDB2SmallInt: " + edleveliDB2SmallInt);

}

// Close the DataReader since we no longer need it.
dr.Close();

// Dispose the command since we no longer need it.
cmd.Dispose();

// Close the connection.
cn.Close();

With some other data types, however, you must take precautions to ensure that the data is
handled correctly. Next we discuss how to handle some data types that take special
consideration: iDB2CharBitData, iDB2VarCharBitData, iDB2Date, iDB2Time,
iDB2TimeStamp, iDB2Decimal, and iDB2Numeric.

Chapter 4. IBM DB2 UDB for iSeries .NET provider 89

iDB2CharBitData and iDB2VarCharBitData
The iDB2CharBitData and iDB2VarCharBitData data types represent character data (fixed
and variable length) tagged on the host with the binary CCSID 65535. To tag a character
column with CCSID 65535, specify FOR BIT DATA or CCSID 65535 when you define the
column. In Example 4-70, we create a table called BITTABLE that contains both fixed and
variable-length character columns, tagged with CCSID 65535. We also use both the FOR BIT
DATA and CCSID 65535 methods for our example. We create an INSERT command that
references each of the bit columns in the table, derive the command parameters, and display
the parameter type to show how the provider maps parameter data types for these columns.

Example 4-70 Creating the BITTABLE table using char data tagged with CCSID 65535

// Create and open a connection to the iSeries.
iDB2Connection cn = new iDB2Connection("DataSource=myiSeries;DefaultCollection=sampledb;");
cn.Open();

// Create a command which will create a table
// containing two character columns tagged with
// CCSID 65535.
iDB2Command cmd = cn.CreateCommand();
cmd.CommandText = "create table bittable (" +

"bit1 char(10) for bit data, " +
"bit2 char(10) ccsid 65535, " +
"varbit1 varchar(10) for bit data, " +
"varbit2 varchar(10) ccsid 65535)";

// Execute the command.
cmd.ExecuteNonQuery();

// Now create an INSERT command, and derive the parameters.
cmd.CommandText = "insert into bittable values(@bit1, @bit2, @varbit1, @varbit2)";
cmd.DeriveParameters();

// Examine the parameter information. You can see that
// the fixed-length parameters are of type iDB2CharBitData,
// and the variable-length parameters are of type iDB2VarCharBitData.
Console.WriteLine(cmd.Parameters["@bit1"].iDB2DbType.ToString());
Console.WriteLine(cmd.Parameters["@bit2"].iDB2DbType.ToString());
Console.WriteLine(cmd.Parameters["@varbit1"].iDB2DbType.ToString());
Console.WriteLine(cmd.Parameters["@varbit2"].iDB2DbType.ToString());

// Dispose the command since we no longer need it.
cmd.Dispose();

// Close the connection.
cn.Close();

Char with CCSID 65535 was originally intended to be used with binary data. Over time,
however, applications began to use this type of column to hold non-binary data, and they
expected to be able to read and write this data using a non-binary CCSID. Because of this,
using char with CCSID 65535 data can be problematic. Whenever possible, your application
should use a more appropriate method to store your data. If the data is meant to be
human-readable (for instance, EBCDIC or ASCII data), then use the CHAR or VARCHAR
data type, and make sure that the data in the table is tagged with the appropriate CCSID. If
the data is binary, then use the BINARY or VARBINARY data type, which was introduced with
IBM DB2 UDB for iSeries in its V5R3M0 release.

90 Integrating DB2 Universal Database for iSeries with Microsoft ADO .NET

As shown in Table 4-5 on page 88, the IBM.Data.DB2.iSeries provider treats bit data (char
with CCSID 65535) as a binary array of bytes. This means that retrieving the Value property
of an iDB2CharBitData or iDB2VarCharBitData object will return an array of bytes. Similarly,
using a DataAdapter with this type of column results in binary data. If your application expects
bit data to be translated to a non-binary value, you must take explicit action to make this
translation happen. Run the code in Example 4-71 to insert some non-binary data into the
BITTABLE table that was created in Example 4-70 on page 90. Although the bit columns are
tagged with the binary CCSID 65535, the literal string values that we insert into the table are
encoded using the server job’s CCSID because they are character string literals.

Example 4-71 Inserting non-binary data into char columns tagged with CCSID 65535

// Create and open a connection to the iSeries.
iDB2Connection cn = new iDB2Connection("DataSource=myiSeries;DefaultCollection=sampledb;");
cn.Open();

// Create a command and use it to insert non-binary data
// into the bit columns.
iDB2Command cmd = cn.CreateCommand();
cmd.CommandText = "insert into bittable values('ABCDE', 'abcde', 'VWXYZ', 'vwxyz')";
cmd.ExecuteNonQuery();

// Dispose the command since we no longer need it.
cmd.Dispose();

// Close the connection.
cn.Close();

Reading non-binary data tagged with CCSID 65535
You can use one of the following options to read the non-binary data in the BITTABLE table:

� Alter the table to have the correct CCSID. (This is the recommended solution.) When you
alter the table this way, the data is no longer treated as bit data, but as translatable
character data. Read about the ALTER TABLE command in the DB2 Universal Database
for iSeries SQL Reference, which you can find in the iSeries Information Center at:

http://www.iseries.ibm.com/infocenter

Select Database → Reference → SQL Reference → Statements → ALTER TABLE.

Example 4-72 shows how to alter the BITTABLE if your non-binary data is encoded in
CCSID 37.

Example 4-72 Using ALTER TABLE to change the CCSID of a binary character column

// Create and open a connection to the iSeries.
iDB2Connection cn = new iDB2Connection("DataSource=myiseries;
DefaultCollection=sampledb;");
cn.Open();

// Create a command and use it to change the table
// definition for BITTABLE
iDB2Command cmd = cn.CreateCommand();
cmd.CommandText = "alter table bittable " +

"alter column bit1 set data type char(10) ccsid 37 " +
"alter column bit2 set data type char(10) ccsid 37 " +
"alter column varbit1 set data type varchar(10) ccsid 37 " +
"alter column varbit2 set data type varchar(10) ccsid 37";

cmd.ExecuteNonQuery();

// Dispose the command since we no longer need it.

Chapter 4. IBM DB2 UDB for iSeries .NET provider 91

http://www.iseries.ibm.com/infocenter

cmd.Dispose();

// Close the connection.
cn.Close();

� Alter your SQL SELECT statement to explicitly cast the data to the correct CCSID. When
you cast the data to the correct CCSID, the data is no longer treated as bit data, but as
translatable character data. Example 4-73 shows how to modify the SELECT statement to
ensure that non-binary bit data is translated using CCSID 37.

Example 4-73 Using a CAST statement to select data marked with CCSID 65535

// Create and open a connection to the iSeries.
iDB2Connection cn = new iDB2Connection("DataSource=myiseries;DefaultCollection=sampledb;");
cn.Open();

// Create a command to query the BITTABLE
iDB2Command cmd = cn.CreateCommand();
cmd.CommandText = "select cast(bit1 as char(10) ccsid 037), " +

"cast(bit2 as char(10) ccsid 037), " +
"cast(varbit1 as varchar(10) ccsid 037), " +
"cast(varbit2 as varchar(10) ccsid 037) from bittable";

// Run the command and get a DataReader in return.
iDB2DataReader dr = cmd.ExecuteReader();
if (dr.Read())
{

// Display the field type for each field.
// You can see that the data is now treated
// as regular character data.
Console.WriteLine(dr.GetiDB2FieldType(0).ToString());
Console.WriteLine(dr.GetiDB2FieldType(1).ToString());
Console.WriteLine(dr.GetiDB2FieldType(2).ToString());
Console.WriteLine(dr.GetiDB2FieldType(3).ToString());

}

// Close the DataReader since we no longer need it.
dr.Close();

// Dispose the command since we no longer need it.
cmd.Dispose();

// Close the connection.
cn.Close();

� Use a DataReader with GetString() to read the data. GetString() translates the binary data
using the host server job’s CCSID. Example 4-74 on page 93 shows how to use the
DataReader with GetString to read the non-binary data.

Note: If your data is encoded using a CCSID other than 37, use that CCSID in this
example instead of 37.

Note: Altering the SELECT statement as shown in Example 4-73 enables the
iDB2DataAdapter to treat bit data as translatable character data.

92 Integrating DB2 Universal Database for iSeries with Microsoft ADO .NET

Example 4-74 Using a DataReader with GetString to read non-binary data marked with CCSID 65535

// Create and open a connection to the iSeries.
iDB2Connection cn = new iDB2Connection("DataSource=myiseries;DefaultCollection=sampledb;");
cn.Open();

// Create a command to query the BITTABLE
iDB2Command cmd = new iDB2Command("select * from bittable", cn);

// Run the command and read from the DataReader.
iDB2DataReader dr = cmd.ExecuteReader();
if (dr.Read())
{

// Read the data using GetString().
Console.WriteLine("DataReader.GetString method: ");
Console.WriteLine(" {0} {1} {2} {3}",

dr.GetString(0), dr.GetString(1), dr.GetString(2), dr.GetString(3));
}

// Close the DataReader since we no longer need it.
dr.Close();

// Dispose the command since we no longer need it.
cmd.Dispose();

// Close the connection.
cn.Close();

� Use a DataReader to retrieve an iDB2CharBitData or iDB2VarCharBitData object, then
use the ToString() or ToString(ccsid) method to read the data. ToString() translates the
binary data using the host server job’s CCSID, and ToString(ccsid) enables you to specify
which CCSID to use for translation. Example 4-75 shows how to use the DataReader with
both of these methods to read the non-binary data.

Example 4-75 Using a DataReader with GetiDB2CharBitData to read data marked with CCSID 65535

// Create and open a connection to the iSeries.
iDB2Connection cn = new iDB2Connection("DataSource=myiseries;DefaultCollection=sampledb;");
cn.Open();

// Create a command to query the BITTABLE
iDB2Command cmd = new iDB2Command("select * from bittable", cn);

// Run the command and read from the DataReader.
iDB2DataReader dr = cmd.ExecuteReader();
if (dr.Read())
{

// Read the data and retrieve the values into
// objects of the appropriate data type.
iDB2CharBitData bit1 = dr.GetiDB2CharBitData(0);
iDB2CharBitData bit2 = dr.GetiDB2CharBitData(1);
iDB2VarCharBitData varbit1 = dr.GetiDB2VarCharBitData(2);
iDB2VarCharBitData varbit2 = dr.GetiDB2VarCharBitData(3);

// Now use ToString() to display the values.
// Data is translated using the server job's CCSID.
Console.WriteLine("ToString() method:");
Console.WriteLine(" {0} {1} {2} {3}",

bit1.ToString(), bit2.ToString(), varbit1.ToString(), varbit2.ToString());

// You can also explicitly specify the CCSID

Chapter 4. IBM DB2 UDB for iSeries .NET provider 93

// using the example below.
Console.WriteLine("ToString(ccsid) method:");
Console.WriteLine(" {0} {1} {2} {3}",

bit1.ToString(37), bit2.ToString(37), varbit1.ToString(37), varbit2.ToString(37));
}

// Close the DataReader since we no longer need it.
dr.Close();

// Dispose the command since we no longer need it.
cmd.Dispose();

// Close the connection.
cn.Close();

iDB2Date, iDB2Time, and iDB2TimeStamp
The IBM DB2 UDB for iSeries supports three data types that deal with dates and times:
DATE, TIME, and TIMESTAMP. The .NET Framework, however, has only a single built-in type
for dates and times: DateTime. The DateTime data type has elements for both dates and
times, including elements for the year, month, day, hour, minute, second, and millisecond.
Because DateTime is the .NET Framework type most similar to DATE, TIME, and
TIMESTAMP, these data types normally return their value as a DateTime, as shown in
Table 4-5 on page 88. In this section we explain some of the issues you may see when using
these data types.

When treating DATE, TIME, and TIMESTAMP fields as strings, the string value must be in
one of the supported host ISO formats shown in Table 4-6.

Table 4-6 Supported DATE, TIME, and TIMESTAMP string formats

When casting DATE, TIME, and TIMESTAMP fields to strings, cast them using a character
that is the length of the resulting ISO string, as shown in Table 4-7.

Table 4-7 Casting DATE, TIME, and TIMESTAMP to strings

iDB2Date
iDB2Date corresponds to the iSeries DATE data type, which consists of a year, month, and
day. Because the iSeries DATE does not include an hour, minute, second, or millisecond, a
DateTime resulting from an iDB2Date always returns those elements initialized to zero.

Note: If your data is encoded using a CCSID other than 37, use that CCSID in this
example instead of 37.

Data type Supported string formats

Date yyyy-mm-dd

Time hh.mm.ss or hh:mm:ss

Timestamp yyyy-mm-dd-hh.mm.ss.nnnnnn or yyyy-mm-dd hh:mm:ss.nnnnnn

Data type Sample cast statement for converting to string

Date select cast(hiredate as char(10)) from sampledb.employee

Time select cast(starting as char(8)) from sampledb.cl_sched

Timestamp select cast(received as char(26)) from sampledb.in_tray

94 Integrating DB2 Universal Database for iSeries with Microsoft ADO .NET

iDB2Time
iDB2Time corresponds to the iSeries TIME data type, which consists of an hour, minute, and
second. The hour is specified in 24-hour format, where hour 1 is 1:00 AM, hour 13 is 1:00 PM,
and hour 0 represents 12:00 midnight. Because the iSeries TIME does not include a year,
month, or day, a DateTime resulting from an iDB2Time always returns those elements
initialized to a value of one. The DateTime’s millisecond element is initialized to zero.

iDB2TimeStamp
iDB2TimeStamp corresponds to the iSeries TIMESTAMP data type, which consists of a year,
month, day, hour, minute, second, and microsecond. The hour is specified in 24-hour format.

Because the iSeries TIMESTAMP can hold more precision (microseconds) than a DateTime
(milliseconds), a DateTime resulting from an iDB2TimeStamp will have its millisecond
element initialized to the iDB2TimeStamp’s microseconds, truncated to three digits. Similarly,
when initializing an iDB2TimeStamp using a DateTime, the microsecond element is initialized
to the DateTime’s millisecond element, multiplied by 1000.

Because the iDB2DataAdapter retrieves TIMESTAMP values as a DateTime, the three least
significant digits of the TIMESTAMP value are lost. To avoid losing the significant digits, either
cast the iDB2TimeStamp to a character string (see Example 4-77 on page 96), or use an
iDB2DataReader instead of an iDB2DataAdapter, and read the timestamp values into an
iDB2TimeStamp variable.

Example 4-76 shows how you can use a DataReader to read the timestamp value into an
iDB2TimeStamp variable. For this example, we use the IN_TRAY table from the SAMPLEDB
schema. We read the first field, RECEIVED, into an iDB2TimeStamp variable to make sure
that we get the full microsecond precision. See 1.4, “DB2 UDB for iSeries sample schema” on
page 8 for information about setting up the SAMPLEDB schema.

Example 4-76 Using an iDB2DataReader with GetiDB2TimeStamp to read a timestamp value

// Create and open a connection to the iSeries.
iDB2Connection cn = new iDB2Connection("DataSource=myiseries;");
cn.Open();

// Create a command which will select records
// from the IN_TRAY table.
iDB2Command cmd = new iDB2Command("select * from sampledb.in_tray", cn);

// Execute the query and get the results as a DataReader.
iDB2DataReader dr = cmd.ExecuteReader();

// Read the first field, RECEIVED, into an iDB2TimeStamp
// variable and also into a DateTime variable.
// Then print the results. You can see the iDB2TimeStamp
// returns greater precision than a TimeStamp returns.
while (dr.Read())
{

iDB2TimeStamp mytimestamp = dr.GetiDB2TimeStamp(0);
DateTime mydatetime = dr.GetDateTime(0);

Console.WriteLine("iDB2TimeStamp: " + mytimestamp.ToNativeFormat() +
", DateTime: " + mydatetime.ToString());

}

// Close the DataReader since we no longer need it.
dr.Close();

Chapter 4. IBM DB2 UDB for iSeries .NET provider 95

// Dispose the command since we no longer need it.
cmd.Dispose();

// Close the connection.
cn.Close();

TIME and TIMESTAMP special values
With the IBM DB2 UDB for iSeries, you can insert TIME and TIMESTAMP values into a table
using the special TIME value of 24:00:00 (or TIMESTAMP element containing a time of
24.00.00.000000). This special value is a non-standard way to indicate midnight. Note that
even though the time values 24:00:00 and 00:00:00 are logically the same time, the two
values do not compare the same. For more information, refer to the DB2 Universal Database
for iSeries SQL Reference, which you can find in the iSeries Information Center at:

http://www.iseries.ibm.com/infocenter

Select Database → Reference → SQL Reference → Language elements →
Assignments and comparisons → Datetime comparisons.

Because the .NET Framework DateTime type cannot handle an hour value of 24, using a
TIME or TIMESTAMP that contains this value will cause your application to receive an
ArgumentOutOfRangeException. To avoid this problem, you must cast the TIME or
TIMESTAMP to a String value in your SELECT statement. Example 4-77 shows how to
accomplish this. For this example, we use the IN_TRAY table from the SAMPLEDB. See 1.4,
“DB2 UDB for iSeries sample schema” on page 8 for information about setting up the
SAMPLEDB schema.

The CAST method also enables TIME and TIMESTAMP values to work with an
iDB2DataAdapter. See Table 4-7 on page 94 for examples of how to cast DATE, TIME, and
TIMESTAMP values.

Example 4-77 Using a CAST statement to cast a TIMESTAMP to a String

// Create and open a connection to the iSeries.
iDB2Connection cn = new iDB2Connection("DataSource=myiseries;");
cn.Open();

// Create a command which will select records
// from the IN_TRAY table.
iDB2Command cmd = cn.CreateCommand();
cmd.CommandText = "select cast(received as char(26)) from sampledb.in_tray";

// Execute the query and get the results as a DataReader.
iDB2DataReader dr = cmd.ExecuteReader();

while (dr.Read())
{

// Display the data type of the RECEIVED field.
// You can see the provider maps it to a String
// because of the CAST statement.
Console.Write("Data type: " + dr.GetFieldType(0).ToString());

// Display the field value.
Console.WriteLine(", Value: " + dr.GetValue(0).ToString());

}

// Close the DataReader since we no longer need it.
dr.Close();

96 Integrating DB2 Universal Database for iSeries with Microsoft ADO .NET

http://www.iseries.ibm.com/infocenter

// Dispose the command since we no longer need it.
cmd.Dispose();

// Close the connection.
cn.Close();

To write a TIME or TIMESTAMP value that contains the special 24:00:00 value, either write it
using a string literal or initialize the parameter value using a string (Example 4-78). The
parameter string value must be in a supported string format as shown in Table 4-6 on page 94.

Example 4-78 Updating a TIMESTAMP value using a parameterized UPDATE statement

// Create and open a connection to the iSeries.
iDB2Connection cn = new iDB2Connection("DataSource=myiseries;DefaultCollection=sampledb;");
cn.Open();

// Create a command which will update the RECEIVED
// field for an entry in the IN_TRAY table.
iDB2Command cmd = cn.CreateCommand();
cmd.CommandText = "update in_tray set received=@newvalue where SOURCE='BADAMSON'";

// Derive the parameter information.
// It shows the @newvalue parameter is a DateTime.
cmd.DeriveParameters();
Console.WriteLine("Parameter data type: " + cmd.Parameters["@newvalue"].DbType);

// Set the parameter value to include a value that
// uses the special hour value of '24' for midnight.
// Because we set the value using a string, the data
// is not converted to a DateTime first.
cmd.Parameters["@newvalue"].Value = "2004-11-18-24.00.00.000000";
cmd.ExecuteNonQuery();

// Dispose the command since we no longer need it.
cmd.Dispose();

// Close the connection.
cn.Close();

iDB2Decimal and iDB2Numeric
The IBM DB2 UDB for iSeries supports two different decimal data types: packed decimal,
which maps to iDB2Decimal, and zoned decimal, which maps to iDB2Numeric. For this
section, we refer to them both as simply decimal. Decimal values on the iSeries can hold up
to 63 decimal digits of precision. The decimal scale value can be any number between zero
and the precision.

As shown in Table 4-5 on page 88, the IBM.Data.DB2.iSeries provider maps decimal data to
the .NET Framework Decimal type. While this is normally the best choice, problems can occur
because .NET’s Decimal objects can hold only up to 28 or 29 digits of precision, less than the

Note: This example uses the IN_TRAY table, which includes a TIMESTAMP field. Although
by default none of the data in the table contains a timestamp with a time value of 24:00:00,
the example shows how you could retrieve that value if it exists in the table.

Note: The V5R3M0 release of DB2 UDB for iSeries increased support from 31 decimal
digits of precision to 63 digits.

Chapter 4. IBM DB2 UDB for iSeries .NET provider 97

maximum supported by the iSeries. If you have decimal data on the iSeries and read the
value using a Decimal (which is the default), you could end up with a loss of precision (some
digits following the decimal point are truncated) or an OverflowException (if the number of
digits before the decimal point is greater than the 28 or 29 digits that Decimal supports).

To avoid these problems with decimal data, you have several options:

� Use a DataReader and call GetString() to retrieve the decimal value as a string.

� Use a DataReader and call GetiDB2Decimal or GetiDB2Numeric.

� Cast the decimal value using your Select statement to return the value as a string. This
method works with both the DataReader and DataAdapter.

To illustrate these options, we create a table in our SAMPLEDB schema called DEC as shown
in Example 4-79. See 1.4, “DB2 UDB for iSeries sample schema” on page 8 for a description
of how to set up the SAMPLEDB schema.

Example 4-79 Creating the DEC table to hold large decimal data

// Create and open a connection to the iSeries.
iDB2Connection cn = new iDB2Connection("DataSource=myiseries;DefaultCollection=sampledb;");
cn.Open();

// Create and run a command which will create the DEC table.
iDB2Command cmd = cn.CreateCommand();
cmd.CommandText = "create table dec (dec1 decimal(63, 62), num1 numeric(63, 3))";
cmd.ExecuteNonQuery();

// Insert some large decimal data into the table.
// We use a parameterized insert statement just for fun.
cmd.CommandText = "insert into dec values(@dec1, @num1)";
cmd.DeriveParameters();
cmd.Parameters["@dec1"].Value =
"1.12345678901234567890123456789012345678901234567890123456789012";
cmd.Parameters["@num1"].Value =
"123456789012345678901234567890123456789012345678901234567890.123";
cmd.ExecuteNonQuery();

// Dispose the command since we no longer need it.
cmd.Dispose();

// Close the connection.
cn.Close();

Now that we have a table containing large decimal values, we can retrieve the data.
Example 4-80 shows how to read the decimal data using an iDB2DataReader. We show the
GetString(), GetiDB2Decimal(), and GetiDB2Numeric() methods.

Example 4-80 Reading large decimal data using a DataReader

// Create and open a connection to the iSeries.
iDB2Connection cn = new iDB2Connection("DataSource=myiseries;DefaultCollection=sampledb;");
cn.Open();

// Create a command which will select records from the DEC table.
iDB2Command cmd = new iDB2Command("select * from dec", cn);

Note: This example works with iSeries hosts V5R3M0 and later. Older hosts support only
up to 31 digits of precision.

98 Integrating DB2 Universal Database for iSeries with Microsoft ADO .NET

// Execute the command and get a DataReader in return.
iDB2DataReader dr = cmd.ExecuteReader();

// Read the data using GetString, GetiDB2Decimal, and
// GetiDB2Numeric. Display the results as a string.
while (dr.Read())
{

// Retrieve the data using several different methods
String dec1String = dr.GetString(0);
String num1String = dr.GetString(1);
iDB2Decimal dec1Decimal = dr.GetiDB2Decimal(0);
iDB2Numeric num1Numeric = dr.GetiDB2Numeric(1);

// Display the data using several different methods
Console.WriteLine("DEC1 values");
Console.WriteLine("-----------");
Console.WriteLine("GetString: " + dec1String);
Console.WriteLine("GetiDB2Decimal: " + dec1Decimal.ToString());

Console.WriteLine("");
Console.WriteLine("NUM1 values");
Console.WriteLine("-----------");
Console.WriteLine("GetString: " + num1String);
Console.WriteLine("GetiDB2Numeric: " + num1Numeric.ToString());

}

// Close the DataReader since we no longer need it.
dr.Close();

// Dispose the command since we no longer need it.
cmd.Dispose();

// Close the connection.
cn.Close();

Example 4-81 shows how to cast the decimal to a string using your Select statement. We cast
the data using a char(64) because the decimal data consists of 63 digits plus a decimal
separator. If your data could be negative, use an extra character to handle the sign character;
for example, cast it as char(65). Casting the decimal/numeric like this is the only way to
effectively handle large decimal/numeric data with an iDB2DataAdapter.

Example 4-81 Using a CAST statement to cast a decimal to a String

// Create and open a connection to the iSeries.
iDB2Connection cn = new iDB2Connection("DataSource=myiseries;DefaultCollection=sampledb;");
cn.Open();

// Create a command which will select records from the DEC table.
iDB2Command cmd = cn.CreateCommand();
cmd.CommandText = "select cast(dec1 as char(64)), cast(num1 as char(64)) from dec";

// Execute the command and get a DataReader in return.
iDB2DataReader dr = cmd.ExecuteReader();

// Read the data using GetString.
while (dr.Read())
{

// Retrieve the data as a string.
String dec1String = dr.GetString(0);

Chapter 4. IBM DB2 UDB for iSeries .NET provider 99

String num1String = dr.GetString(1);

// Display the data
Console.WriteLine("DEC1 values");
Console.WriteLine("-----------");
Console.WriteLine("GetString: " + dec1String);

Console.WriteLine("");
Console.WriteLine("NUM1 values");
Console.WriteLine("-----------");
Console.WriteLine("GetString: " + num1String);

}

// Close the DataReader since we no longer need it.
dr.Close();

// Dispose the command since we no longer need it.
cmd.Dispose();

// Close the connection.
cn.Close();

Writing decimal data can always be done in either of two ways:

� Using a literal value to insert the decimal data; for example:

insert into sampledb.dec
values('1.12345678901234567890123456789012345678901234567890123456789012',
'123456789012345678901234567890123456789012345678901234567890.123')

� Assigning a decimal parameter using a string value, as shown in Example 4-79 on
page 98

Decimal separator
Decimal and numeric data (iDB2Decimal and iDB2Numeric) normally contains a decimal
separator character, usually either a period (.) or a comma (,) depending on your thread’s
CurrentCulture setting. The IBM.Data.DB2.iSeries provider handles the decimal separator
automatically. It assumes that when you send decimal strings to the host using a
parameterized insert or update statement, the decimal separator in the string is the decimal
separator that corresponds to your thread’s CurrentCulture setting. Similarly, when the
provider returns a decimal string (for example, via the DataReader’s GetString() method, or
the iDB2Decimal or iDB2Numeric’s ToString() method), the provider returns the correct
decimal separator for your thread’s CurrentCulture setting. The exception to this is when you
cast the decimal data using your Select statement as shown in Example 4-81 on page 99,
where the decimal separator is always returned as a period (.). This is because the casting
is done on the host server before the data is returned to the provider, and the provider does
not give you a way to set the decimal separator value used by the host server job servicing
your SQL requests.

Important: When casting the decimal/numeric to a character string as shown in the
previous example, the decimal separator, whether a decimal point (.) or a comma (,), is
always returned as a period (.), regardless of your thread’s CurrentCulture setting. This is
because the casting is done on the host server before the data is returned to the provider.
The provider does not give you a way to set the decimal separator value used by the host
server job servicing your SQL requests.

100 Integrating DB2 Universal Database for iSeries with Microsoft ADO .NET

Example 4-82 is a simple example that shows how your decimal separator character is
automatically handled by the provider. It does the following:

1. Sets the thread’s CurrentCulture to de-DE, which uses a comma for the decimal separator
character.

2. Creates a table in the SAMPLEDB schema called DECIMALDE containing a decimal and
a numeric field.

3. Inserts data into the table using a parameterized insert statement. The inserted data is
initialized using a string containing a comma for the decimal separator.

4. Reads the data from the table using a DataReader. The data comes back with the correct
decimal separator.

Example 4-82 Using decimal data with a culture that uses a comma for the decimal separator

CultureInfo currCulturex = new CultureInfo("de-DE");
Thread.CurrentThread.CurrentCulture = currCulturex;

// Create and open a connection to the iSeries.
iDB2Connection cn = new iDB2Connection("DataSource=myiseries;DefaultCollection=sampledb;");
cn.Open();

// Create a table called DECIMALDE.
iDB2Command cmd = cn.CreateCommand();
cmd.CommandText = "create table decimalde (dec1 decimal(5, 2), num1 numeric(4, 3))";
cmd.ExecuteNonQuery();

// Create a parameterized insert statement
cmd.CommandText = "insert into decimalde values(@dec1, @num1)";
cmd.DeriveParameters();

// Insert a row into the table.
// The string we use to initialize the decimal data
// uses a comma (',') for the decimal separator.
cmd.Parameters["@dec1"].Value = "123,45";
cmd.Parameters["@num1"].Value = "1,123";
cmd.ExecuteNonQuery();

// Now, read the data back using a DataReader.
cmd.CommandText = "select * from decimalde";
cmd.Parameters.Clear();
iDB2DataReader dr = cmd.ExecuteReader();

// Read the data using GetString, GetiDB2Decimal, and
// GetiDB2Numeric. Display the results as a string.
while (dr.Read())
{

// Retrieve the data using several different methods
String dec1String = dr.GetString(0);
String num1String = dr.GetString(1);
iDB2Decimal dec1Decimal = dr.GetiDB2Decimal(0);
iDB2Numeric num1Numeric = dr.GetiDB2Numeric(1);

// Display the data using several different methods
Console.WriteLine("DEC1 values");
Console.WriteLine("-----------");
Console.WriteLine("GetString: " + dec1String);
Console.WriteLine("GetiDB2Decimal: " + dec1Decimal.ToString());

Console.WriteLine("");

Chapter 4. IBM DB2 UDB for iSeries .NET provider 101

Console.WriteLine("NUM1 values");
Console.WriteLine("-----------");
Console.WriteLine("GetString: " + num1String);
Console.WriteLine("GetiDB2Numeric: " + num1Numeric.ToString());

}

// Close the DataReader since we no longer need it.
dr.Close();

// Dispose the command since we no longer need it.
cmd.Dispose();

// Close the connection.
cn.Close();

4.5.8 Handling exceptions
Most of the examples in this chapter optimistically assume that nothing will go wrong, so there
is no exception handling in the examples. In a real-life .NET application, exception handling
should be an integral part of your design. Exception handling is discussed at great length in
the Microsoft .NET Framework documentation, available at:

http://msdn.microsoft.com/library/

Select .NET Development → .NET Framework SDK → .NET Framework → Programming
with the .NET Framework → Handling and Throwing Exceptions.

The exceptions defined by the IBM.Data.DB2.iSeries provider are listed in 4.2.3, “Supported
features” on page 36, and they are also described in the provider’s Technical Reference
(4.4.1, “Displaying the technical reference” on page 41). The .NET provider’s exceptions
inherit from SystemException.

When using any .NET code that could throw an exception, it is wise to surround the code with
a try/catch block. The IBM.Data.DB2.iSeries provider may throw an exception at any time, for
conditions such as an invalid ConnectionString value, a SQL error resulting from a
non-existent table, of a communication error received because your host server job ended
abnormally. When your application receives an exception, if you do not have a catch block to
handle that exception, a message is displayed by the Microsoft .NET runtime. For exceptions
that inherit from SystemException (as all of the provider’s exceptions inherit from
SystemException), the message you see simply says System error. This is not very helpful. If
you instead catch the exception, you can examine the exception object and get more details
about the cause of the error. At the very least, you should examine the exception’s Message
property, because it often helps pinpoint the cause of an error.

The most common provider-specific exceptions you are likely to receive are the
iDB2SQLErrorException and the iDB2CommErrorException. First, we show an example of
coding to handle an iDB2SQLErrorException, then we discuss iDB2CommErrorException in
greater detail.

Handling SQL errors (iDB2SQLErrorException)
A SQL error can happen when you prepare, execute, or derive parameter information for a
command. When an application receives a SQL error, the following properties of the
iDB2SQLErrorException object can help you gather more information about the error:

� Message property: The Message property contains a description of the SQL error.

� MessageDetails property: The MessageDetails property contains a detailed description of
the error, typically including the cause and recovery.

102 Integrating DB2 Universal Database for iSeries with Microsoft ADO .NET

http://msdn.microsoft.com/library/

� MessageCode property: The MessageCode property contains a number that corresponds
to the SQL error you receive.

� SqlState property: The SqlState property contains the SQLSTATE returned from the host.
SqlState is valid only for SQL errors.

Example 4-83 shows an example of a SQL0204 error. We force this error by executing a
Select statement for a table that does not exist.

Example 4-83 Handling an iDB2SQLErrorException

// Create and open a connection to the iSeries
iDB2Connection cn = new
iDB2Connection("DataSource=myiseries;DefaultCollection=sampledb;");
cn.Open();

// Create a command that selects from a non-existent table.
// We expect this to fail with a SQL0204 error.
iDB2Command cmd = new iDB2Command("select * from notthere", cn);
try
{

iDB2DataReader dr = cmd.ExecuteReader();
}
catch (iDB2SQLErrorException e)
{

Console.WriteLine("Message: " + e.Message);
Console.WriteLine("MessageCode: " + e.MessageCode.ToString());
Console.WriteLine("SqlState: " + e.SqlState);
Console.WriteLine("");
Console.WriteLine("MessageDetails: " + e.MessageDetails);

}

When you run Example 4-83, the Message property tells the error, and the MessageCode
property contains a number that corresponds to the message. In this example, MessageCode
is -204, which corresponds to the SQL error SQL0204. For more information about any SQL
error, you can display the message description on your iSeries with this command:

DSPMSGD RANGE(SQL0204) MSGF(QSQLMSG)

Simply replace 0204 (without the negative sign) with the four-character MessageCode
number.

Handling communication errors (iDB2CommErrorException)
When you execute commands using IBM.Data.DB2.iSeries, the provider uses a
communication link to transfer the commands and data back and forth to the iSeries server
job that runs requests on behalf of your application. At times, this communication link may
become unusable for any of several reasons, including:

� The iSeries server is IPLed (for example, to perform nightly maintenance).
� The iSeries server job processing your requests (QZDASOINIT) is ended.
� The communication link experiences some other failure.

Whatever the cause, your application should be prepared to handle communication errors
whenever it executes commands. Example 4-84 on page 104 shows how to catch the
iDB2CommErrorException. In our example, we force a communication error by asking to
terminate the host server job using the ENDJOB command. We then simply display the error
information when the communication exception is caught. Before running this console
application, add a reference to System.Windows.Forms (Project → Add Reference → .NET
tab → System.Windows.Forms.dll).

Chapter 4. IBM DB2 UDB for iSeries .NET provider 103

Example 4-84 Handling an iDB2CommErrorException

// Create and open a connection to the iSeries
iDB2Connection cn = new
iDB2Connection("DataSource=myiSeries;DefaultCollection=sampledb;");
cn.Open();

// Now that we have an open connection, kill the host server job.
String msg = "Please run this command to end the host server job:\r\n" +

"endjob job(" + cn.JobName.Trim() + ") option(*immed)";
System.Windows.Forms.MessageBox.Show(msg, "Before you press OK...");

// Create a command that selects from a table.
// Because we killed the host server job, this command
// will fail with iDB2CommErrorException.
iDB2Command cmd = new iDB2Command("select * from employee", cn);
try
{

iDB2DataReader dr = cmd.ExecuteReader();
}
catch (iDB2CommErrorException e)
{

Console.WriteLine("Message: " + e.Message);
Console.WriteLine("MessageCode: " + e.MessageCode.ToString());
Console.WriteLine("MessageDetails: " + e.MessageDetails);

}

For the iDB2CommErrorException, the Message property says that a communication failure
occurred, and the MessageDetails property tells what type of communication failure it was. In
some cases, the MessageDetails contains a message number, such as CWBCO1047. Read
more about this and other messages and their possible causes in the iSeries Access for
Windows User’s Guide. To display the User’s Guide from the Windows desktop, select
Start → Programs → IBM iSeries Access for Windows → User’s Guide. From the User’s
Guide, click the Contents tab and expand Messages → iSeries Access for Windows
messages. Then scroll through the list of messages until you find the one you are looking for.

The MessageCode property contains a return code value that may be useful if a persistent
problem is reported to IBM Service.

Recovering from a communication error
If your application routinely keeps connections active during periods when your host server
connections may be lost, you should add extra processing to recover from the communication
failures that result. Often, all you have to do is close and then reopen your connection.
Example 4-85 shows how to modify the previous example to close and then reopen the
connection when the communication failure occurs.

Example 4-85 Recovering from an iDB2CommErrorException by closing and reopening the connection

// Create and open a connection to the iSeries
iDB2Connection cn = new
iDB2Connection("DataSource=myiseries;DefaultCollection=sampledb;");
cn.Open();

// Now that we have an open connection, kill the host server job.
String msg = "Please run this command to end the host server job:\r\n" +

"endjob job(" + cn.JobName.Trim() + ") option(*immed)";
System.Windows.Forms.MessageBoxButtons.OK);
System.Windows.Forms.MessageBox.Show(msg, "Before you press OK...");

104 Integrating DB2 Universal Database for iSeries with Microsoft ADO .NET

// Create a command that selects from a table.
// Because we killed the host server job, this command
// will fail with iDB2CommErrorException.
iDB2Command cmd = new iDB2Command("select * from employee", cn);
try
{

iDB2DataReader dr = cmd.ExecuteReader();
}
catch (iDB2CommErrorException e)
{

Console.WriteLine("Message: " + e.Message);
Console.WriteLine("MessageCode: " + e.MessageCode.ToString());
Console.WriteLine("MessageDetails: " + e.MessageDetails);

// Now, recover from the failure by closing and then
// reopening the connection.
cn.Close();
cn.Open();

}

// If we get to here, we should have an active connection again.
// Try the command again.
iDB2DataReader dr2 = cmd.ExecuteReader();

// Close the DataReader since we're done with it.
dr2.Close();

// Dispose the command since we're done with it.
cmd.Dispose();

// Close the connection once more.
cn.Close();

Special considerations when using connection pooling
By default, the IBM.Data.DB2.iSeries provider enables connection pooling, in which a pool of
connections to iSeries host server jobs are maintained by the provider. When you open a
pooled connection (iDB2Connection.Open method), one of these pooled iSeries server
connections is removed from the pool and associated with your iDB2Connection object.
When you close the pooled connection (iDB2Connection.Close method), the iSeries server
connection is released back into the pool to be reused.

Because a pooled connection keeps an active connection to the iSeries server, it is possible
that the communication link could be lost while the pooled connection is sitting idle in the
pool. For example, this scenario could occur if you keep your application running overnight
with pooled connections still active, and your iSeries server has maintenance performed on it,
causing all of the server jobs to end. The next day when you open a connection through your
application, a pooled connection is handed to you that does not work because the server job
has ended. This error is not detected until you try to use the connection.

Example 4-86 on page 106 shows this scenario. As in the previous example, we force an end
to the host server job. This time, the job we end is a pooled connection. The communication
error is detected only when we try to run a command against that connection. Just as in our
previous example, we recover from the error by closing and then reopening the connection.

Chapter 4. IBM DB2 UDB for iSeries .NET provider 105

Example 4-86 Recovering from an iDB2CommErrorException on a pooled connection

// Create and open a connection to the iSeries.
iDB2Connection cn = new
iDB2Connection("DataSource=myiseries;DefaultCollection=sampledb;");
cn.Open();

// Create a message containing the server job information.
// We'll display this message after we close the connection.
String msg = "Please run this command to end the host server job:\r\n" +

"endjob job(" + cn.JobName.Trim() + ") option(*immed)";

// Close the connection so it is released back into
// the connection pool.
cn.Close();

// Now that the connection is in the pool, kill the host server job.
System.Windows.Forms.MessageBox.Show(msg, "Before you press OK...");

// Now, open the connection again. This will cause the
// now dead connection to be handed back. Note the
// Open() does not return an exception.
cn.Open();

// Create a command that selects from a table.
// Because we killed the host server job, this command
// will fail with iDB2CommErrorException.
iDB2Command cmd = new iDB2Command("select * from employee", cn);
try
{

iDB2DataReader dr = cmd.ExecuteReader();
}
catch (iDB2CommErrorException e)
{

Console.WriteLine("Message: " + e.Message);
Console.WriteLine("MessageCode: " + e.MessageCode.ToString());
Console.WriteLine("MessageDetails: " + e.MessageDetails);

// Now, recover from the failure by closing and then
// reopening the connection.
cn.Close();
cn.Open();

}

// If we get to here, we should have an active connection again.
// Try the command again.
iDB2DataReader dr2 = cmd.ExecuteReader();

// Close the DataReader since we're done with it.
dr2.Close();

// Dispose the command since we're done with it.
cmd.Dispose();

// Close the connection once more.
cn.Close();

Persistent communication errors
Example 4-85 on page 104 and Example 4-86 showed how to recover from an
iDB2CommErrorException by closing then reopening the connection. Although this method

106 Integrating DB2 Universal Database for iSeries with Microsoft ADO .NET

works in most cases, you may still receive an iDB2CommErrorException when you reopen
the connection. This could happen for any of several reasons, including:

� The pooled connections no longer have host server jobs associated with them if the
iSeries server was IPLed or the server jobs’ subsystem was ended and then restarted.

� The iSeries server is not active, or the server jobs’ subsystem is not active.

� Numerous other causes of communication errors.

You can avoid repeated communication errors for the first condition by using the
CheckConnectionOnOpen property in your ConnectionString. See
“CheckConnectionOnOpen” on page 55 for more information about this property.

Sometimes communication errors continue due to an unresolved problem. When this
happens, your application should gracefully continue or exit.

4.6 Common tasks
In this section, we discuss some common scenarios for using the IBM.Data.DB2.iSeries
provider and provide coding samples.

4.6.1 A DataReader example
Many of the examples shown previously in this chapter use an iDB2DataReader to read
values from a table. In this section, we illustrate the iDB2DataReader again, using the
EMPLOYEE table from the SAMPLEDB schema. See 1.4, “DB2 UDB for iSeries sample
schema” on page 8 to set up the SAMPLEDB schema.

We show two DataReader examples. Example 4-87 selects records from the EMPLOYEE
table, reads each value, and prints the value to the console window. We show two ways to
retrieve a DATE field: Hiredate is retrieved using GetiDB2Date() and Birthdate is retrieved
using GetDateTime(). The second example, Example 4-88 on page 109, selects the same
records from the EMPLOYEE table. This time, the data is added to a DataTable, and the
DataTable is displayed in a DataGrid using a Windows application.

In 4.6.2, “A simple DataAdapter with CommandBuilder example” on page 110, we show how
to use a DataAdapter to accomplish the same task.

A Console DataReader example
For Example 4-87, we use a Console application to read from the EMPLOYEE table.

Example 4-87 Using a DataReader to read records from the EMPLOYEE table and print the values

// Create and open a connection to the iSeries.
iDB2Connection cn = new iDB2Connection("DataSource=myiseries;DefaultCollection=sampledb;");
cn.Open();

// Create a command that selects records from the EMPLOYEE table.
iDB2Command cmd = new iDB2Command("select * from employee", cn);

// Execute the command, and get a DataReader in return.
iDB2DataReader dr = cmd.ExecuteReader();

Note: V5R3M0 added the CheckConnectionOnOpen property in service pack SI17742.

Chapter 4. IBM DB2 UDB for iSeries .NET provider 107

// Read each row from the table and display the information.
int i = 1;

while (dr.Read())
{

Console.WriteLine("Row " + i.ToString() + ":");
Console.WriteLine("------");
Console.WriteLine("Employee {0}: {1} {2} {3}",

dr.GetString(0), dr.GetString(1).TrimEnd(),
dr.GetChar(2), dr.GetString(3).TrimEnd());

Console.WriteLine("Workdept: {0}, Phone#: {1}, Hiredate: {2}",
dr.GetString(4), dr.GetString(5), dr.GetiDB2Date(6).ToNativeFormat());

Console.WriteLine("Job: {0}, Education level: {1}, Sex: {2}, Birthdate: {3}",
dr.GetString(7).TrimEnd(), dr.GetInt16(8), dr.GetChar(9),

dr.GetDateTime(10).ToShortDateString());
Console.WriteLine("Salary: {0}, Bonus: {1}, Commission: {2}",

dr.GetDecimal(11), dr.GetDecimal(12), dr.GetDecimal(13));

Console.WriteLine("");
i++;

}

// Close the DataReader since we no longer need it.
dr.Close();

// Dispose the command since we no longer need it.
cmd.Dispose();

// Close the connection.
cn.Close();

A Windows DataReader example
For our next example, we use a Windows application to show how to use a DataReader and
display the results in a DataGrid. For this example, create a Windows application instead of a
Console application, as shown in Figure 4-16.

Figure 4-16 Create a C# Windows application

108 Integrating DB2 Universal Database for iSeries with Microsoft ADO .NET

Be sure to add an assembly reference to the provider (see 4.4.3, “Adding an assembly
reference to the provider” on page 43), and add a namespace directive to your C# source file
(see 4.4.4, “Adding a namespace directive” on page 44). Next, double-click in any blank
space on your Windows form. This causes Visual Studio .NET to create a method called
Form1_Load. Enter the code shown in Example 4-88 into the Form1_Load method. For this
example, for simplicity we show only the first six columns of the EMPLOYEE table.

Example 4-88 Using a DataReader to read records from the EMPLOYEE table into a DataGrid

// Create a DataGrid and add it to our form.
DataGrid datagrid = new DataGrid();
datagrid.Location = new Point(0, 0);
datagrid.Size = new Size(900, 900);

// Add the DataGrid to the form
Controls.AddRange(new Control[] {datagrid});

// Create a DataSet to hold our data.
DataSet ds = new DataSet();

// Create a DataTable and add a column
// for each column we select from our iSeries EMPLOYEE table.
// To make this example simple, we only display the first six fields:
// EMPNO, FIRSTNME, MIDINIT, LASTNAME, WORKDEPT, and PHONENO.
DataTable dt = new DataTable("employee");
dt.Columns.Add("empno");
dt.Columns.Add("firstnme");
dt.Columns.Add("midinit");
dt.Columns.Add("lastname");
dt.Columns.Add("workdept");
dt.Columns.Add("phoneno");

// Add the DataTable to the DataSet.
ds.Tables.Add(dt);

// Open a connection to the iSeries
iDB2Connection cn = new iDB2Connection("DataSource=myiseries;DefaultCollection=sampledb;");
cn.Open();

// Create a command that selects records from the EMPLOYEE table
iDB2Command cmd = new iDB2Command("select * from employee", cn);

// Execute the command, and get a DataReader in return.
iDB2DataReader dr = cmd.ExecuteReader();

// Read each row from the table, and put the results
// into the DataSet we created earlier.
while (dr.Read())
{

// Create a new row to hold our data
DataRow datarow = ds.Tables["employee"].NewRow();

// Set the data into the row.
// To make our example simple, we only show the
// first six fields from the EMPLOYEE table.
datarow["empno"] = dr.GetString(0);
datarow["firstnme"] = dr.GetString(1).Trim();
datarow["midinit"] = dr.GetChar(2);
datarow["lastname"] = dr.GetString(3).Trim();
datarow["workdept"] = dr.GetString(4);

Chapter 4. IBM DB2 UDB for iSeries .NET provider 109

datarow["phoneno"] = dr.GetString(5);

// Add the row to our DataTable
ds.Tables["employee"].Rows.Add(datarow);

}

// Close the DataReader since we no longer need it.
dr.Close();

// Dispose the command since we no longer need it.
cmd.Dispose();

// Close the connection.
cn.Close();

// Now, tell the DataGrid where the source data comes from.
// The data comes from the DataSet we filled in earlier.
datagrid.DataSource = ds;
datagrid.DataMember = ds.Tables[0].TableName;

// Finally, show the DataGrid.
datagrid.Show();

Save your application (File → Save All) and run it. A form appears, showing the data grid
filled in with the information from the EMPLOYEE table (Figure 4-17).

Figure 4-17 The DataGrid shows the data we read from the EMPLOYEE table

4.6.2 A simple DataAdapter with CommandBuilder example
Although the DataReader is often the best way to read your data, sometimes a DataAdapter
is the right choice. In this section, we show how to fill a DataGrid on a window using a few
simple steps. The example shown in this section is also used as a starting point for the
example shown in 4.7.3, “Updating DataSets” on page 136.

To read data from the EMPLOYEE table using a DataAdapter and CommandBuilder:

1. Create a new Windows application (see Figure 4-16 on page 108 for an example of how to
do this). Add an assembly reference to the IBM.Data.DB2.iSeries provider (see 4.4.3,
“Adding an assembly reference to the provider” on page 43), and add a namespace
directive to your project (see 4.4.4, “Adding a namespace directive” on page 44).

110 Integrating DB2 Universal Database for iSeries with Microsoft ADO .NET

2. Display the Toolbox component (View → Toolbox). Click Data to display the data access
items. You should see a window that looks similar to Figure 4-18.

Figure 4-18 Display the Data Toolbox components

3. Drag data access components to your window. From the Toolbox, drag iDB2Connection,
iDB2Command, iDB2CommandBuilder, and iDB2DataAdapter to your window. The
items will appear below the window (Figure 4-19 on page 112).

Note: If the data access component does not show iDB2Command,
iDB2CommandBuilder, iDB2Connection, and iDB2DataAdapter, add them to the Toolbox
manually: Select Tools → Customize Toolbox (or Tools → Add/Remove Toolbox Items
in Visual Studio .NET 2003). Click the .NET Framework Components tab and scroll to the
iDB2* components. Check the box next to iDB2Command, iDB2CommandBuilder,
iDB2Connection, and iDB2DataAdapter, then click OK.

Note: This example includes a CommandBuilder, even though it is not used here,
because it will be used in 4.7.3, “Updating DataSets” on page 136 when we discuss
updatable DataSets.

Chapter 4. IBM DB2 UDB for iSeries .NET provider 111

Figure 4-19 Drag the iDB2* components to your window

4. Drag a DataSet to your window. On the Add Dataset window, select Untyped dataset and
click OK (Figure 4-20).

Figure 4-20 Drag an Untyped DataSet to your window

112 Integrating DB2 Universal Database for iSeries with Microsoft ADO .NET

5. Add a DataGrid to your window: Select the Windows Forms Toolbox item. Drag a
DataGrid to your window, and size the DataGrid to fill up most of the window. You can size
the window larger if you wish. Your window should look similar to Figure 4-21.

Figure 4-21 Add a DataGrid to your window

6. Set the object properties: Right-click iDB2Connection1 and select Properties. In the
Properties panel, select the box next to ConnectionString and type in the following
ConnectionString:

DataSource=myiseries; DefaultCollection=sampledb;

Press Enter. The Properties panel is updated to reflect your DataSource and
DefaultCollection as shown in Figure 4-22.

Figure 4-22 Set the iDB2Connection1 object properties

7. Set the iDB2Command1 properties: Click iDB2Command1. In the Properties panel,
select the box next to CommandText and type in:

select * from employee

Chapter 4. IBM DB2 UDB for iSeries .NET provider 113

8. Select the box next to Connection. In the pull-down menu, select iDB2Connection1. The
Properties panel should look similar to Figure 4-23.

Figure 4-23 Set the iDB2Command1 object properties

9. Update the DataAdapter properties: Click iDB2DataAdapter1. In the Properties panel,
select the box next to SelectCommand. In the pull-down menu, select iDB2Command1 as
shown in Figure 4-24.

Figure 4-24 Set the iDB2DataAdapter1 object properties

10.Update the CommandBuilder properties: Click iDB2CommandBuilder1. In the Properties
panel, select the box next to DataAdapter. In the pull-down menu, select
iDB2DataAdapter1 as shown in Figure 4-25.

Figure 4-25 Set the iDB2CommandBuilder1 object properties

11.Update the DataGrid properties: Click the DataGrid object. In the Properties panel, select
the box next to DataSource. In the pull-down menu, select dataSet1 as shown in
Figure 4-26 on page 115.

114 Integrating DB2 Universal Database for iSeries with Microsoft ADO .NET

Figure 4-26 Set the dataGrid1 object properties

12.Write code to tie it all together. So far in this example, you have not written any code. Now
with only a few lines of code, we fill the DataSet using the DataAdapter, then display the
DataGrid containing our data. On your Form1 design window, double-click somewhere in
the window (not on the DataGrid). Visual Studio .NET creates a method called
Form1_Load and places the cursor at the top of this method. Add the code in
Example 4-89 to the Form1_Load routine as shown in Figure 4-89.

Example 4-89 Fill the DataSet using our DataAdapter

iDB2DataAdapter1.Fill(dataSet1);
dataGrid1.DataMember = dataSet1.Tables[0].TableName;

When you call the DataAdapter’s Fill() method, the DataAdapter opens the connection, fills
the DataSet, and closes the connection.

13.Run the application.

Save the application (File → Save All), then run it. A window appears with the DataGrid
filled with data read from the EMPLOYEE table, as shown in Figure 4-27.

Figure 4-27 The DataGrid shows the data we read from the EMPLOYEE table

This section gives a quick, easy way to display data in a DataGrid. For a more advanced
example that allows updates, see 4.7.3, “Updating DataSets” on page 136.

Chapter 4. IBM DB2 UDB for iSeries .NET provider 115

4.6.3 Using transactions
Transactions enable you to group statements together and execute all or none of them. If all
statements in the transaction are successful, they can be committed to the database (made
permanent). If one or more statements in the transaction fail, they can be rolled back to
pre-transaction state. A typical transaction scenario uses a debit/credit example. When a
customer transfers funds from one bank account to another, the entire transfer is contained in
a single transaction. However, if money is withdrawn from the first account but an error occurs
and the money cannot be deposited into the second account, the transaction is rolled back
and the entire transfer is considered a failure. The entire transaction will be committed only if
the withdrawal from the first account and the deposit into the second account are successful.
Transaction processing is sometimes referred to as commitment control because transactions
enable you to control when or if changes are committed to the database.

To use transactions, the table (or tables) that are used within a transaction must be journaled.
Journaling is the process that enables transactions to be committed or rolled back. Read
more about journaling at the IBM Information Center at:

http://www.iseries.ibm.com/infocenter

Select Database → Programming → SQL Programming → Data Protection → Data
integrity → Journaling.

For more information about journaling performance, refer to the redbook Striving for Optimal
Journal Performance on DB2 Universal Database for iSeries, SG246286.

Local transactions
The IBM.Data.DB2.iSeries provider supports local transactions. Local transactions are
performed entirely as a single unit of work on a single connection. If your application does not
require a transaction to span across multiple iSeries connections or across multiple
databases, use local transactions because they provide the best performance.

To begin a local transaction, call the iDB2Connection object’s BeginTransaction method. To
permanently commit changes made during the transaction to the database, use the
transaction’s Commit() method. To cancel changes made during the transaction, use the
transaction’s Rollback() method. Example 4-90 shows a sample application that uses a local
transaction to increase an employee’s salary and reduce the employee’s bonus by the same
amount. It calls BeginTransaction to start the transaction, and receives an iDB2Transaction
object in return. Commands are executed within the transaction, surrounded by a try/catch
block. If the commands execute without error, the changes are committed to the database. If
an exception causes a command to fail, the changes are rolled back and an error message is
displayed. This example uses the EMPLOYEE table in the SAMPLEDB schema. See 1.4,
“DB2 UDB for iSeries sample schema” on page 8 about setting up the sample schema.

Example 4-90 Using a transaction to change an employee’s salary and bonus

// Create and open a connection to the iSeries.
iDB2Connection cn = new iDB2Connection("DataSource=myiseries;DefaultCollection=sampledb;");
cn.Open();

// Begin a transaction on this connection.
iDB2Transaction trans = cn.BeginTransaction(IsolationLevel.RepeatableRead);

// Create a couple of commands which will run under this transaction.
iDB2Command increaseSalary = cn.CreateCommand();
iDB2Command decreaseBonus = cn.CreateCommand();

// Set the command text for our commands

116 Integrating DB2 Universal Database for iSeries with Microsoft ADO .NET

http://www.iseries.ibm.com/infocenter

increaseSalary.CommandText = "update employee set salary = salary + 500 where job='PRES'";
decreaseBonus.CommandText = "update employee set bonus = bonus - 500 where job='PRES'";

// Execute the commands within the transaction.
// We surround the commands with an exception handler,
// to ensure we can rollback the transaction if
// something goes wrong.
try
{

increaseSalary.ExecuteNonQuery();
decreaseBonus.ExecuteNonQuery();

// If we get to here without an exception, we know both
// commands were successful. Commit the transaction.
trans.Commit();
Console.WriteLine("The transaction was performed successfully.");

}
catch
{

// If we get to here, something bad happened.
// Rollback the transaction.
trans.Rollback();
Console.WriteLine("An error occurred. The transaction was rolled back.");

}

// Dispose the transaction since it is no longer useful.
trans.Dispose();

// Dispose the commands since we no longer need them.
increaseSalary.Dispose();
decreaseBonus.Dispose();

// Close the connection.
cn.Close();

After a connection’s BeginTransaction method is called to start a transaction, the connection
is in transaction mode. All commands that execute under that connection must then run
under the transaction that was started by the connection. To accomplish this, the
iDB2Connection’s Transaction property must match the iDB2Transaction returned from
BeginTransaction. There are several ways to set the command’s Transaction property:

1. Automatically, by using the iDB2Connection’s CreateCommand() method to create the
command object. If the connection has already started a transaction, any commands
created using CreateCommand() automatically run under the same transaction. This
method is shown in Example 4-91.

Example 4-91 Setting the Transaction property automatically

// Create and open a connection to the iSeries.
iDB2Connection cn = new iDB2Connection("DataSource=myiseries;DefaultCollection=sampledb;");
cn.Open();

// Begin a transaction on this connection.
iDB2Transaction trans = cn.BeginTransaction(IsolationLevel.RepeatableRead);

// Create a command using CreateCommand().
// The new command automatically runs under the
// 'trans' transaction we started above.
iDB2Command cmd = cn.CreateCommand();

Chapter 4. IBM DB2 UDB for iSeries .NET provider 117

2. Manually assign the command’s Transaction property to the iDB2Transaction returned
from BeginTransaction. (Example 4-92).

Example 4-92 Setting the Transaction property manually

// Create and open a connection to the iSeries.
iDB2Connection cn = new iDB2Connection("DataSource=myiseries;DefaultCollection=sampledb;");
cn.Open();

// Begin a transaction on this connection.
iDB2Transaction trans = cn.BeginTransaction(IsolationLevel.RepeatableRead);

// Create a command using the new operator.
iDB2Command cmd = new iDB2Command();

// Manually set the command's Connection and
// Transaction properties.
cmd.Connection = cn;
cmd.Transaction = trans;

3. Pass the iDB2Transaction returned from BeginTransaction to the iDB2Command’s
constructor when you create the command object (Example 4-93).

Example 4-93 Setting the Transaction property when the command is constructed

// Create and open a connection to the iSeries.
iDB2Connection cn = new iDB2Connection("DataSource=myiseries;DefaultCollection=sampledb;");
cn.Open();

// Begin a transaction on this connection.
iDB2Transaction trans = cn.BeginTransaction(IsolationLevel.RepeatableRead);

// Create a command using the new operator.
// Pass the command text, the connection, and
// the transaction to the constructor.
iDB2Command cmd = new iDB2Command("select * from employee", cn, trans);

After a transaction is committed or rolled back, the connection reverts to autocommit mode,
where all updates to the database are made permanent without the ability to commit or roll
back. See “Autocommit” on page 119.

Distributed transactions and automatic transaction enlistment
Distributed transactions enable transactions to span multiple iSeries connections or multiple
heterogeneous databases. Distributed transactions are managed by a distributed transaction
coordinator, typically a third-party software package. They require each database provider to
support a two-phase commit model. As of this writing, Microsoft has not provided a distributed
transaction coordinator that runs as a managed .NET application. The most commonly used
transaction coordinator is the COM-based Distributed Transaction Coordinator, also called
DTC, from Microsoft.

The IBM.Data.DB2.iSeries provider does not currently support distributed transactions. If your
application needs the ability for a transaction to span multiple iSeries connections or more
than one database, you can use the OleDb provider from Microsoft to bridge to the
IBMDASQL OLE DB provider, which is included with iSeries Access for Windows starting with
V5R3M0. Another alternative is to use the Microsoft ODBC provider to bridge to the ODBC
driver included with iSeries Access for Windows. You can also use the IBM DB2 for LUW
provider described in Chapter 5, “IBM DB2 for LUW .NET provider” on page 177.

118 Integrating DB2 Universal Database for iSeries with Microsoft ADO .NET

Your application can manually enlist in a distributed transaction by calling the
EnlistDistributedTransaction() on the connection object, or you can perform automatic
enlistment by specifying Enlist=true in the ConnectionString. Read more about distributed
transactions in “Performing distributed transactions with the DB2 LUW provider” on page 212.

Isolation levels
When executing commands on the iSeries, each application (or activation group) may or may
not be affected by changes made by other applications. Isolation level refers to how isolated
one application is from changes made by another application. Within ADO.NET, isolation
levels are used when you execute statements within a transaction (after calling
BeginTransaction but before a Commit or Rollback is performed). For a description of the
isolation levels supported by IBM DB2 UDB for iSeries, refer to the DB2 Universal Database
for iSeries SQL Reference, which you can find in the iSeries Information Center at:

http://www.iseries.ibm.com/infocenter

Select Database → Reference → SQL Reference → Concepts → Isolation level.

The IBM.Data.DB2.iSeries provider enables you to specify a transaction’s isolation level using
any of several methods:

� Set the DefaultIsolationLevel property in your iDB2Connection’s ConnectionString. The
isolation level you specify is used on all transactions for that connection unless you pass a
different isolation level when you call the BeginTransaction method. Note that the
DefaultIsolationLevel takes effect only when you are in a transaction. Statements executed
outside of a transaction boundary always run with an isolation level of no commit or
*NONE. See “DefaultIsolationLevel” on page 59 for a discussion of DefaultIsolationLevel.

� Include the desired isolation level when you call the iDB2Connection object’s
BeginTransaction method.

� If you do not set the DefaultIsolationLevel property in your ConnectionString, and if you do
not pass an isolation level when you call the BeginTransaction method, then the
connection’s default isolation level of ReadUncommitted is used.

See Table 4-1 on page 59 for a list of the isolation levels supported by the provider, and the
corresponding System.Data.IsolationLevel values you use to set the isolation level.

By default, the IBM.Data.DB2.iSeries provider runs with an isolation level of No commit or
*NONE. This means that all changes made to the database are permanent; no explicit
commit or rollback can be performed.

Autocommit
When you are not in transaction mode (that is, before you call BeginTransaction() on the
connection object, and after you call Commit() or Rollback() on the transaction object), the
IBM.Data.DB2.iSeries provider runs with an isolation level of No commit or *NONE. This
means that all changes made to the database are permanent; no explicit commit or rollback
can be performed. *NONE enables you to update non-journaled files. The provider does not
currently allow you to specify an isolation level to be used while in autocommit mode.

Transactions and stored procedures
When you create a stored procedure on the iSeries, the SQL precompiler has an option that
enables you to specify the isolation level the stored procedure runs under (COMMIT
precompiler option). In some cases, that stored procedure isolation level is not used when the
stored procedure is called from the .NET provider.

Chapter 4. IBM DB2 UDB for iSeries .NET provider 119

http://www.iseries.ibm.com/infocenter

When using IBM.Data.DB2.iSeries with an iSeries host version earlier than V5R3M0, the
stored procedure’s isolation level is not used; instead, the isolation level in use by the .NET
application is used. For example, if your .NET application has not started a transaction (using
BeginTransaction), then the application is running under an isolation level of No commit or
*NONE. Even if the stored procedure is compiled with an isolation level (using the COMMIT
precompiler option), that isolation level may not be honored.

When using IBM.Data.DB2.iSeries with an iSeries host version of at least V5R3M0, the
stored procedure’s isolation level is used. V5R3M0 does not have the same restriction as
older iSeries hosts, because the underlying commitment control interface used by the
provider has been enhanced.

4.6.4 Calling a program by wrapping it in a stored procedure
Because the IBM.Data.DB2.iSeries provider is a SQL-only provider, you cannot directly call
commands or programs that reside on the iSeries server. You can, however, use the SQL
CREATE PROCEDURE statement to create a stored procedure that “wraps” your program.
When you create the procedure, you define the input and output parameters and call the
program from within the stored procedure. Then, you can call the stored procedure from your
.NET application just as you can call any stored procedure.

This method can be used to call any program, including programs that use output parameters.

4.6.5 Calling a program or CL command using QCMDEXC
Throughout most of this chapter, our examples use only SQL statements. Sometimes you
may want to call a program or CL command on the iSeries using the IBM.Data.DB2.iSeries
provider. You can do this by wrapping the program in a stored procedure call as described in
4.6.4, “Calling a program by wrapping it in a stored procedure” on page 120.

You can also call a program or CL command by using the QCMDEXC API, located in the
QSYS schema. QCMDEXC takes two input parameters:

� A string containing the text of the command or program you want to execute. If the string
contains a single quote character ('), then you must delimit the quote with an extra quote
as we show in Example 4-94 on page 121.

� A (packed) DECIMAL(15, 5) value containing the length of your command text.

You cannot use parameter markers with QCMDEXC, and you cannot receive any output
parameters back from the call. In this section, we include some helpful tips for using
QCMDEXC. You can read more about QCMDEXC in the iSeries Information Center at:

http://www.iseries.ibm.com/infocenter

Select Programming → APIs → API finder. Under Find by name, type QCMDEXC and click
GO.

A general method for invoking QCMDEXC
The QCMDEXC parameters must be in a particular format, so you can use the CallPgm
method shown in Example 4-94 on page 121 to invoke a command or program through
QCMDEXC. It formats the command text and length parameters, then calls QCMDEXC. If the
call completes without an error, CallPgm returns a success value of true. Otherwise, it returns
a failure value of false. Copy the following code into a C# Console application.

120 Integrating DB2 Universal Database for iSeries with Microsoft ADO .NET

http://www.iseries.ibm.com/infocenter

Example 4-94 CallPgm method used to invoke QCMDEXC

// --
// This method runs a command on the iSeries using QCMDEXC.
//
// cmdtext is the command or program you want to call.
// cn is an open iDB2Connection the command will be run on.
// If the command runs without error, this method returns true.
// --
static bool CallPgm(String cmdtext, iDB2Connection cn)
{

bool rc = true;

// Construct a string which contains the call to QCMDEXC.
// Because QCMDEXC uses single quote characters, we must
// delimit single quote characters in the command text
// with an extra single quote.
String pgmParm = "CALL QSYS.QCMDEXC('"

+ cmdtext.Replace("'", "''")
+ "', "
+ cmdtext.Length.ToString("0000000000.00000")
+ ")";

// Create a command to execute the program or command.
iDB2Command cmd = new iDB2Command(pgmParm, cn);

try
{

cmd.ExecuteNonQuery();
}
catch (Exception)
{

rc = false;
}

// Dispose the command since we're done with it.
cmd.Dispose();

// Return the success or failure of the call.
return rc;

}

Example scenarios using QCMDEXC
The following examples show how to call the CallPgm example shown in the previous section.

Calling a program with a string input parameter
For this example, create a CL program on the iSeries called MYCLPGM using the CL source
code shown in Example 4-95. Place the program into your sampledb schema. This program
sends a message to the user ID MYUSERID. (Substitute your own iSeries user ID for
MYUSERID in this example.)

Example 4-95 Creating the MYCLPGM sample program that uses a string input parameter

PGM PARM(&STRING1)
 DCL VAR(&STRING1) TYPE(*CHAR) LEN(50)

 SNDMSG MSG(&STRING1) TOUSR(MYUSERID)
ENDPGM

Chapter 4. IBM DB2 UDB for iSeries .NET provider 121

To call the MYCLPGM program through QCMDEXC, we invoke the CallPgm method we show
in Example 4-94 on page 121. Example 4-96 shows how you can call the program, and pass
in different parameters. In this example, we assume you created your MYCLPGM program
into a schema called MYSCHEMA.

� In the first call, the string parameter does not contain any embedded quote characters.

� In the second call, the string parameter contains an embedded single quote character.
Because QCMDEXC surrounds the command text with a single quote character, we must
delimit the single quote in our command text with an additional single quote as shown.

� In the third call, the string parameter contains an embedded double quote character.
Because C# uses the double quote character to delimit strings, we must prefix the double
quote character with an escape character (‘\’) as shown.

Example 4-96 Calling our sample program through QCMDEXC using our CallPgm method

// Create and open a connection to the iSeries.
iDB2Connection cn = new iDB2Connection("DataSource=myiseries;");
cn.Open();

// Call the MYCLPGM program three times.
// If the call fails, we don't continue.
String cmdtext = "call sampledb/myclpgm parm('this string contains no quote characters')";
bool rc = CallPgm(cmdtext, cn);

if (rc == true)
{

cmdtext = "call sampledb/myclpgm parm('this string contains a single quote
character('')')";

rc = CallPgm(cmdtext, cn);
}

if (rc == true)
{

cmdtext = "call sampledb/myclpgm parm('this string contains a double quote character
(\")')";

rc = CallPgm(cmdtext, cn);
}

if (rc == true)
Console.WriteLine("The calls completed successfully.");

else
Console.WriteLine("One of the calls failed.");

// Close the connection since we're done using it.
cn.Close();

Note: You can also use the SBMJOB CL command to run a program as a batch job.
Extending our previous example, you could use the following to submit the call to
MYCLPGM as a batch job:

rc = CallPgm("sbmjob cmd(call sampledb/myclpgm parm('this string was sent via
SBMJOB'))", cn);

122 Integrating DB2 Universal Database for iSeries with Microsoft ADO .NET

Accessing physical files with multiple members
Developers who are familiar with iSeries DDS programming can use DDS to create a
database file that contains more than one member. SQL restricts you to using only the first
member of a database file. You can access a member other than the first by using one of the
following methods:

� Use an ALIAS to access the desired member.
� Use OVRDBF to override the multiple-member file.

Using an ALIAS is preferred for accessing multiple-member files. An ALIAS performs better
than an override, and because it is a permanent object, it only has to be created once.

To illustrate use of a multiple-member file, assume that you have a file in schema
MYSCHEMA called MYFILE, which contains two members, MEMBER1 and MEMBER2.

Using an ALIAS to access a multi-member file
To use an ALIAS to access a member other than the first member of a file, first create the
alias, and then use that ALIAS instead of the file name. Example 4-97 shows how to create
an alias to the second member of file MYFILE, then use that alias to reference the member.

Example 4-97 Accessing a multi-member file using an ALIAS

iDB2Command cmd = new iDB2Command("create alias myschema.fileMbr2 for
myschema.myfile(member2)", cn);
cmd.ExecuteNonQuery();

// Now access the second member using the alias we just created
cmd.CommandText = "select * from myschema.fileMbr2";
iDB2DataReader dr = cmd.ExecuteReader();

// Etc.

Using OVRDBF to access a multi-member file
You can use the OVRDBF command to temporarily override a multiple-member database file
as shown in Example 4-98. Using the CallPgm example we create in “A general method for
invoking QCMDEXC” on page 120, we override the file so that SQL will reference MEMBER2
instead of the first member in the file. After calling OVRDBF as we show in this example, SQL
statements that reference the file MYSCHEMA.MYFILE use the second member, MEMBER2.

Example 4-98 Using OVRDBF to access the second member of a multi-member file

rc = CallPgm("OVRDBF FILE(MYFILE) TOFILE(MYSCHEMA/MYFILE) MBR(MEMBER2) OVRSCOPE(*JOB)",
cn);

// Now a SELECT * FROM MYSCHEMA.MYFILE will access member MEMBER2
cmd.CommandText = "select * from myschema.myfile";
iDB2DataReader dr = cmd.ExecuteReader();

// Etc.

Processing CL commands that produce an OUTFILE
Many CL commands provide an option to store the command output into an outfile, which is a
database file that can be queried using a SQL select statement, just like any other table. In
Example 4-99 on page 124, we execute a DSPUSRPRF command through QCMDEXC using
the CallPgm method we created in Example 4-94 on page 121. After running this command,
we execute a SELECT statement to select all of the user profiles from the table (outfile) that
was created by DSPUSRPRF. We use a DataReader to read information from the table.

Chapter 4. IBM DB2 UDB for iSeries .NET provider 123

Example 4-99 Processing a CL command that produces an OUTFILE

// Create and open a connection to the iSeries.
iDB2Connection cn = new
iDB2Connection("DataSource=myiseries;DefaultCollection=sampledb;");
cn.Open();

// Call the CallPgm method to execute the DSPUSRPRF command
// and tell it to put the output into an OUTFILE.
bool success = CallPgm("DSPUSRPRF USRPRF(*ALL) OUTPUT(*OUTFILE)
OUTFILE(SAMPLEDB/USRPRFINFO)", cn);

// If the call succeeded, open a DataReader to read a list of
// all the user profiles in the outfile.
if (success == true)
{

iDB2Command cmd = new iDB2Command("SELECT UPUPRF FROM USRPRFINFO", cn);
iDB2DataReader dr = cmd.ExecuteReader();
while (dr.Read())
{

Console.WriteLine("User profile: " + dr.GetString(0));
}

// Close the DataReader since we're done using it.
dr.Close();

// Dispose the command since we no longer need it.
cmd.Dispose();

}

// Close the connection since we're done using it.
cn.Close();

Processing CL commands that produce a spool file
Some CL commands do not produce an OUTFILE like the command in Example 4-99 does.
However, many allow you to spool the output. In this section, we show how to process the
results of a command that produces a spool file. First, we create a program on the iSeries
host that copies a spool file into a database file. Then we show an example that calls the
DSPAUTUSR to generate a spool file, calls the program to copy the spool file into a database
file, and reads from the database file to get the user information.

Follow these steps to process a spool file programmatically:

1. Create a CL program on the iSeries server called SAMPLEDB/SAVESPLF. This program
uses the QSPRILSP API to determine the name and job information of the most recently
created spool file for our job. The program takes a schema, library, and member name as
input and copies the most recent spool file into that file. It then deletes the spool file.

– To create the program, create a source physical file to hold the source code:

CRTSRCPF FILE(SAMPLEDB/SRCPF)

– Add a member to this file:

ADDPFM FILE(SAMPLEDB/SRCPF) MBR(SAVESPLF) SRCTYPE(CLP)

– Edit the file:

STRSEU SRCFILE(SAMPLEDB/SRCPF) SRCMBR(SAVESPLF) TYPE(CLP) OPTION(2)

– Add the code shown in Example 4-100 on page 125 to the file.

124 Integrating DB2 Universal Database for iSeries with Microsoft ADO .NET

Example 4-100 Source code for SAMPLEDB/SAVESPLF program

PGM PARM(&LIB &FILE &MBR)

/* Input parameters */
DCL &LIB *CHAR 10
DCL &FILE *CHAR 10
DCL &MBR *CHAR 10

/* Parameters used when calling the QSPRILSP API */
DCL &RCVVAR *CHAR 70
DCL &RCVLNG *INT 4
DCL &FORMAT *CHAR 8
DCL &ERRCODE *CHAR 8

/* Parameters used when calling CPYSPLF */
DCL &SPLFNAME *CHAR 10
DCL &SPLFNBR *INT 4
DCL &JOBNAME *CHAR 10
DCL &USERNAME *CHAR 10
DCL &JOBNBR *CHAR 6
DCL &CRTDATE *CHAR 8
DCL &CRTTIME *CHAR 6
DCL &JOBSYSNAM *CHAR 8

/* Variables used for the RTVJOBA CL command */
DCL &DATFMT *CHAR 4

/* Work vars */
DCL &UPYEAR *CHAR 2
DCL &LOWYEAR *CHAR 2
DCL &MONTH *CHAR 2
DCL &DAY *CHAR 2
DCL &HOUR *CHAR 2
DCL &MINUTE *CHAR 2
DCL &SECOND *CHAR 2

/* Initialize the input parameters */
CHGVAR &RCVLNG VALUE(70)
CHGVAR &FORMAT VALUE('SPRL0100')
CHGVAR %BIN(&ERRCODE 1 4) VALUE(0)
CHGVAR %BIN(&ERRCODE 5 4) VALUE(0)

/* Retrieve the exact identity of the most recent spool file */
CALL QSPRILSP PARM(&RCVVAR +
 &RCVLNG +
 &FORMAT +
 &ERRCODE)

/* Set up the parameters for cpysplf */
CHGVAR &SPLFNAME VALUE(%SST(&RCVVAR 9 10))
CHGVAR &JOBNAME VALUE(%SST(&RCVVAR 19 10))
CHGVAR &USERNAME VALUE(%SST(&RCVVAR 29 10))
CHGVAR &JOBNBR VALUE(%SST(&RCVVAR 39 6))
CHGVAR &SPLFNBR VALUE(%BIN(&RCVVAR 45 4))
CHGVAR &JOBSYSNAM VALUE(%SST(&RCVVAR 49 8))

/* Convert the date from the QSPRILSP format to temp variables */
IF COND(%SST(&RCVVAR 57 1) *EQ '0') THEN(CHGVAR &UPYEAR VALUE('19'))
ELSE (CHGVAR &UPYEAR VALUE('20'))
CHGVAR &LOWYEAR VALUE(%SST(&RCVVAR 58 2))

Chapter 4. IBM DB2 UDB for iSeries .NET provider 125

CHGVAR &MONTH VALUE(%SST(&RCVVAR 60 2))
CHGVAR &DAY VALUE(%SST(&RCVVAR 62 2))

/* Convert the time from the QSPRILSP format to temp variables */
CHGVAR &HOUR VALUE(%SST(&RCVVAR 64 2))
CHGVAR &MINUTE VALUE(%SST(&RCVVAR 66 2))
CHGVAR &SECOND VALUE(%SST(&RCVVAR 68 2))

/* Get the job date format */
RTVJOBA DATFMT(&DATFMT)

/* Format for all date formats except julian */
SELECT
WHEN (&DATFMT *EQ '*YMD') +
 THEN(CHGVAR &CRTDATE VALUE(&UPYEAR *CAT &LOWYEAR *CAT &MONTH *CAT &DAY))
WHEN (&DATFMT *EQ '*MDY') +
 THEN(CHGVAR &CRTDATE VALUE(&MONTH *CAT &DAY *CAT &UPYEAR *CAT &LOWYEAR))
WHEN (&DATFMT *EQ '*DMY') +
 THEN(CHGVAR &CRTDATE VALUE(&DAY *CAT &MONTH *CAT &UPYEAR *CAT &LOWYEAR))
OTHERWISE
ENDSELECT

CHGVAR &CRTTIME VALUE(%SST(&RCVVAR 65 6))

/* Copy the spooled file to the database file and library passed to us */
CPYSPLF FILE(&SPLFNAME) TOFILE(&LIB/&FILE) JOB(&JOBNBR/&USERNAME/&JOBNAME) +
 SPLNBR(&SPLFNBR) JOBSYSNAME(&JOBSYSNAM) CRTDATE(&CRTDATE &CRTTIME) +
 TOMBR(&MBR) MBROPT(*REPLACE) CTLCHAR(*NONE)

/* Delete the spool file */
DLTSPLF FILE(&SPLFNAME) JOB(&JOBNBR/&USERNAME/&JOBNAME) +
 SPLNBR(&SPLFNBR) JOBSYSNAME(&JOBSYSNAM) CRTDATE(&CRTDATE &CRTTIME)

ENDPGM

– Save your source file, and then compile it:

CRTCLPGM PGM(SAMPLEDB/SAVESPLF) SRCFILE(SAMPLEDB/SRCPF) SRCMBR(SAVESPLF)

2. Now we write some code that can use the SAVESPLF program. In Example 4-101, we
invoke the DSPAUTUSR command through QCMDEXC using the CallPgm method we
created earlier (see Example 4-94 on page 121). The DSPAUTUSR command produces a
spool file called QPAUTUSR. Next, we call the SAVESPLF program we created in step 1
on page 124 to copy the spool file into a database file. Finally, we open a DataReader to
read the user information from the database file.

Example 4-101 Processing a CL command that produces a spool file

// Create and open a connection to the iSeries.
iDB2Connection cn = new
iDB2Connection("DataSource=myiseries;DefaultCollection=sampledb;");
cn.Open();

// Call the CallPgm method to execute the DSPAUTUSR command
// and tell it to spool the output.
bool success = CallPgm("DSPAUTUSR OUTPUT(*PRINT)", cn);

// If the call succeeded, create a temp file and call the
// SAVESPLF program, which will copy the spool file into
// our database file.
if (success == true)

126 Integrating DB2 Universal Database for iSeries with Microsoft ADO .NET

{
// Create the file. We don't care if it already exists.
CallPgm("CRTPF FILE(SAMPLEDB/DSPAUTUSR) RCDLEN(132)", cn);

// Clear the file (in case it already has data in it).
CallPgm("CLRPFM FILE(SAMPLEDB/DSPAUTUSR) MBR(*FIRST)", cn);

// Call the SAVESPLF program.
// This program will copy the spool file we just
// created into the file we specify.
success = CallPgm("CALL SAMPLEDB/SAVESPLF PARM(SAMPLEDB DSPAUTUSR *FIRST)", cn);

}

// If we get to here without any errors, then we should have a
// file in our SAMPLEDB schema called DSPAUTUSR, which contains
// a list of authorized users on the system.
if (success == true)
{

// Open a DataReader to read a list of the authorized
// users on our system.
iDB2Command cmd = new iDB2Command("SELECT * FROM DSPAUTUSR", cn);
iDB2DataReader dr = cmd.ExecuteReader();
while (dr.Read())
{

// To make our example shorter, we'll only
// look at the user profile part of the string,
// which is the first 10 characters.
String userProfile = dr.GetString(0);
Console.WriteLine(userProfile.Substring(0, 10));

}

// Close the DataReader since we're done using it.
dr.Close();

// Dispose the command since we no longer need it.
cmd.Dispose();

}

// Close the connection since we're done using it.
cn.Close();

4.6.6 Choosing between iDB2DataReader and iDB2DataAdapter
In this section we discuss some differences between DataReaders and DataAdapters, and
offer information about when to use which data access method in your application. Some of
these topics are also discussed in Chapter 3, “ADO .NET object hierarchy” on page 17.

Differences between a DataReader and a DataAdapter
In the ADO.NET object model, the DataReader is used to read data from a database. The
DataReader requires an open connection, and it reads a single row at a time, in a
forward-only, read-only manner. The DataReader is similar to the OLE DB notion of a
forward-only, read-only cursor. One advantage of a DataReader is that you work with only a
single row of data at a time. This is especially important when your data set is large.

The DataAdapter, on the other hand, can be used to both read data from and write data to a
database. The data from the database is cached in an ADO.NET object called a DataSet.
While a DataReader requires an open connection to the database, the DataAdapter only

Chapter 4. IBM DB2 UDB for iSeries .NET provider 127

needs to keep the connection open while it is actively reading or writing to the database.
Because the DataAdapter keeps a cache of all your data in the DataSet object, you can
access all the rows of your data at the same time.

Many of the examples in the MSDN library (http://msdn.microsoft.com/library/) use
DataAdapters because they are often the easiest way to read and write data. However, there
are times when a DataReader is a better choice. When deciding between a DataReader and
a DataAdapter, you must consider several variables, including the size and type of your data,
and how you plan to use it.

When to use a DataReader
While a DataAdapter is often the easiest way to read and write data to and from your iSeries
server, here are some cases when a DataReader might be a better fit for your application:

� If you are working with a large amount of data, such as a table containing a large number
of records. Because the DataAdapter keeps a copy of your entire data set in memory, a
selection from a very large table could cause too much memory to be consumed by your
.NET application to make it feasible to work with. Using a DataReader enables you to
process a single row at a time, thus your application does not consume as much memory.

� If you are working with a table that contains large objects (LOBs). LOBs are normally used
to hold large amounts of data. If you try to use a DataAdapter with a table containing
LOBs, all of the data in the table is read into the DataSet at once, and thus into your
application’s memory. This is true whether or not you read the LOB data using inline LOBs
or LOB locators (see “MaximumInlineLobSize” on page 58). As we mention in the previous
item, using a DataReader enables you to process a single row at a time and gives you
control over whether or when the LOB data is actually read by your application.

For more information about using LOBs with the IBM.Data.DB2.iSeries provider, see
4.7.2, “Using large objects (LOBs)” on page 132.

� If your data contains characters data tagged with CCSID 65535, but you want to read and
write that data as strings. By default, character data tagged with CCSID 65535 is treated
by the DataAdapter as binary data (an array of bytes). If you want to treat this type of data
as a string, you must either use a DataReader, or take special action to use it with a
DataAdapter. See “Reading non-binary data tagged with CCSID 65535” on page 91 for
more information.

� If your data contains TIMESTAMP data, and you need the ability to read or write the full
microsecond precision, you must either use a DataReader or take special action to cast
the TIMESTAMP to a character string. (See “iDB2TimeStamp” on page 95.)

�)If your data contains time or timestamp values that contain the special value of 24:00:00
for midnight. (See “TIME and TIMESTAMP special values” on page 96.)

� If your data contains decimal or numeric values that have a precision larger than the .NET
Framework Decimal data type supports. (See “iDB2Decimal and iDB2Numeric” on
page 97.)

� If you know that you do not need to read the entire query result at once. This could happen
if you want to look through the query result and stop when you reach a certain record.

� If you know that you do not need to update the data. Because a DataReader is
forward-only, read-only, it can improve your application’s performance.

Note: LOB support was added to the IBM.Data.DB2.iSeries provider in V5R3M0
service pack SI15176.

128 Integrating DB2 Universal Database for iSeries with Microsoft ADO .NET

http://msdn.microsoft.com/library/

When to use a DataAdapter
As we discuss earlier, the DataAdapter is often the easiest way to move data back and forth
between your application and the iSeries database. The following list includes some cases
where a DataAdapter might be a better choice for your application than a DataReader:

� When your application may update the data. When used with a CommandBuilder, the
DataAdapter makes updates relatively easy and painless. For more information about
updating DataSets, see 4.7.3, “Updating DataSets” on page 136.

� When your application works with a relatively small amount of data, and the data does not
contain certain data types. (See the previous section, “When to use a DataReader” on
page 128.)

� When your application plans to use all of the data at once. Because the DataAdapter
keeps a cache of your data in a DataSet, you can access all of the data easily. The
DataReader, on the other hand, can only access data in a forward-only, read-only manner.

4.7 Advanced topics
This section covers some more-advanced topics affecting the IBM.Data.DB2.iSeries .NET
provider.

4.7.1 Internationalization and support for multiple languages
In this section we discuss some of the features of the IBM.Data.DB2.iSeries provider that
enable your applications to work regardless of your language or culture settings.

Support for multiple languages
The IBM.Data.DB2.iSeries provider is part of the iSeries Access for Windows product, which
includes support for many different languages. In fact, you can install support for more than
one language at a time. Read about this in the iSeries Access for Windows User’s Guide. To
display the User’s Guide from the Windows desktop, select Start → Programs → IBM
iSeries Access for Windows → User’s Guide. In the User’s Guide, click the Contents tab
and expand Using iSeries Access for Windows → Languages → Installing secondary
languages. For example, secondary language support can be useful if you have a Web page
that supports more than one language.

At runtime, whenever the IBM.Data.DB2.iSeries provider displays any translatable text, the
text displays in the language specified by your application’s Thread.CurrentUICulture setting,
as long as you have installed the appropriate primary or secondary language. If the language
is not installed, the text displays in a default language. An example of translatable text used by
the provider is the Message property of an iDB2Exception object. The cwbmptrc provider
trace utility also displays its help text using the CurrentUICulture setting (usually the default
language setting for your PC). Example 4-102 shows a simple example that illustrates how
this works. First, using the default culture setting, we force an exception to occur and display
the exception Message property. The message is displayed in the default language. Next, we
set the CurrentUICulture to a different language, and again force the exception to occur. This
time, when we display the exception Message property, the message is displayed in the
secondary language. Before running this example, you should install both a primary and a
secondary language using iSeries Access for Windows. Change the code in the example to
use the secondary language that you install.

Example 4-102 Using the CurrentUICulture to change your language setting

// Create a connection object.
iDB2Connection cn = new iDB2Connection();

Chapter 4. IBM DB2 UDB for iSeries .NET provider 129

// Using the default culture, initialize the
// ConnectionString to an invalid value.
// We expect this to fail.
try
{

cn.ConnectionString = "Oops, invalid connection string!";
}
catch (iDB2Exception e)
{

Console.WriteLine("Exception: " + e.Message);
}

// Now, change the culture to "fr-FR".
CultureInfo currCulturex = new CultureInfo("fr-FR");
Thread.CurrentThread.CurrentUICulture = currCulturex;

// Initialize the ConnectionString to an invalid value again.
// This time, the exception message shows up in the
// new language.
try
{

cn.ConnectionString = "Oops, invalid connection string!";
}
catch (iDB2Exception e)
{

Console.WriteLine("Exception: " + e.Message);
}

Other culture-specific settings
Some cultures expect to work with dates, times, numbers, strings comparisons, and other
items differently from the way other cultures use them. The .NET Framework uses the
thread’s CurrentCulture property to handle these culture-specific settings. The
IBM.Data.DB2.iSeries provider uses the CurrentCulture setting when parsing decimal,
numeric, date, time, and timestamp data. The CurrentCulture setting also affects the format of
string data. To illustrate one of these differences, we compare the number format between
en-US (United States English) and de-DE (Germany German). Example 4-103 displays a
decimal value using two different cultures, to show how the data is returned using the current
culture’s default decimal separator character. Our example uses both Decimal and
iDB2Decimal to show that the provider handles the different cultures seamlessly.

Example 4-103 Using the CurrentCulture to change how decimal data is displayed

// In this example, we display the value represented by:
// 392<decimal separator>02
//
// With "en-US", this number displays as:
// 392.02
// because the period is the decimal separator.
//
// With "de-DE", this number displays as:
// 392,02
// because the comma is the decimal separator.

Note: If you run this example and you do not have the secondary language installed, both
of the exceptions display the Message property in the default language. Also, not all
exceptions use translated text. For example, for the iDB2SQLErrorException, the Message
property is text received from the iSeries server.

130 Integrating DB2 Universal Database for iSeries with Microsoft ADO .NET

// Construct a decimal and an iDB2Decimal
Decimal d = new Decimal(39202, 0, 0, false, 2);
iDB2Decimal idb2dec = new iDB2Decimal(d);

// Set the culture to "en-US" and display the
// decimal values.
CultureInfo currCulturex = new CultureInfo("en-US");
Thread.CurrentThread.CurrentCulture = currCulturex;
Console.WriteLine("en-US setting (Decimal): " + d.ToString());
Console.WriteLine("en-US setting (iDB2Decimal): " + idb2dec.ToString());

// Set the culture to "de-DE" and display the
// decimal values.
currCulturex = new CultureInfo("de-DE");
Thread.CurrentThread.CurrentCulture = currCulturex;
Console.WriteLine("de-DE setting (Decimal): " + d.ToString());
Console.WriteLine("de-DE setting (iDB2Decimal): " + idb2dec.ToString());

The CurrentCulture setting affects both how you write data (in this instance, the ToString()
method) and how data is read by the provider. For example, if your CurrentCulture setting is
en-US and you initialize an iDB2Decimal object with the string 111.111, the provider treats
this value as “one hundred eleven<decimal separator>one one one.” By comparison, if you
initialize an iDB2Decimal object with the same string, and your CurrentCulture setting is
de-DE, then the provider treats this value as “one hundred eleven thousand, one hundred and
eleven,” with no decimal separator. Run the code in Example 4-104 to see how the two values
are treated differently.

Example 4-104 Using the CurrentCulture to change how decimal data is handled by the provider

// Set the culture to "en-US" and construct a
// Decimal and an iDB2Decimal value.
CultureInfo currCulturex = new CultureInfo("en-US");
Thread.CurrentThread.CurrentCulture = currCulturex;
iDB2Decimal idb2decimalUS = new iDB2Decimal("111.111");
Console.WriteLine(idb2decimalUS.Value.ToString());

// Set the culture to "de-DE" and display the
// decimal values.
currCulturex = new CultureInfo("de-DE");
Thread.CurrentThread.CurrentCulture = currCulturex;
iDB2Decimal idb2decimalDE = new iDB2Decimal("111.111");
Console.WriteLine(idb2decimalDE.Value.ToString());

// Compare the two values and make sure they
// do not compare equal.
if (idb2decimalUS.CompareTo(idb2decimalDE) == 0)

Console.WriteLine("The two values are equal. This should not happen.");
else

Console.WriteLine("The two values are not equal. This is what we expect.");

Note: In “iDB2Decimal and iDB2Numeric” on page 97 and Example 4-81 on page 99, we
discuss casting a decimal or numeric value to a string. When casting the decimal/numeric
as in those examples, the decimal separator—decimal point (.) or comma (,)—is always
returned as a period (.), regardless of your thread’s CurrentCulture setting.

Chapter 4. IBM DB2 UDB for iSeries .NET provider 131

Sort sequence
The IBM.Data.DB2.iSeries provider enables you to change the sort sequence used by the
DB2 UDB for iSeries server job that processes requests on behalf of your application. This is
done using by setting the SortSequence and related properties in your iDB2Connection
object’s ConnectionString. See “SortSequence” on page 56 for more about setting the sort
sequence.

4.7.2 Using large objects (LOBs)
Support for large objects (LOBs) was added to the IBM.Data.DB2.iSeries provider with
iSeries Access for Windows V5R3M0, service pack SI15176. There are three types of LOBs
supported by DB2 UDB for iSeries:

� Binary large objects (BLOBs)
� Character large objects (CLOBs)
� Double-byte character large objects (DBCLOBs)

The IBM.Data.DB2.iSeries provider lets you work with these LOBs using the provider-specific
data types iDB2Blob, iDB2Clob, and iDB2DbClob, or using the built-in .NET Framework data
types. (See Table 4-5 on page 88 for information about the default mappings between LOB
data types and .NET Framework data types.) The provider also includes a ConnectionString
property called MaximumInlineLobSize, which enables you to control how LOB data is
transferred between your iSeries server and your application. See “MaximumInlineLobSize”
on page 58 for more information.

Keep a few things in mind when working with LOBs: By their very nature, LOBs are normally
associated with large amounts of data, so we recommend not using a DataAdapter when your
result data contains LOB fields. Because the DataAdapter reads all of your query result data
into memory at once, your available PC memory can be used up quickly when the result data
contains LOBs.

Instead, use a different method to read your LOB data. Using a DataReader gives you greater
control over whether or when your LOB data is read. Alternatively, use ExecuteScalar to read
a single LOB value from your table.

A LOB example
As a starting point for our LOB example, we use the running application that we created in
4.6.2, “A simple DataAdapter with CommandBuilder example” on page 110. That example
reads data from the EMPLOYEE table in our SAMPLEDB schema. We expand the example
now to add a PictureBox element to the window, and use that PictureBox to display a picture
of the selected employee. The employee picture is a BLOB field contained in the
EMP_PHOTO table in the SAMPLEDB schema.

Starting from the DataAdapter example, add a PictureBox to the window. Begin by making the
window larger by pulling the window to the right, then drag a PictureBox from the Toolbox to
this expanded area of your window. Your window should look similar to Figure 4-28 on
page 133, with the PictureBox on the right.

132 Integrating DB2 Universal Database for iSeries with Microsoft ADO .NET

Figure 4-28 Add a PictureBox to your window

Double-click the window to display the Form1_Load method. Add this code to Form1_Load to
register an event handler to handle the CurrentCellChanged event of the DataGrid:

dataGrid1.CurrentCellChanged += new EventHandler(OnCurrentCellChanged);

Scroll up nearly to the top of your source file, where variables are defined. Add the following
code, which declares and initializes a variable called currentRow. This variable is used to
keep track of which row in the DataGrid is selected:

private int currentRow = -1;

Scroll to the bottom of the source file and add the new OnCurrentCellChanged method after
the Form1_Load method (Example 4-105). When you run your program, this method gets
control each time you click a different cell in the DataGrid. OnCurrentCellChanged
determines whether you have moved the focus to a new row within the DataGrid. If so, then it
reads the EMPNO field from the DataGrid and uses that EMPNO field to select a single BLOB
field from the EMP_PHOTO table using ExecuteScalar. If the EMP_PHOTO has a picture of
the selected employee, that picture is displayed in the PictureBox.

Example 4-105 Add the OnCurrentCellChanged method to read the LOB field

protected void OnCurrentCellChanged(object sender, System.EventArgs e)
{

// Find out which cell is now active
int newRow = dataGrid1.CurrentCell.RowNumber;

// If a new row has been activated, then update currentRow
// and read the employee picture from EMP_PHOTO, if a picture exists.
if (newRow != currentRow)
{

currentRow = newRow;

if (dataGrid1[currentRow, 0] != System.DBNull.Value)
{

// Get the employee number (EMPNO) from the DataGrid.
// The EMPNO is in column 0 of the DataGrid.
String employeeNumber = (String)dataGrid1[currentRow, 0];

// Create a command to read a record from the EMP_PHOTO table.
iDB2Connection1.Open();
iDB2Command cmd = iDB2Connection1.CreateCommand();

Chapter 4. IBM DB2 UDB for iSeries .NET provider 133

cmd.CommandText = "select picture from emp_photo where empno=@empno and
photo_format='bitmap'";

// Derive the parameter information
cmd.DeriveParameters();

// Select the record for the employee
cmd.Parameters["@empno"].Value = employeeNumber;

// Execute the command, and read the result into a byte array.
Byte[] b = (Byte[])cmd.ExecuteScalar();
iDB2Connection1.Close();

if (b == null)
{

// If the byte array is empty, display an
// empty picture box.
pictureBox1.Height = 0;
pictureBox1.Width = 0;
pictureBox1.Show();

}
else
{

// If the byte array is not empty, put the byte array
// into a memory image, and then use that to create an
// Image. Then, display the image in our picture box.
System.IO.MemoryStream ms = new System.IO.MemoryStream(b);
System.Drawing.Image i = System.Drawing.Image.FromStream(ms);
pictureBox1.Height = i.Height;
pictureBox1.Width = i.Width;
pictureBox1.Image = i;
pictureBox1.Show();

}
}

}
}

After making these changes to your test case, save the application (File → Save All) and run
it. Just as before, the contents of the EMPLOYEE table are displayed. This time, as you click
on a grid element that has an employee with a record in the EMP_PHOTO table, that
employee’s picture is displayed in the PictureBox on the right side of your window.

Figure 4-29 on page 135 shows an example of the window with an employee photo displayed.

Note: You may need to experiment with your window size and format to ensure that the
employee picture is displayed without clipping. Most of the employees in the EMPLOYEE
table do not have a picture in the EMP_PHOTO table, so you may need to scroll through
several rows before you see a picture displayed.

134 Integrating DB2 Universal Database for iSeries with Microsoft ADO .NET

Figure 4-29 LOB example showing an employee photo next to the DataGrid

Other LOB techniques
Another LOB technique that helps reduce an application’s resources uses a DataReader
combined with the GetBytes or GetChars method to read the LOB data in smaller pieces. The
code in Example 4-106 shows how to read the RESUME field from the EMP_RESUME table
using GetChars. This example uses a Console application for simplicity. The EMP_RESUME
table is in the SAMPLEDB schema (described in 1.4, “DB2 UDB for iSeries sample schema”
on page 8). As the data is read in pieces, it is placed into an HTML file. After running
Example 4-106, you should see a file called resume.html in the program’s output directory.
Double-click this file to see the employee’s résumé information formatted using HTML.

Example 4-106 Using GetChars to read CLOB data in pieces

// Create and open a connection to the iSeries.
// To conserve memory, we set the MaximumInlineLobSize to zero
// so the provider will use LOB Locators to read the data.
String connectionString = "DataSource=myiseries; DefaultCollection=sampledb;
MaximumInlineLobSize=0;";
iDB2Connection cn = new iDB2Connection(connectionString);
cn.Open();

// Create a command which selects a record from the EMP_RESUME table.
iDB2Command cmdResume = cn.CreateCommand();
cmdResume.CommandText = "select resume from emp_resume where empno='000130' and
resume_format='html'";

// Open a DataReader to read the EMP_RESUME into a file called resume.html
iDB2DataReader drResume = cmdResume.ExecuteReader();
if (drResume.Read())
{

if (drResume.IsDBNull(0) == false)
{

StreamWriter writer = new StreamWriter("resume.html", false);
char[] chars = new char[100];
long fieldOffset = 0;
long charsRead = 0;

while ((charsRead = drResume.GetChars(0, fieldOffset, chars, 0, chars.Length)) != 0)
{

writer.Write(chars);
fieldOffset += charsRead;

Chapter 4. IBM DB2 UDB for iSeries .NET provider 135

}
writer.Close();

}
}
drResume.Close();

// Dispose the command since we no longer need it.
cmdResume.Dispose();

// Close the connection.
cn.Close();

Another way to limit the amount of LOB data an application uses is to limit the number of rows
in your SELECT statement, so you only retrieve a small number of rows from the host. In the
previous example, we limit the rows in our select statement using a WHERE clause to make
sure we only get one row back.

4.7.3 Updating DataSets
In 4.6.2, “A simple DataAdapter with CommandBuilder example” on page 110, we show how
to quickly and easily generate a DataGrid that contains data read from the EMPLOYEE table
in the SAMPLEDB schema. In this section, we go a little further and show how to update data
in the EMPLOYEE table. Before continuing this section, follow the steps in 4.6.2, “A simple
DataAdapter with CommandBuilder example” on page 110 to create the basic application.

Writing code to update the DataSet
When you have the basic application working, go back to your window’s form design and
follow these steps:

1. Make sure the Toolbox is displayed with the Windows Forms item expanded.

2. Click in your window (not on the DataGrid part of the window) to make it active.

3. Grab the bottom of the window and drag it down to enlarge it enough to hold two buttons.

4. From the Toolbox, drag a button to the bottom of your window. Right-click the button and
select Properties. Change the Text from button1 to Read data. Change the (Name) from
button1 to ReadButton. Press Enter.

5. From the Toolbox, drag another button to the bottom of your window. Right-click the button
and select Properties. Change the Text from button1 to Update data. Change the (Name)
from button1 to UpdateButton. Press Enter.

Your window should look similar to Figure 4-30 on page 137.

Note: Normally, you should not read data in only 100-character or 100-byte pieces,
because if you have large amounts of data to read, this can have a negative impact on your
network performance. This example reads the data in 100-character pieces just to illustrate
how you can read LOB data in chunks.

Note: If you already went through the LOB example shown in “A LOB example” on
page 132, you can use that application as a starting point instead.

136 Integrating DB2 Universal Database for iSeries with Microsoft ADO .NET

Figure 4-30 Add buttons to your window

To add code behind the buttons, double-click the Read data button. Visual Studio .NET
creates a method called ReadButton_Click. Add the code in Figure 4-107 to this method.

Example 4-107 Add code to the ReadButton_Click method

dataSet1.Clear();
iDB2DataAdapter1.Fill(dataSet1);

Next, double-click the Update data button. Visual Studio .NET creates a method called
UpdateButton_Click. Add the code shown in Figure 4-108 to the UpdateButton_Click method.

Example 4-108 Add code to the UpdateButton_Click method

iDB2Connection1.Open();
iDB2DataAdapter1.Update(dataSet1);
iDB2Connection1.Close();

Updating the DataSet requires an open connection to the iSeries, which explains adding the
call to Open the connection in our UpdateButton_Click method. Because the window may
stay up for a long time, we do not want the connection to stay active unless we are actively
updating data, so we add the call to Close the connection after the update is performed.

Save your application (File → Save All). It is ready to run.

Running the updatable DataSet example
When you are ready, run the sample application. As in previous examples, a window is
displayed that shows the data read from the EMPLOYEE table.

� To insert a new row, scroll to the bottom of the window to where the asterisk (*) is
displayed. Position the cursor in the EMPNO column of the row containing the *. Fill in the
information for a new row of data and press Enter to add the new row to the DataSet. The
data is not sent to the iSeries host until the Update button is clicked. You can see this if you
insert a new row but then click the Read data button before the Update data button.
Because you reread the data before updating the iSeries table with the new data, the data
you added to the DataSet is lost.

Chapter 4. IBM DB2 UDB for iSeries .NET provider 137

� To update an existing row, place the cursor on the data you want to modify and change it.
The data is updated in the DataSet, but the updated data is not sent to the iSeries host
until the Update button is clicked.

� To delete an existing row, click in the gray area to the left of the row you want to delete and
click the Delete key. The row is deleted from the DataSet, but the data is not deleted from
the iSeries host until the Update button is clicked.

You can continue adding, updating, and deleting data using the DataTable. When you are
through making changes, click the Update data button. This sends all of the inserts, updates,
and deletes to the iSeries host, and the EMPLOYEE table is updated to reflect the modified
DataTable.

Updating a DataSet with optimistic concurrency
In our updatable DataSet example, we use a CommandBuilder to generate the Insert,
Update, and Delete commands that are used when our DataAdapter’s Update() method is
called. The CommandBuilder generates these commands using an update model called
optimistic concurrency. You can read more about concurrency at the MSDN Library Web site:

http://msdn.microsoft.com/library/

Select .NET Development → .NET Framework SDK → .NET Framework → Programming
with the .NET Framework → Accessing Data with ADO.NET → Sample ADO.NET
Scenarios → Optimistic Concurrency.

With optimistic concurrency, the provider is “optimistic” that “concurrent” changes to the
database do not occur while the application is using the table. In simple terms, this means
that the provider assumes that nobody else is using the table at the same time as the
application. In a multi-user environment, two or more users or applications may want to
update the same table. Optimistic concurrency provides a way to ensure that data updates
are not made unless the row on the iSeries is the same as when it was read by the
application. The provider does not lock any rows of data; rather, when an update is made, the
provider checks the current data in the row against the data originally read from the row. If the
data is the same, the provider assumes that it is safe to update the row. If the data is not the
same, it means that another user or application modified the data after we read it but before
we had a chance to update it, and a concurrency violation results.

Example of concurrency violation
As an example, run the updatable DataSet sample that we create earlier in this section, and
while the application is still running, run another version of the same program. For the sake of
our discussion, we call these programs APP1 and APP2 (even though they are two copies of
the same application). Both APP1 and APP2 show the data from the EMPLOYEE table. Next,
on the APP1 window, modify one of the existing rows as we just showed in “Running the
updatable DataSet example.” Click Update data to send the updated row to the iSeries host.
Go to the APP2 window, which still shows the original value that was read when you started
the program, not the update that was just made in APP1. In the APP2 window, scroll to the
row that you just updated from APP1, make an update to the row, and click Update data. A
concurrency violation results in the application receiving a DBConcurrencyException. The
update attempted by APP2 failed because the data in the row it tried to update was changed
(by APP1) after APP2 read the data.

Note: The EMPLOYEE table requires the EMPNO to have a unique value for each
employee, so use a value here that is not already in the table, such as 300010.
Also, the WORKDEPT column must contain a department that exists in the
DEPARTMENT table, so use a department that already exists, such as A00.

138 Integrating DB2 Universal Database for iSeries with Microsoft ADO .NET

http://msdn.microsoft.com/library/

Using the RowUpdatedEvent to catch concurrency violations
A robust application has to handle these concurrency violations. The MSDN library Web site
section entitled Optimistic Concurrency, which we referenced earlier in this section, shows
how to use the RowUpdatedEvent to test for and handle concurrency violations. Our next
example shows how to use the RowUpdatedEvent to handle the concurrency violation and
continue, instead of terminating your application.

Starting with the updatable DataSet example that we used in “Writing code to update the
DataSet” on page 136, add the following code to the bottom of your Form1_Load method:

iDB2DataAdapter1.RowUpdated += new iDB2RowUpdatedEventHandler(OnRowUpdated);

Next, add the new method shown in Figure 4-109 to your program.

Example 4-109 OnRowUpdated event handler

protected static void OnRowUpdated(object sender, iDB2RowUpdatedEventArgs args)
{

if (args.RecordsAffected == 0)
{

args.Row.RowError = "Optimistic Concurrency Violation. Update not performed.";
args.Status = UpdateStatus.SkipCurrentRow;

}
}

The OnRowUpdated event handler runs whenever a row is updated. If it detects a
concurrency violation (indicated by the RecordsAffected returning as 0), it sets the row’s
status to indicate an error.

After you add code to handle the concurrency violation, save your program (File → SaveAll)
and run two versions of it, as in “Example of concurrency violation” on page 138. This time,
because we handle the concurrency violation, instead of seeing an error pop up when you
update APP2, you instead see a red exclamation point (!), indicating an error. The
application continues. Place the mouse pointer over the exclamation point to see the error we
set in the OnRowUpdated event handler routine:

Optimistic Concurrency Violation encountered. Update not performed.

4.7.4 Using iDB2CommandBuilder
In 4.7.3, “Updating DataSets” on page 136, we show how to update a DataSet using a
CommandBuilder and a DataAdapter. The purpose of the CommandBuilder is to generate the
Insert, Update, and Delete statements that are used by the DataAdapter. Using a
CommandBuilder can prevent having to write a lot of code, so we encourage its use
whenever possible. To use a CommandBuilder with IBM.Data.DB2.iSeries, follow these rules:

1. The CommandBuilder only works with SELECT statements; it cannot build statements
when your SelectCommand is a stored procedure call.

2. The CommandBuilder works best with simple SELECT statements. This is especially true
when working with older iSeries hosts. Use the following guidelines for your SELECT
statements:

– Simple statements produce the best results; for example:

SELECT * FROM SAMPLEDB.EMPLOYEE

– Fully qualify the table name with its schema; for example:

SAMPLEDB.EMPLOYEE

Chapter 4. IBM DB2 UDB for iSeries .NET provider 139

– Selection fields are allowed, but must be specified in simple format. Only columns
specified in the query table should be used; for example:

SELECT EMPNO, FIRSTNME, LASTNAME FROM SAMPLEDB.EMPLOYEE

– Derived fields or constants in the selection criteria are discouraged because they may
produce unpredictable results or an exception; for example:

SELECT EMPNO, LASTNAME, LENGTH(LASTNAME) FROM SAMPLEDB.EMPLOYEE

3. All of the columns that are returned by your SELECT statement must be from the same
base table and base schema. The following statement would cause the CommandBuilder
to fail because the columns are from two different tables:

SELECT EMPNO, DEPTNO FROM SAMPLEDB.EMPLOYEE, SAMPLEDB.DEPARTMENT

4. In order for the CommandBuilder to generate Update and Delete commands, the columns
that are returned by the SELECT statement must include a unique or primary key. In 4.7.3,
“Updating DataSets” on page 136, our example used the EMPLOYEE table, whose
EMPNO field constitutes a primary key. If you run that same example using the IN_TRAY
table instead of the EMPLOYEE table, your attempts to update or delete a row would fail
because the IN_TRAY table does not have a primary or unique key.

5. If the unique or primary key spans multiple columns, your SELECT statement must include
all of the key columns, either using SELECT * or by naming each key column in the
SELECT statement. If the example in 4.7.3, “Updating DataSets” on page 136 is changed
to use the following SELECT statement, attempts to update or delete a row would fail
because you did not include the ACSTDATE field in your SELECT statement (the key
comprises the PROJNO, ACTNO, and ACSTDATE fields):

SELECT PROJNO, ACTNO FROM SAMPLEDB.PROJACT

If you cannot use the CommandBuilder for one of these reasons, you must build your own
Insert, Update, and Delete statements.

Nullable columns: performance considerations
When the CommandBuilder generates Update and Delete statements, it uses optimistic
concurrency to make the updates. (See “Updating a DataSet with optimistic concurrency” on
page 138.) With optimistic concurrency, the original values of each column in the table to be
updated are checked against the current value in each column. When you use nullable
columns, an extra check must be made for each nullable column because the SQL standard
requires a check for IS NULL before checking the column for a non-null value. This makes the
Update or Delete statement more complex.

When you insert a row using the InsertCommand generated by the CommandBuilder, you
must make sure not to send any null data to a column that is not nullable and has no default
value. For example, if you run our updatable DataSet example (see “Updating a DataSet with
optimistic concurrency” on page 138), and try to insert a new row but leave the FIRSTNME
column null, you get an SQL exception when you click Update. The SQL exception says that
null values are not allowed in the column.

Make sure the most recent fixes have been applied
If you run into problems using the CommandBuilder and they are not related to the previously
discussed items, be sure that you are running with the most recent iSeries Access for

Note: Primary keys are recommended over unique keys because they do not allow
nullable key values, so you cannot end up with multiple rows in your table with duplicate
null key fields.

140 Integrating DB2 Universal Database for iSeries with Microsoft ADO .NET

Windows service pack. See 4.3.1, “PC setup” on page 39 for information about applying fixes
to iSeries Access for Windows. Also, make sure that the most recent fixes have been applied
to your iSeries host. See 4.3.2, “Host setup” on page 40 for information about host fixes.

4.7.5 Using DataLinks
The DATALINK data type is not supported by the IBM.Data.DB2.iSeries provider as of this
writing. However, you can use this type if you cast the datalink to a supported type (for
example, a character string). In this section we include some examples of how you can use a
table that contains a datalink field.

Selecting a DATALINK from a table
To read data from a table containing a DATALINK, use a DataReader with GetString to read
the value. You must cast the DATALINK to a character string using one of the DATALINK
functions, such as DLURLCOMPLETE, as shown in Example 4-110. For this example, we
select the DL_PICTURE field from the EMP_PHOTO table in our SAMPLEDB schema. See
1.4, “DB2 UDB for iSeries sample schema” on page 8 to set up the SAMPLEDB schema.

Example 4-110 Selecting a DATALINK field from a table using DLURLCOMPLETE

// Create and open a connection to the iSeries.
iDB2Connection cn = new
iDB2Connection("DataSource=myiseries;DefaultCollection=sampledb;");
cn.Open();

// Create a command which selects the DATALINK field
// from the EMP_PHOTO table.
iDB2Command cmd = new iDB2Command("SELECT DLURLCOMPLETE(DL_PICTURE) FROM EMP_PHOTO", cn);

// Execute the command and get a DataReader in return.
iDB2DataReader dr = cmd.ExecuteReader();

// Read the Datalink field into a String.
while (dr.Read())
{

if (dr.IsDBNull(0) == false)
Console.WriteLine(dr.GetString(0));

}

// Close the DataReader since we're done with it.
dr.Close();

// Dispose the command since we're done with it.
cmd.Dispose();

// Close the connection once more.
cn.Close();

Inserting, updating, or deleting a DATALINK field in a table
To insert, update, or delete a datalink field, you must use the DLVALUE function to turn a
character string into a DATALINK, as shown in Example 4-111 on page 142. In this example,

Note: You can also use a DataAdapter with a DATALINK if you cast the DATALINK to a
character string in your Select statement as shown in Example 4-110. When using a
DATALINK with a DataAdapter, you cannot use the CommandBuilder. Instead, you must
build your own Insert, Update, and Delete statements.

Chapter 4. IBM DB2 UDB for iSeries .NET provider 141

we insert a row into the EMP_PHOTO table we used in our previous example. We use
DLVALUE to cast the character string into a DATALINK value.

Example 4-111 Inserting a DATALINK field into a table using DLVALUE

// Create and open a connection to the iSeries.
iDB2Connection cn = new
iDB2Connection("DataSource=myiseries;DefaultCollection=sampledb;");
cn.Open();

// Create a command which inserts a row into the EMP_PHOTO table.
// The DATALINK field is inserted using the DLVALUE function.
iDB2Command cmd = new iDB2Command("INSERT INTO EMP_PHOTO VALUES('000010', 'bitmap', NULL,
'',
DLVALUE('HTTP://LP126AB.RCHLAND.IBM.COM/QIBM/ProdData/OS400/SQL/Samples/db200190.bmp'))",
cn);

// Execute the command.
cmd.ExecuteNonQuery();

// Dispose the command since we're done with it.
cmd.Dispose();

// Close the connection once more.
cn.Close();

Updating a DATALINK field using a parameter marker
If you want to use a variable value with a DATALINK, you can cast the parameter marker to a
character string that is the same length as the DATALINK field, then use the DLVALUE
function to change the character string to a DATALINK, as shown in Example 4-112.

Example 4-112 Updating a DATALINK using a parameter marker

// Create and open a connection to the iSeries.
iDB2Connection cn = new
iDB2Connection("DataSource=myiseries;DefaultCollection=sampledb;");
cn.Open();

// Create a command which updates the DATALINK field
// in the EMP_PHOTO table.
iDB2Command cmd = new iDB2Command("UPDATE EMP_PHOTO SET DL_PICTURE =
DLVALUE(CAST(@dl_picture AS CHAR(1000))) WHERE EMPNO='000010'", cn);

// Derive the parameter information.
cmd.DeriveParameters();

// Set the parameter value to a new datalink value.
cmd.Parameters[0].Value =
"HTTP://LP126AB.RCHLAND.IBM.COM/QIBM/ProdData/OS400/SQL/Samples/db200130.bmp";

// Execute the command.
cmd.ExecuteNonQuery();

// Dispose the command since we're done with it.
cmd.Dispose();

// Close the connection once more.
cn.Close();

142 Integrating DB2 Universal Database for iSeries with Microsoft ADO .NET

After completing these two latest examples, you may want to delete the row we just inserted
and updated in the EMP_PHOTO table. Use the following command to delete the row:

DELETE FROM SAMPLEDB.EMP_PHOTO WHERE EMPNO='000010'

4.7.6 Connection pooling
Connection pooling is supported by many data providers. It enables similar connection
objects to be pooled to reduce startup time, which is especially important with applications
that open and close connections repeatedly, such as Web server applications. Because
starting a connection to the server where your database resides (in our case, the iSeries
server) can be a time-consuming process, the IBM.Data.DB2.iSeries .NET provider pools
connections by default. Here is an example.

You have an application that resides on a Web server. Your application could get called by
many different clients through their Web browsers. Further, your application reads data from a
table on your iSeries and returns that data to the client. This scenario is shown in Figure 4-31.

Figure 4-31 Web client/server scenario where connection pooling can help performance

If many clients want to use your data (from the iSeries), be sure that each client’s connection
to the iSeries is as short as possible. Your application should connect only to the iSeries long
enough to send or receive the data it needs; that way, other clients will not get stuck waiting
for an available connection. Because connection pooling makes starting and stopping a
connection faster, there is no performance penalty each time you start or stop a connection.

Connection pooling is enabled by default (the iDB2Connection object’s Pooling property turns
pooling on or off; see “Connection pooling” on page 54 and the related ConnectionString
properties that follow that section). The provider keeps track of pooled connections by
keeping all connections with an identical ConnectionString in the same pool. In
Example 4-113 on page 144, we create four connections. The connections whose
ConnectionStrings are identical are in the same connection pool (c1a and c1b are in one
pool, and c2a and c2b are in a different pool). Note that even though connectionString1 and
connectionString2 are logically the same, they are not identical because connectionString2
has a blank space before the word DefaultCollection. Because the two strings are not
identical, they cause the connections to go into a different connection pool.

Note: In this example, our Update statement casts the @dl_picture parameter as a
CHAR(1000) because the DL_PICTURE field is a DATALINK with a length of 1000.

IBM.Data.DB2.iSeries
provider

Your .NET application
running on a Web
server

iSeries database

Web client Web client Web client......

Chapter 4. IBM DB2 UDB for iSeries .NET provider 143

Example 4-113 Example showing which connections will be in the same connection pool

// Our sample uses two different ConnectionStrings.
String connectionString1 = "DataSource=myiseries;DefaultCollection=sampledb;";
String connectionString2 = "DataSource=myiseries; DefaultCollection=sampledb;";

// Create two connections in the first connection pool
iDB2Connection c1a = new iDB2Connection(connectionString1);
iDB2Connection c1b = new iDB2Connection(connectionString1);

// Create two connections in the second connection pool
iDB2Connection c2a = new iDB2Connection(connectionString2);
iDB2Connection c2b = new iDB2Connection(connectionString2);

// Now, open the two connections in the first connection pool.
// Each connection has its own iSeries server job.
c1a.Open();
c1b.Open();
Console.WriteLine("Connection 1a's JobName: " + c1a.JobName);
Console.WriteLine("Connection 1b's JobName: " + c1b.JobName);

// Now, run a command that causes an error on connection 1a.
// We do this so we'll get an entry in our job log.
iDB2Command cmd = new iDB2Command("inserrrrrrrrrt into employee", c1a);
try
{

cmd.ExecuteNonQuery();
}
catch
{

// Ignore errors.
}
cmd.Dispose();

// Now, close connection 1a, and then reopen it.
c1a.Close();
c1a.Open();

// Display the job name. Because the Close() method
// placed the connection back into the connection pool,
// Open() could use that connection again.
// You will see the JobName is the same as the job
// it used previously.
Console.WriteLine("Connection 1a's JobName after close/open: " + c1a.JobName);

// Now, go and look at job 1a's job log on the iSeries.
// You should see the SQL0104 error in the job log, since
// the connection was reused.
Console.WriteLine("Go and look at this joblog on the iSeries host now: " + c1a.JobName);
Console.WriteLine("Press the enter key when you are finished.");
Console.ReadLine();

// Close the connections.
c1a.Close();
c1b.Close();

// Now, open the connections in the second connection pool.
// Because the ConnectionString used by c2a and c2b are
// different from the ConnectionString used by c1a and c2b,
// they will use different iSeries server jobs.
c2a.Open();

144 Integrating DB2 Universal Database for iSeries with Microsoft ADO .NET

c2b.Open();
Console.WriteLine("Connection 2a's JobName: " + c2a.JobName);
Console.WriteLine("Connection 2b's JobName: " + c2b.JobName);

// Close the connections
c2a.Close();
c2b.Close();

When you close a pooled connection, it is released into the connection pool to be reused.
Then, when a new connection wants to open a connection to the iSeries and uses the same
ConnectionString as a connection in the pool, it gets a pooled connection and reduced
startup time.

When using connection pooling, the first time you open a pooled connection there is no
available connection in the pool, so the provider creates one for you. That means that the first
time you call the Open method of a connection, the startup time takes longer, but each
subsequent time that connection is closed and reopened, the startup time is reduced.

When pooled connections go bad
Sometimes, for whatever reason, your connection to the iSeries host is ended. This can have
an effect on pooled connections. Read about how to handle this condition in “Special
considerations when using connection pooling” on page 105.

When pooled connections stay around too long
Just as there are times when pooled server jobs terminate unexpectedly, sometimes server
jobs stay running even after your application has terminated. This could happen for several
reasons, such as when your application does not clean up all of its resources properly or
because of host server or communication settings.

The .NET runtime environment uses garbage collection and finalizers to ensure that
application resources are reclaimed eventually. However, garbage collection cannot handle
some things, such as unmanaged resources and resources on the server. The runtime
environment does not always give class finalizers a chance to run to completion, so you
should be in the habit of calling the Close or Dispose method of objects you no longer need.

In some cases, you may find that even though you are doing all of the cleanup that you think
is necessary, the host server jobs are still running. To remedy this situation, the
IBM.Data.DB2.iSeries provider has implemented a method called
CleanupPooledConnections. This is a static method in the iDB2ProviderSettings class.

Calling CleanupPooledConnections
CleanupPooledConnections should only be called when you are finished using all of your
iDB2Connections (for example, when your application is about to end). It causes all of your
application’s pooled connections to terminate their connection to the iSeries host and marks
them as invalid. You should not attempt to use any iDB2Connection in your application after
calling CleanupPooledConnections.

Note: The iDB2ProviderSettings.CleanupPooledConnections() method was first added to
the provider in V5R3M0 service pack SI15176.

Note: See 4.10.7, “Gathering information for IBM Support” on page 169 for information
about why you might want to call CleanupPooledConnections when you are doing problem
determination.

Chapter 4. IBM DB2 UDB for iSeries .NET provider 145

Example 4-114 shows how to call this method when your Windows application receives the
Cancel event. (This happens when your application terminates, such as when you press the X
icon to close it). It first declares an event handler for the Cancel event, then defines the event
handler that calls CleanupPooledConnections.

Example 4-114 CleanupPooledConnections method

// Add this to the public Form1() method after it calls InitializeComponent():
this.Closing += new CancelEventHandler(this.Form1_Cancel);

...
// Add this new method near the end of your source file:
protected void Form1_Cancel(object sender, System.ComponentModel.CancelEventArgs e)
{

iDB2ProviderSettings.CleanupPooledConnections();
}

You can add the code shown in Example 4-114 to any of your existing Windows applications
(for example, 4.6.2, “A simple DataAdapter with CommandBuilder example” on page 110 or
4.7.3, “Updating DataSets” on page 136).

4.7.7 Deploying your application
When it is time to deploy your .NET application for use with the IBM.Data.DB2.iSeries .NET
provider, you must consider the following items:

� You must install the .NET Framework onto your PC before you install the provider.

� The provider is not stand-alone. Because the IBM DB2 UDB for iSeries .NET provider is
part of the iSeries Access for Windows product and relies on its features, you must install
it using iSeries Access for Windows on each PC that you plan to use the .NET provider
from. Read more about installing in 4.3, “Before we begin” on page 39. iSeries Access for
Windows provides a robust, configurable set-up program that enables you to install only
the necessary components.

� Because changes to the provider are sometimes tied in with changes to other parts of
iSeries Access for Windows, try to avoid running a back-level provider with a newer
version of iSeries Access for Windows. This back-leveling could occur, for example, if you
first install iSeries Access for Windows plus a service pack, then later install the provider
using Selective Setup. If you do this, be sure to (re)apply the iSeries Access for Windows
service pack after installing the provider to ensure that all components have the most
recent updates applied.

� Be sure to test your application with different iSeries versions. If you try to use a feature
that is only available in a newer DB2 UDB for iSeries version (such as the Binary data type
or 63-digit decimals added to the iSeries in V5R3M0), you will run into problems trying to
use those features on an older iSeries version. See Example 4-34 on page 63 for an
example of how you can programmatically check your iSeries server version.

4.8 Coding for performance and best practices
In this section, we discuss some of the things you can do to make the best use of the IBM
DB2 UDB for iSeries provider.

� Read about iSeries database performance topics in the IBM Information Center at:

http://www.iseries.ibm.com/infocenter

Select Database → Performance and optimization.

146 Integrating DB2 Universal Database for iSeries with Microsoft ADO .NET

http://www.iseries.ibm.com/infocenter
http://www.iseries.ibm.com/infocenter

� Read the “Indexing and statistics strategies for DB2 UDB for iSeries” white paper at:

http://www.ibm.com/servers/enable/site/education/ibo/record.html?indxng

� Attend the DB2 Performance Workshop; information at:

http://www.ibm.com/servers/eserver/iseries/service/igs/db2performance.html

� Study the DB2 UDB for iSeries online courses found at:

http://www.ibm.com/servers/enable/site/education/ibo/view.html?oc#db2

� Use stored procedures to group many operations into a single call. This can reduce the
number of times data flows across the communication link. You can also use stored
procedures to wrap programs or CL commands to catalog the parameter definitions so
DeriveParameters() can be used on the call. For information about how to write stored
procedures in the iSeries, go to the IBM Information Center at:

� http://www.iseries.ibm.com/infocenter

Select Database → Programming → SQL Programming → Routines → Stored
Procedures.

Another good reference is the IBM Redbook Stored Procedures, Triggers and User
Defined Functions on DB2 Universal Database for iSeries, SG24-6503, at:

http://www.redbooks.ibm.com/abstracts/sg246503.html

� When using stored procedures, follow the guidelines spelled out in 4.5.5, “Calling stored
procedures” on page 79. Using stored procedures with CommandType.Text and including
your own parameter markers speeds up the time it takes to prepare the statement for
execution.

� If you plan to execute a particular statement more than once, you can do several things to
improve the time it takes to prepare and execute the statement:

a. Use parameter markers in your statement instead of literal values. Then, each time you
execute the statement, your CommandText stays the same and only the parameter
values change. This approach enables the iSeries server to optimize the statement
once and subsequent calls to execute the statement take advantage of the optimization
already done. Parameter markers are discussed in 4.5.4, “Using parameters in your
SQL statements” on page 74. To take full advantage of this optimization, be sure your
statement does not contain any literal values.

b. Keep the CommandText the same for a statement you plan to execute many times.
While you can reuse the same iDB2Command object for running different SQL
statements, do this only when you do not plan to re-execute a statement. Each time
you change a command’s CommandText, the statement must be re-prepared before it
is executed (the provider does this for you). By keeping the CommandText constant,
you avoid this extra step.

� Use tables whose columns are not nullable. When using the CommandBuilder, every
nullable column requires an extra check when performing updates and deletes. See 4.7.4,
“Using iDB2CommandBuilder” on page 139 for more information about using the
CommandBuilder. Also, when using a DataReader with columns that could contain null
data, an extra call to IsDBNull is required to check for null before calling any of the
DataReader’s Get methods.

� If your application does not have to use all columns of a table, do not select all of the
columns. Fewer selected columns means less data sent over the communication link. The
exception to this is when you use the CommandBuilder, because with CommandBuilder,
your Select statement must include all of the primary or unique key columns.

� If your application does not have to use all the rows of a table, do not select all of the rows.
Fewer rows selected means less data sent over the communication link.

Chapter 4. IBM DB2 UDB for iSeries .NET provider 147

http://www.iseries.ibm.com/infocenter
http://www.iseries.ibm.com/infocenter
http://www.ibm.com/servers/enable/site/education/ibo/record.html?indxng
http://www.ibm.com/servers/eserver/iseries/service/igs/db2performance.html
http://www.ibm.com/servers/enable/site/education/ibo/view.html?oc#db2
http://www.redbooks.ibm.com/abstracts/sg246503.html

� If you plan to make frequent calls to fill a DataAdapter, it may make more sense to open
and close the connection yourself, rather than letting the DataAdapter do it for you.
Although connection pooling helps improve connection startup performance, closing and
reopening a connection causes the provider to re-prepare any commands it may have
prepared on the previously open connection.

� Connection pooling, which is enabled by default, can help improve your performance. To
take advantage of connection pooling, each connection you wish to pool must use exactly
the same ConnectionString. See 4.7.6, “Connection pooling” on page 143.

� RLE compression, which is enabled via the DataCompression attribute in your
ConnectionString, is turned on by default. RLE compression normally helps application
performance, but some overhead is involved in compressing and decompressing data. By
testing your application with your normal application data, you may find that setting
DataCompression one way or the other can produce better performance.

� When using large objects (LOBs) or large data sets, consider using a DataReader instead
of a DataAdapter. With a DataReader, you have more control over whether, when, and
how you read your data. For more about using LOBs with the IBM.Data.DB2.iSeries
provider, see 4.7.2, “Using large objects (LOBs)” on page 132.

� When using LOBs with a DataReader or with your own insert, update, or delete
commands, you can optimize when the LOB data is read or written by using the
MaximumInlineLobSize property. See “MaximumInlineLobSize” on page 58.

� Before executing your command, you do not have to call Prepare() first, as you may be
used to doing with other database technologies. The provider always does an implicit
prepare on your behalf when one of the Execute or DeriveParameters methods is called.

� Because the provider always does an implicit prepare when needed, you do not see a
performance improvement by defining your own parameters. Instead, we encourage the
use of the iDB2Command object’s DeriveParameters() method.

� The .NET common language runtime relies on garbage collection to handle the cleanup of
objects. This garbage collection is non-deterministic; it happens at unspecified times. To
make the best use of your application’s resources, you should call an object’s Close() or
Dispose() method (when one exists) when you are finished using the object. This ensures
that resources associated with your object are released when you know they are no longer
needed. This is especially important with objects that connect to the host
(iDB2Connection, iDB2Command, iDB2DataReader, and iDB2DataAdapter).

� Choose the best Execute method for your SQL statement. See 4.5.6, “Choosing your
execute method” on page 86 for more information. Do not use ExecuteReader if
ExecuteNonQuery or ExecuteScalar will do.

� With the IBM.Data.DB2.iSeries provider, normally you do not have to specify a Database
property in your ConnectionString (see “Database” on page 51). If you are not using an
independent auxiliary storage pool (IASP) with your application, then do not use the
Database property.

� Use data types that are appropriate to your task. When using char data tagged with
CCSID 65535, see “iDB2CharBitData and iDB2VarCharBitData” on page 90.

� When using a CommandBuilder, follow the guidelines discussed in 4.7.4, “Using
iDB2CommandBuilder” on page 139.

� Under normal circumstances, do not enable tracing or diagnostics. Any time these are
enabled, extra processing time and computer resources are used to gather tracing and
diagnostic information. When you are finished with problem determination, disable your
traces and diagnostics.

� Avoid using special characters in your SQL names (for instance, in table and column
names). To include mixed upper-case and lower-case names in tables and columns, and

148 Integrating DB2 Universal Database for iSeries with Microsoft ADO .NET

to include special characters in the names, some names must be delimited using quote
characters. We call these types of identifiers delimited identifiers. Using delimited
identifiers requires special processing on both the PC client and on the iSeries server. The
extra processing is not large, but their use can be problematic. Whenever possible, you
should also avoid using the three codepoints reserved as alphabetic characters for
national languages (#, @, and $ in the United States). These three codepoints should be
avoided because they represent different characters, depending on the CCSID.

� Use try/catch blocks to catch exceptions that could occur in your application. This is
especially important in places where object cleanup must occur in case of an error.

� Before calling any Get method of a DataReader (for example, GetiDB2String) for a column
that could contain a null value, call the IsDBNull method to check the column for a null
value. If IsDBNull returns true, the column is null and you should not call any Get method,
or an exception will result.

4.9 Migrating from ADO and OLE DB to ADO.NET
The ADO.NET architecture is different from other database provider architectures such as
ADO, OLE DB, ODBC, and JDBC. Complete coverage of the differences between these
database access technologies is beyond the scope of this book, but in this section we discuss
some of these differences and show how some of the iSeries Access for Windows OLE DB
provider functions previously accessed through Visual Basic and ADO can be performed
using ADO.NET with the IBM.Data.DB2.iSeries .NET provider.

4.9.1 ADO objects and how they map to ADO.NET objects
In the ADO object model, you perform database operations through an OLE DB provider,
such as IBMDA400, IBMDASQL, or MSDASQL. The ADO objects are accessed via objects
prefixed with ADODB. Table 4-8 shows how the most common ADO objects map to
ADO.NET objects that you can use with the IBM.Data.DB2.iSeries .NET provider.

Table 4-8 Mapping ADO objects to ADO.NET objects included with the IBM.Data.DB2.iSeries provider

ADO object Corresponding ADO.NET object

Command iDB2 Command

Command.Parameters collection iDB2Command.Parameters (iDB2ParameterCollection)

Command.Properties collection iDB2Command properties

Connection iDB2Connection

Connection.Errors collection iDB2Exception.Errors (iDB2ErrorCollection)

Connection.Properties collection iDB2Connection properties

Error iDB2Error (item in an iDB2ErrorCollection)

Field DataColumn of a DataRow, or column of a DataReader

Field.Properties collection Column metadata returned from the DataReader’s
GetSchemaTable method or the DataAdapter’s
FillSchema method

Parameter iDB2Parameter

Chapter 4. IBM DB2 UDB for iSeries .NET provider 149

4.9.2 ADO recordsets versus ADO.NET DataReaders and DataAdapters
With ADO, database providers work using a connected paradigm in which you open a
connection, work with recordsets, then close your connection. They give you a lot of control
over how you read your data, and they have the concept of a cursor or current location within
your result set. Your ADO recordset can use different types of cursors (such as forward-only,
read-only, or updatable). When you work with your recordset, you can see the data in real
time using a dynamic, sensitive cursor, or you can see a snapshot of your data using a static
cursor. To read data using cursors, the database provider must stay connected to the iSeries
server, so as you navigate forward or backward through your recordset, the provider reads the
data from the server.

With ADO.NET, you can still navigate in a forward-only, read-only manner using a connected
object called a DataReader. However, with a DataAdapter, your entire result set is read and
placed into a DataSet. After the DataAdapter reads the data, it can disconnect and work with
the DataSet locally. Changes to the data are made to the DataSet, and when you are ready to
finalize your changes, you use the DataAdapter’s Update() method. Update causes the
changes to your DataSet to be transmitted to the iSeries server. The DataAdapter only has to
be connected to the iSeries server while it reads or updates data. The DataAdapter concept
is somewhat similar to the ADO concept of a client cursor.

4.9.3 Updating tables
With the iSeries Access for Windows OLE DB providers IBMDA400 and IBMDASQL, you can
update tables on an iSeries server using an updatable cursor. When updatable cursor is
used, the OLE DB provider locks the current row. During changes to the result set (such as by
calling recordset.Update or recordset.Delete from Visual Basic), the current row is locked to
prevent concurrency violations. However, you might get an error if you try to navigate to a row
that is locked by another application. This model is called pessimistic concurrency.

The IBM DB2 UDB for iSeries .NET provider uses optimistic concurrency to resolve changes
to the iSeries database when you call the Update method of a DataAdapter. With optimistic
concurrency, records are not locked. Instead, the provider generates statements that
compare the original values read from the database with the current values in the database. If
the original and current values differ, then a concurrency violation occurs, indicating that
another job has modified the data in the table after you read the data. Read more about this
topic in “Updating a DataSet with optimistic concurrency” on page 138.

Record DataRow of a DataTable, or “current” row of a
DataReader

Record.Fields collection DataColumns of a DataRow, or columns of a DataReader

Recordset iDB2DataReader for read-only, forward-only
iDB2DataAdapter with DataTable for updatable

Recordset.Fields collection DataColumns of a DataRow, or columns of a DataReader

Recordset.Properties collection iDB2DataReader properties or iDB2DataAdapter
properties

ADO object Corresponding ADO.NET object

150 Integrating DB2 Universal Database for iSeries with Microsoft ADO .NET

4.9.4 Mapping OLE DB properties to ADO.NET
Migrating an application from using OLE DB to using the IBM.Data.DB2.iSeries .NET provider
requires numerous changes. The .NET provider does not support Data Queues, Record Level
Access, or certain other features that the iSeries Access for Windows OLE DB providers
support, so you cannot use the .NET provider in some cases. However, in a large number of
cases, you can migrate from OLE DB to .NET. Table 4-9 shows how some commonly used
OLE DB connection properties are reflected in the DB2 UDB for iSeries .NET provider.

Table 4-9 Mapping OLE DB connection properties to IBM.Data.DB2.iSeries .NET provider properties

IBMDA400 or IBMDASQL
OLE DB provider property

IBM.Data.DB2.iSeries .NET provider

Add Statements To SQL
Package

Not applicable. The .NET provider does not support SQL packages.

Block Fetch Not applicable. In the IBM.Data.DB2.iSeries provider, you cannot
specify a block size for transferring data to and from the iSeries.

Catalog Library List Not applicable. The IBM.Data.DB2.iSeries provider does not
include catalog functions.

ConnectionTimeout ConnectionTimeout property (see “ConnectionTimeout” on
page 50).

Convert Date Time To Char Not implemented by the IBM.Data.DB2.iSeries provider. Read
about handling these values in “iDB2Date, iDB2Time, and
iDB2TimeStamp” on page 94.

Current Catalog Database property (see “Database” on page 51).

Cursor Sensitivity Not applicable. The IBM.Data.DB2.iSeries provider does not
expose cursor functions.

Data Compression DataCompression property (see “DataCompression” on page 57).

Data Source DataSource property (see “DataSource” on page 49).

DBMS Version ServerVersion property (see “ServerVersion” on page 62).

Default Collection DefaultCollection property (see “DefaultCollection” on page 52).

Force Translate Not implemented by the IBM.Data.DB2.iSeries provider. Read
about handling character data tagged with CCSID 65535 in
“iDB2CharBitData and iDB2VarCharBitData” on page 90.

Hex Parser Option HexParserOption property (see “HexParserOption” on page 58).

Initial Catalog Database property (see “Database” on page 51).

Job Name JobName property (see “JobName” on page 63).

Maximum Decimal Precision MaximumDecimalPrecision property (see
“MaximumDecimalPrecision” on page 60).

Maximum Decimal Scale MaximumDecimalScale property (see “MaximumDecimalScale” on
page 60).

Minimum Divide Scale MinimumDivideScale property (see “MinimumDivideScale” on
page 60).

Password Password property (see “Password” on page 49).

Chapter 4. IBM DB2 UDB for iSeries .NET provider 151

4.9.5 Examples showing an OLE DB application rewritten to use ADO.NET
In this section, we show two examples of existing applications that use the IBMDA400 OLE
DB provider from iSeries Access for Windows. The applications are written in Visual Basic
using ADO. We first show the original Visual Basic/ADO application, then we show the same
application written in Visual Basic .NET using ADO.NET.

Forward-only, read-only example: ADO and ADO.NET
In this section, we select records from a table and read the records in forward-only, read-only.

Forward-only, read-only recordset example using ADO
In this example, we start with a Visual Basic application using ADO and the IBMDA400 OLE
DB provider. The application reads from the EMPLOYEE table in the SAMPLEDB schema we
set up in 1.4, “DB2 UDB for iSeries sample schema” on page 8. The application reads one
record (row) at a time from the EMPLOYEE table and displays fields (columns) from that row
in the window.

To re-create this sample ADO application:

1. Open a new Standard EXE project from Visual Basic. (We use Visual Basic 6.0.) Make
sure the Project Explorer window is displayed (View → Project Explorer) and display the
Toolbox (View → Toolbox).

2. Add a project reference (Project → References) to Microsoft ActiveX Data Objects 2.5
Library. Select the box next to the ADO library and click OK.

Provider Provider property (see “Provider” on page 62). With the
IBM.Data.DB2.iSeries .NET provider, you do not specify the
Provider property in your ConnectionString.

Query Options File Library QueryOptionsFileLibrary property (see “QueryOptionsFileLibrary”
on page 59).

SSL SSL property (see “SSL” on page 50).

Sort Language ID SortLanguageId property (see “SortLanguageId” on page 57).

Sort Sequence SortSequence property (see “SortSequence” on page 56).

Sort Table Name SortTable property (see “SortTable” on page 57).

SQL Package Library Name Not applicable. The .NET provider does not support SQL packages.

SQL Package Name Not applicable. The .NET provider does not support SQL packages.

State State property (see “State” on page 62).

Trace Trace property (see “Trace” on page 63).

Unusable SQL Package Action Not applicable. The .NET provider does not support SQL packages.

Use SQL Packages Not applicable. The .NET provider does not support SQL packages.

User ID UserID property (see “UserID” on page 49).

IBMDA400 or IBMDASQL
OLE DB provider property

IBM.Data.DB2.iSeries .NET provider

Note: You can use any ActiveX Data Object (ADO) library that is 2.5 or greater.

152 Integrating DB2 Universal Database for iSeries with Microsoft ADO .NET

3. In the Project Explorer window of Visual Basic, right-click Form1 and select Properties.
Change the Caption to ForwardOnlyReadOnly.

4. In the Project Explorer window of Visual Basic, right-click Project1 and select Properties.
Change the Project Name to ForwardOnlyReadOnly.

5. In the Visual Basic design window, re-create the window design shown in Figure 4-32. The
regular text fields are Labels, the white blank fields are Textboxes, and the four buttons on
the bottom of the window are Buttons. Each of these items can be dragged from the
Toolbox onto your window, and repositioned and resized as needed.

Figure 4-32 ForwardOnlyReadOnly window design (ADO)

6. Rename each of the Textboxes in your window to the names shown in parentheses in
Figure 4-32. (For example, the first Textbox is called empno, the second is called empname,
and so on.) Set the Text for each of these Textboxes to an empty string.

7. Rename each of the Buttons in your window to the names shown in parentheses in
Figure 4-32. (For example, the leftmost button is called ConnectButton, the second is
called DisconnectButton, and so on.) Change the Caption for each button to match our
example. Set each button’s Enabled property to Disabled, except for the Connect button.
Leave the Connect button Enabled.

8. Add code for the application: Double-click anywhere on your application’s window to
display Form1’s code window. Remove all code from the code window, and replace it with
the code shown in Example 4-115, substituting the name of your iSeries.

Example 4-115 ForwardOnlyReadOnly code (ADO)

Private cn As New ADODB.Connection
Private cmd As New ADODB.Command
Private rs As New ADODB.Recordset
'Connect to the iSeries using the IBMDA400 provider
'if we are not already connected
Private Sub ConnectButton_Click()
If (cn.State = adStateClosed) Then
 cn.ConnectionString = "Provider=IBMDA400; Data Source=myiseries; Default
Collection=sampledb;"
 cn.Open

 'Initialize the command to select records
 'from the EMPLOYEE table.
 'Point the command to our connection object

Chapter 4. IBM DB2 UDB for iSeries .NET provider 153

 cmd.CommandText = "select * from employee"
 cmd.ActiveConnection = cn

 'Enable the disconnect and read buttons, and
 'disable the connect button
 DisconnectButton.Enabled = True
 ReadButton.Enabled = True
 ConnectButton.Enabled = False
End If
End Sub
'Disconnect from the iSeries if we are connected
Private Sub DisconnectButton_Click()
If (cn.State = adStateOpen) Then
 cn.Close

 'Disable all buttons except Connect.
 DisconnectButton.Enabled = False
 ReadButton.Enabled = False
 NextButton.Enabled = False
 ConnectButton.Enabled = True

 'Clear the fields on the window
 Form1.empno.Text = ""
 Form1.empname.Text = ""
 Form1.dept.Text = ""
 Form1.phone.Text = ""
 Form1.job.Text = ""
 Form1.edlevel.Text = ""
 Form1.salary.Text = ""
 Form1.bonus.Text = ""
 Form1.commission.Text = ""
 Form1.Show
End If
End Sub

'This routine moves to the next record in the table,
'and shows the new data. If we reach the end of the file,
'start reading again from the beginning.
Private Sub NextButton_Click()

'Make sure we have an open recordset first
If (rs.State = adStateOpen) Then
 'Move to the next record
 rs.MoveNext

 'If we are at EOF, restart at the beginning.
 If (rs.EOF = True) Then
 'We're at EOF. Restart at the beginning.
 Call ReadButton_Click
 Else
 'Display the results of the current row
 Call fillData
 End If
End If
End Sub

Private Sub ReadButton_Click()

'If we already have a recordset open,
'close it and then reopen it.

154 Integrating DB2 Universal Database for iSeries with Microsoft ADO .NET

'Forward-only recordsets cannot be re-queried.
If (rs.State = adStateOpen) Then
 rs.Close
End If

'Create a recordset object which contains the results
'of executing our SELECT statement
Set rs = cmd.Execute

'Fill the window with the data from the first record
Call fillData

'Enable the Next button
NextButton.Enabled = True

End Sub
'This routine fills the text fields on our form
'using the data from our recordset
Private Sub fillData()
 Form1.empno.Text = rs.Fields("EMPNO")
 Form1.empname.Text = rs.Fields("LASTNAME") & ", " & _
 rs.Fields("FIRSTNME") & " " & _
 rs.Fields("MIDINIT")
 Form1.dept.Text = rs.Fields("WORKDEPT")
 Form1.phone.Text = rs.Fields("PHONENO")
 Form1.job.Text = rs.Fields("JOB")
 Form1.edlevel.Text = rs.Fields("EDLEVEL")
 Form1.salary.Text = rs.Fields("SALARY")
 Form1.bonus.Text = rs.Fields("BONUS")
 Form1.commission.Text = rs.Fields("COMM")
 Form1.Show
End Sub

9. Using File → Save Form1 As, save your form as ForwardOnlyReadOnly.frm.

10.Using File → Save Project As, save your project as ForwardOnlyReadOnly.vbp.

11.Run your application (press F5 or Run → Start). Click Connect to connect to your iSeries.
You may be prompted for your user ID and password. To open the recordset or to start
reading again from the first record, click Read data. The first record from the EMPLOYEE
table is displayed. To display each next record, click Move to next row. When you reach
the end of the table, it wraps around and reads from the beginning again. When you are
finished, click Disconnect.

Forward-only, read-only recordset example using ADO.NET
Now we migrate the application to ADO.NET. Follow these steps to see how we change the
application from Visual Basic to Visual Basic .NET, and from ADO to ADO.NET:

1. Open a new project (from Visual Studio .NET, select File → New → Project). Select
Visual Basic Projects, Windows Application. Name the project ForwardOnlyReadOnly.
Click OK. Make sure the Solution Explorer window is displayed (View → Solution
Explorer), display the Properties window (View → Properties Window), and display the
Toolbox (View → Toolbox).

2. Add a project reference to the IBM DB2 UDB for iSeries .NET provider (Project → Add
Reference). Select IBM DB2 UDB for iSeries .NET provider and click OK.

3. In the Form1.vb design window of Visual Basic .NET, click Form1 to make it active. In the
Properties window, change the Text field to ForwardOnlyReadOnly.

Chapter 4. IBM DB2 UDB for iSeries .NET provider 155

4. In the Visual Basic .NET design window, re-create the window design shown in
Figure 4-33. The regular text fields are Labels, the white blank fields are Textboxes, and
the four buttons on the bottom of the window are Buttons. Each of these items can be
dragged from the Toolbox onto your window, and repositioned and resized as needed.

Figure 4-33 ForwardOnlyReadOnly window design (ADO.NET)

5. Rename each of the Textboxes in your window to the names shown in parentheses in
Figure 4-33. (For example, the first Textbox is called empno, the second is called empname,
and so on.) Set the Text for each of these Textboxes to an empty string.

6. Rename each of the Buttons in your window to the names shown in parentheses in
Figure 4-33. (For example, the leftmost button is called ConnectButton, the second is
called DisconnectButton, and so on.) Change the Caption for each button to match our
example. Set each button’s Enabled property to Disabled, except for the Connect button.
Leave the Connect button Enabled.

7. Add code for the application by double-clicking anywhere in your application’s window to
display Form1’s code window with the Form1_Load subroutine displayed. Add the
following statement to the top of your code window:

Imports IBM.Data.DB2.iSeries

Next, place your cursor after the end of the Form1_Load subroutine, and add the code
shown in Example 4-116.

Example 4-116 ForwardOnlyReadOnly code (ADO.NET)

'Declare our global variables
 Dim cn As New iDB2Connection()
 Dim cmd As New iDB2Command()
 Dim rs As iDB2DataReader

 'Connect to the iSeries using the IBM.Data.DB2.iSeries provider
 'if we are not already connected
 Private Sub ConnectButton_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles ConnectButton.Click
 If (cn.State = ConnectionState.Closed) Then
 cn.ConnectionString = "DataSource=myiseries; DefaultCollection=sampledb;"
 cn.Open()

 'Initialize the command to select records

156 Integrating DB2 Universal Database for iSeries with Microsoft ADO .NET

 'from the EMPLOYEE table.
 'Point the command to our connection object
 cmd.CommandText = "select * from employee"
 cmd.Connection = cn

 'Enable the disconnect and read buttons, and
 'disable the connect button
 DisconnectButton.Enabled = True
 ReadButton.Enabled = True
 ConnectButton.Enabled = False
 End If
 End Sub

 'Disconnect from the iSeries if we are connected
 Private Sub DisconnectButton_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles DisconnectButton.Click
 If (cn.State = ConnectionState.Open) Then

 'Close the DataReader if it is open
 If (Not (rs Is Nothing)) Then
 rs.Close()
 rs = Nothing
 End If

 'Close the connection.
 cn.Close()

 'Disable all buttons except Connect.
 DisconnectButton.Enabled = False
 ReadButton.Enabled = False
 NextButton.Enabled = False
 ConnectButton.Enabled = True

 'Clear the fields on the window
 empno.Text = ""
 empname.Text = ""
 dept.Text = ""
 phone.Text = ""
 job.Text = ""
 edlevel.Text = ""
 salary.Text = ""
 bonus.Text = ""
 commission.Text = ""
 End If
 End Sub

 'This routine moves to the next record in the table,
 'and shows the new data. If we reach the end of the file,
 'start reading again from the beginning.
 Private Sub NextButton_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles NextButton.Click
 'Move to the next record.
 'If we are at EOF, restart at the beginning.
 If (rs.Read() = False) Then
 'We're at EOF. Restart at the beginning.
 Call ReadButton_Click(System.DBNull.Value, New System.EventArgs())
 Else
 'Display the results of the current row
 Call fillData()
 End If
 End Sub

Chapter 4. IBM DB2 UDB for iSeries .NET provider 157

 Private Sub ReadButton_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles ReadButton.Click
 'If we already have a DataReader open,
 'close it and then reopen it.
 'DataReaders can only be read forward-only.
 If (Not (rs Is Nothing)) Then
 rs.Close()
 End If

 'Create a DataReader object which contains the results
 'of executing our SELECT statement
 rs = cmd.ExecuteReader()

 'Fill the window with the data from the first record
 If (rs.Read() = True) Then
 Call fillData()
 End If

 'Enable the Next button
 NextButton.Enabled = True
 End Sub

 'This routine fills the text fields on our form
 'using the data from our recordset
 Private Sub fillData()
 empno.Text = rs("EMPNO")
 empname.Text = rs("LASTNAME") & ", " & _
 rs("FIRSTNME") & " " & _
 rs("MIDINIT")
 dept.Text = rs("WORKDEPT")
 phone.Text = rs("PHONENO")
 job.Text = rs("JOB")
 edlevel.Text = rs("EDLEVEL")
 salary.Text = rs("SALARY")
 bonus.Text = rs("BONUS")
 commission.Text = rs("COMM")
 End Sub

8. Using File → Save Form1.vb As, save your form as ForwardOnlyReadOnly.vb.

9. Using File → Save All, save your solution.

10.Run your application (press F5 or Run → Start). Click Connect to connect to your iSeries.
You may be prompted for your user ID and password. To open the recordset or to start
reading again from the first record, click Read data. This displays the first record from the
EMPLOYEE table. To display each next record, click Move to next row. When you reach
the end of the table, it wraps around and reads from the beginning again. When you are
finished, click Disconnect.

Comparison between our ADO example and our ADO.NET example
Our examples have shown few differences between the ADO and the ADO.NET code. Now
we compare the ADO example to the ADO.NET example, showing how to convert the ADO
example to ADO.NET.

1. Different object names:

– With ADO, use ADODB objects (Connection, Command, Recordset).

– With ADO.NET, use .NET provider objects (iDB2Connection, iDB2Command,
iDB2DataReader).

158 Integrating DB2 Universal Database for iSeries with Microsoft ADO .NET

2. The ConnectionString is different:

– With ADO, you must specify the Provider name (Provider=IBMDA400).

– With ADO.NET, the provider is implicit in the class you use. (iDB2Connection is the
IBM.Data.DB2.iSeries provider.)

3. Command properties and methods are different:

– With ADO, you use command.ActiveConnection and command.Execute.

– With ADO.NET you use command.Connection and command.ExecuteReader.

4. Result data properties and methods are different:

– With ADO, you use recordset.EOF and recordset.MoveNext.

– With ADO.NET, you use datareader.Read().

5. Enumeration values are different, such as when checking the Connection state:

– With ADO, you use adStateOpen.

– With ADO.NET you use ConnectionState.Open.

6. Differences in how you position to the first record:

– With ADO, when you open a recordset, you are automatically positioned at the first
record.

– With ADO.NET, you must call the DataReader’s Read() method before you can access
the data from the first record.

Dynamic, updatable recordset example: ADO and ADO.NET
In this section, we show a scenario that uses an updatable recordset (ADO) and a
DataAdapter (ADO.NET). We select records from a table, then read and write the records.

Updatable recordset example using ADO
We start with a Visual Basic application using ADO and the IBMDA400 OLE DB provider. The
application reads from the ACT table in the SAMPLEDB schema we set up in 1.4, “DB2 UDB
for iSeries sample schema” on page 8. The ACT table it is small and easy to use, and it has a
primary key (important for the next section when we update using a CommandBuilder). The
application reads a record (row) from the ACT table and displays fields (columns) from that
row on the window. You can then update the record that is displayed, delete the record, or add
a new record.

To re-create this sample ADO application:

1. Open a new Standard EXE project from Visual Basic. (We use Visual Basic 6.0.) Make
sure the Project Explorer window is displayed (View → Project Explorer) and display the
Toolbox (View → Toolbox).

2. Add a project reference (Project → References) to Microsoft ActiveX Data Objects 2.5
Library. Select the box next to the ADO library and click OK.

3. In the Project Explorer window of Visual Basic, right-click Form1 and select Properties.
Change the Caption to UpdatableSample.

4. In the Project Explorer window of Visual Basic, right-click Project1 and select Properties.
Change the Project Name to UpdatableSample.

5. In the Visual Basic design window, re-create the window design shown in Figure 4-34 on
page 160. The regular text fields are Labels, the white blank fields are Textboxes, and the

Note: You can use any ActiveX Data Object (ADO) library that is 2.5 or greater.

Chapter 4. IBM DB2 UDB for iSeries .NET provider 159

buttons are Buttons. Each of these items can be dragged from the Toolbox onto your
window, and repositioned and resized as needed.

Figure 4-34 UpdatableSample window design (ADO)

6. Rename each of the Textboxes in your window to the names shown in parentheses in
Figure 4-34. (For example, the first Textbox is called actno, the second is called actkwd,
and the third is called actdesc. Set the Text for each of these Textboxes to an empty string.

7. Rename each of the Buttons in your window to the names shown in parentheses on the
buttons in Figure 4-34. Change the Caption for each button to match our example. Set
each button’s Enabled property to Disabled, except for the Connect button. Leave the
Connect button Enabled.

8. Add code for the application by double-clicking anywhere in your application’s window to
display Form1’s code window. Remove all code from the code window, and replace it with
the code shown in Example 4-117.

Example 4-117 Updatable code (ADO)

Private cn As New ADODB.Connection
Private cmd As New ADODB.Command
Private rs As New ADODB.Recordset

'Connect to the iSeries using the IBMDA400 provider
'if we are not already connected
Private Sub ConnectButton_Click()
If (cn.State = adStateClosed) Then
 cn.ConnectionString = "Provider=IBMDA400; Data Source=myiseries; Default
Collection=sampledb;"
 cn.Open

 'Initialize the command to select records
 'from the ACT table.
 'Point the command to our connection object
 cmd.CommandText = "select * from act"
 cmd.ActiveConnection = cn

 'Initialize the recordset properties so we
 'get an updatable cursor.
 rs.CursorType = adOpenDynamic
 rs.LockType = adLockPessimistic

 'Enable the Disconnect and Read buttons, and

160 Integrating DB2 Universal Database for iSeries with Microsoft ADO .NET

 'disable the Connect button.
 ConnectButton.Enabled = False
 DisconnectButton.Enabled = True
 ReadButton.Enabled = True
End If
End Sub

'Disconnect from the iSeries if we are connected
Private Sub DisconnectButton_Click()
If (cn.State = adStateOpen) Then
 cn.Close

 'Disable all buttons except Connect.
 ConnectButton.Enabled = True
 DisconnectButton.Enabled = False
 ReadButton.Enabled = False
 PreviousButton.Enabled = False
 NextButton.Enabled = False
 InsertButton.Enabled = False
 UpdateButton.Enabled = False
 DeleteButton.Enabled = False

 'Clear the fields on the window
 showBlankForm
End If
End Sub

Private Sub NextButton_Click()
 'If we are at EOF, move back to the beginning
 If (rs.EOF = True) Then
 rs.MoveFirst
 Else
 rs.MoveNext
 If (rs.EOF = True) Then
 rs.MoveFirst
 End If
 End If
 Call fillData
End Sub

Private Sub PreviousButton_Click()
 'If we are at BOF, move to the end
 If (rs.BOF = True) Then
 rs.MoveLast
 Else
 rs.MovePrevious
 If (rs.BOF = True) Then
 rs.MoveLast
 End If
 End If
 Call fillData
End Sub

Private Sub ReadButton_Click()

'If we already have a recordset open,
'move back to the top. Because this is a
'dynamic, updatable cursor, we can do this.
If (rs.State = adStateOpen) Then

Chapter 4. IBM DB2 UDB for iSeries .NET provider 161

 rs.MoveFirst
Else
 'If we don't already have an open recordset,
 'open it now.
 rs.Open cmd
End If

'Fill the window with the data from the first record
Call fillData

'Enable the other buttons
PreviousButton.Enabled = True
NextButton.Enabled = True
InsertButton.Enabled = True
UpdateButton.Enabled = True
DeleteButton.Enabled = True

End Sub

'Add the new row using the current form values and then
'position back to the top of the table
Private Sub InsertButton_Click()
 'We will update all the fields
 flds = Array("ACTNO", "ACTKWD", "ACTDESC")

 'Take the values from the form
 vals = Array(Form1.actno.Text, Form1.actkwd.Text, Form1.actdesc.Text)

 'Add the new row.
 rs.AddNew flds, vals
 rs.MoveFirst
 fillData
End Sub
'Update the current record and then
'position back to the top of the table
Private Sub UpdateButton_Click()
Dim flds, vals As Variant

 'We will update all the fields
 flds = Array("ACTNO", "ACTKWD", "ACTDESC")

 'Take the values from the form
 vals = Array(Form1.actno.Text, Form1.actkwd.Text, Form1.actdesc.Text)

 'Update the row
 rs.Update flds, vals
 rs.MoveFirst
 fillData

End Sub
'Delete the current record and then
'position back to the top of the table
Private Sub DeleteButton_Click()
 'Delete the row
 rs.Delete
 rs.MoveFirst
 fillData
End Sub

'This routine fills the text fields on our form

162 Integrating DB2 Universal Database for iSeries with Microsoft ADO .NET

'using the data from our recordset
Private Sub fillData()
 Form1.actno.Text = rs.Fields("ACTNO")
 Form1.actkwd.Text = rs.Fields("ACTKWD")
 Form1.actdesc.Text = rs.Fields("ACTDESC")
 Form1.Show
End Sub

Private Sub showBlankForm()
'Clear the fields on the window
 Form1.actno.Text = ""
 Form1.actkwd.Text = ""
 Form1.actdesc.Text = ""
 Form1.Show
End Sub

9. Using File → Save Form1 As, save your form as UpdatableSample.frm.

10.Using File → Save Project As, save your project as UpdatableSample.vbp.

11.Run your application (press F5 or Run → Start). Click Connect to connect to your iSeries.
You may be prompted for your user ID and password. To open the recordset or to start
reading again from the first record, click Read data. The first record from the ACT table is
displayed. To display the next or previous record, click Previous row or Next row.

Because this is an updatable example, you can insert a new row, delete a row, or update
an existing row:

– To insert a new row, position on any record. Change the fields in the window to
correspond to the new row, and click on Insert row. The new row is sent to the iSeries
host, and you are returned to the first row in the table. You must provide a unique value
for the Activity number field because that is a primary key field.

– To delete an existing row, navigate to the row and click Delete row. The delete
information is sent to the iSeries host, and you are returned to the first row in the table.

– To update an existing row, navigate to the row, make your changes to the form, and
click Update row. Changes are sent to the iSeries host, and you are returned to the
first row in the table.

When you are finished with your example, click Disconnect.

Updatable recordset example using ADO.NET
Now we migrate the application to ADO.NET. Follow these steps to see how we change the
application from Visual Basic to Visual Basic .NET and from ADO to ADO.NET:

1. Open a new project (from Visual Studio .NET, select File → New → Project). Select
Visual Basic Projects, Windows Application. For the project name, type
UpdatableSample. Click OK. Make sure the Solution Explorer window is displayed (View →
Solution Explorer), display the Properties window (View → Properties Window), and
display the Toolbox (View → Toolbox).

2. Add a project reference to the IBM DB2 UDB for iSeries .NET provider (Project → Add
Reference). Select IBM DB2 UDB for iSeries .NET provider and click OK.

3. In the Form1.vb design window of Visual Basic .NET, click Form1 to make it active. In the
Properties window, change the Text field to UpdatableSample.

4. In the Visual Basic .NET design window, re-create the window design shown in
Figure 4-35 on page 164. The large area in the middle of the screen is a DataGrid and the
buttons on the window are Buttons. Each of these items can be dragged from the Toolbox
onto your window, and repositioned and resized as needed.

Chapter 4. IBM DB2 UDB for iSeries .NET provider 163

Figure 4-35 UpdatableSample window design (ADO.NET)

5. Because our ADO.NET sample uses a DataGrid instead of Textboxes to display the data,
we do not have to rename the Textbox fields as we did in our previous example.

6. Rename each of the Buttons in your window to the names shown in parentheses in
Figure 4-35. Change the Caption for each button to match our example. Set the
UpdateButton’s Enabled property to Disabled. Leave the ReadButton Enabled.

7. Add code for the application by double-clicking anywhere in your application’s window.
This displays Form1’s code window showing the Form1_Load subroutine. Add this
statement to the top of your code window:

Imports IBM.Data.DB2.iSeries

Replace your Form1_Load subroutine with the code shown in Example 4-118.

Example 4-118 Updatable code (ADO.NET)

'Declare our global variables
 Dim cn As New iDB2Connection()
 Dim ds As New DataSet()
 Dim da As New iDB2DataAdapter()
 Dim cb As New iDB2CommandBuilder(da)

 Private Sub Form1_Load(ByVal sender As System.Object, ByVal e As System.EventArgs)
Handles MyBase.Load
 'Initialize our Connection string
 cn.ConnectionString = "DataSource=myiseries; DefaultCollection=sampledb;"

 'Initialize the SelectCommand of the DataAdapter
 da.SelectCommand = New iDB2Command("select * from act", cn)

 'Tell the DataGrid where its data will come from
 DataGrid1.DataSource = ds
 End Sub

 Private Sub ReadButton_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles ReadButton.Click

164 Integrating DB2 Universal Database for iSeries with Microsoft ADO .NET

 ds.Clear()
 da.Fill(ds)
 DataGrid1.DataMember = ds.Tables(0).TableName
 UpdateButton.Enabled = True
 End Sub

 Private Sub UpdateButton_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles UpdateButton.Click
 cn.Open()
 da.Update(ds)
 cn.Close()
 End Sub

8. Using File → Save Form1.vb As, save your form as UpdatableSample.vb.

9. Using File → Save All, save your solution.

10.Run your application (press F5 or Run → Start). Because this example uses a
DataAdapter, you do not have to connect to read the data; the DataAdapter opens the
connection for you. To fill the DataGrid with the data from our table using the DataAdapter,
click Read data. The DataGrid is filled with data from the ACT table.

Because this is an updatable example, you can insert a new row, delete a row, or update
an existing row. We use the DataAdapter to make our updates, so updates are stored
locally in our DataSet until you click Update data.

– To insert a new row, position yourself after the last row and add data on the window to
correspond to the new row. You must provide a unique value for the Activity number
field because that is a primary key field.

– To delete an existing row, navigate to the row, highlight it, and press the Delete key.

– To update an existing row, navigate to the row, and make your changes to the form.

When you are finished making changes (inserts, updates, and deletions), click Update
data. At this point, the connection to the iSeries is opened, the DataAdapter sends the
updates to the iSeries host, and the connection is closed.

Comparison between our ADO example and our ADO.NET example
Unlike our forward-only read-only examples, our updatable examples show many differences
and only a few similarities. In this section we compare the ADO example to the ADO.NET
example and show you step-by-step how we convert the ADO example to ADO.NET.

1. Connected versus Disconnected mode:

– With ADO, you must stay connected the whole time you want to access your data.
Because of this, we have Connect and Disconnect buttons and event handlers.

– With ADO.NET, you stay connected to the iSeries only while you are actively getting
the data from the iSeries (DataAdapter.Fill) or sending updates to the iSeries
(DataAdapter.Update).

2. Differences in how you read and store the result data:

– With ADO, you use an updatable recordset to read the data, and you store the data in
Textbox fields.

– With ADO.NET, you use a DataAdapter to read the data into a DataSet, which is then
associated with a DataGrid.

3. Differences in how you navigate through the result data:

– With ADO, you must handle navigation yourself by using the ADODB recordset’s
methods such as MovePrevious, MoveNext, and MoveFirst. Because of this, we have
Previous and Next buttons and event handlers.

Chapter 4. IBM DB2 UDB for iSeries .NET provider 165

– With ADO.NET, after you get the data into the DataGrid using the DataSet, all the
navigation is handled for you.

4. Differences in how you update the data:

– With ADO, the data is stored on the iSeries server. Each time you want to insert,
update, or delete a row, the change is transmitted to the iSeries server immediately
(when you press the corresponding button).

– With ADO.NET, the DataSet/DataGrid contains a local cache of your data. All inserts,
updates, and deletes are performed using this local cache, and changes are
transmitted to the iSeries host only when you click Update.

5. Different object names:

– With ADO, you use the ADODB.Connection, Command, and Recordset objects.

– With ADO.NET, you use the IBM.Data.DB2.iSeries provider’s objects (iDB2Connection,
iDB2DataAdapter, and iDB2CommandBuilder).

6. The ConnectionString is different:

– With ADO, you must specify the Provider property (Provider=IBMDA400).

– With ADO.NET, the provider is implicit in the class you use. (iDB2Connection is the
IBM.Data.DB2.iSeries provider.)

7. Overall logic change: Because the DataAdapter, CommandBuilder, DataSet, and
DataGrid do much of the work for you, using updatable recordsets with ADO.NET can be
much easier than using ADO.

4.10 Troubleshooting
When you encounter problems in writing or running your .NET code using the
IBM.Data.DB2.iSeries provider, you have several tools at your disposal. In this section, we
offer some pointers to help you determine the cause of a failure, and information you should
gather when you prepare to call your IBM Service representative.

4.10.1 Handle exceptions using try/catch blocks
The most common error surfaces as an exception of some kind. If the statement causing the
exception is not surrounded by a try/catch block, an error pops up onto your display window
with limited information about the error. For many exceptions, the error that pops up does not
provide enough information to determine its cause. For more information about the exception,
add a try/catch block around the exception. See 4.5.8, “Handling exceptions” on page 102 for
more details about handling exceptions.

When catching exceptions, always catch the more specific exception first, followed by more
generic exceptions. For example, say you want to execute this statement:

select * from employee

This statement could return an iDB2SQLErrorException (for instance, if the table does not
exist), a more generic iDB2Exception (for some other kind of error thrown by the provider), or
a still more generic Exception. Example 4-119 on page 167 shows how you can catch these
exceptions, in order from most-specific to least-specific error.

166 Integrating DB2 Universal Database for iSeries with Microsoft ADO .NET

Example 4-119 Catching exceptions, from most-specific to least-specific

// Create and open a connection to the iSeries.
iDB2Connection cn = new
iDB2Connection("DataSource=myiseries;DefaultCollection=sampledb;");
cn.Open();

// Create a command to select rows from the table.
iDB2Command cmd = new iDB2Command("select * from employee", cn);
iDB2DataReader dr = null;

// Surround our Execute command with a try/catch block.
// We catch the most specific exceptions first, followed
// by the least specific exceptions.
try
{

dr = cmd.ExecuteReader();
}
catch (iDB2SQLErrorException e)
{

Console.WriteLine("Message: " + e.Message);
Console.WriteLine("MessageCode: " + e.MessageCode);
Console.WriteLine("MessageDetails: " + e.MessageDetails);
Console.WriteLine("SqlState: " + e.SqlState);

}
catch (iDB2Exception e)
{

Console.WriteLine("Message: " + e.Message);
Console.WriteLine("MessageCode: " + e.MessageCode);
Console.WriteLine("MessageDetails: " + e.MessageDetails);

}
catch (Exception e)
{

Console.WriteLine("Message: " + e.Message);
}

// Close the DataReader if it exists.
if (dr != null)

dr.Close();

// Dispose the command since we are done using it.
cmd.Dispose();

// Close the connection.
cn.Close();

4.10.2 Make sure your server jobs are running
For connection-related problems, be sure your iSeries server jobs are started (see 4.2.2,
“Host server jobs” on page 35). Read “Special considerations when using connection pooling”
on page 105.

4.10.3 Use provider traces via the cwbmptrc utility
A useful tool in problem determination is the cwbmptrc utility, part of the iSeries Access for
Windows product. Type cwbmptrc with no parameters to see a list of valid parameters. To turn
traces on, type cwbmptrc +a. To turn traces off, type cwbmptrc -a. When you turn traces on or
off, the cwbmptrc tool tells you where the trace file is located.

Chapter 4. IBM DB2 UDB for iSeries .NET provider 167

After running traces while reproducing the problem, examine the cwbmptrc output file (the
default file name is idb2trace.txt). You can often learn things from looking at a trace, including
where the provider generates an exception.

The cwbmptrc command is located in the folder where you installed iSeries Access for
Windows. If your PC’s path does not point to this folder, you may need to navigate into that
folder in order for the cwbmptrc command to run.

4.10.4 Enable server-side diagnostics
For more difficult problems, you can enable server-side diagnostics through use of the Trace
property in your ConnectionString. See “Trace” on page 63 for more information.

4.10.5 Use communication traces via the cwbcotrc utility
Communication traces can be enabled on your PC using the cwbcotrc utility, part of the
iSeries Access for Windows product. Type cwbcotrc with no parameters to see a list of valid
parameters. To turn traces on, type cwbcotrc on. To turn traces off, type cwbcotrc off. When
you turn traces on or off, the cwbcotrc tool tells you where the trace file is located.

The cwbcotrc command is located in the folder where you installed iSeries Access for
Windows. If your PC’s path does not point to this folder, you may have to navigate into that
folder in order for the cwbcotrc command to run.

4.10.6 Overriding your ConnectionString
For problem determination, it is sometimes useful to change your ConnectionString, such as
to enable server-side traces to spool the job log, or to connect to a different iSeries server
during testing. In some cases, however, you cannot modify the ConnectionString (for
example, if you only have an executable but no source code).

IBM has implemented a way for you to override your ConnectionString. When you use the
-override feature of the cwbmptrc utility, the provider stores your override string into the
system registry. To set the override, you must have write authority to the registry location
HKEY_LOCAL_MACHINE\SOFTWARE\IBM\Client
Access\CurrentVersion\Common\ManagedProvider\Service\Connection String Override.

Important: After you no longer need to run traces, be sure to turn traces off using
cwbmptrc -a. Otherwise, your trace file will grow larger each time you use any of the
IBM.Data.DB2.iSeries provider classes. Tracing also slows down your performance.

Important: After you no longer need to run traces, be sure to turn traces off using
cwbcotrc off. Otherwise, your trace file will grow larger each time you use any of the
communication functions of the iSeries Access for Windows product. Tracing also slows
down your performance. If your application is running in a three-tier environment, you may
need to use the /ALLUSERS option to enable tracing for all applications.

Important: Because the override string is stored in the system registry, the override
persists across reboots, and it affects all applications on your PC. Using the
ConnectionString override should only be used as long as it is required; you should clear
the override as soon as it is practical.

168 Integrating DB2 Universal Database for iSeries with Microsoft ADO .NET

The ConnectionString override has the same format as your ConnectionString (see 4.5.2,
“iDB2Connection and ConnectionString properties” on page 48). When an override is in
place, any time an application on your PC opens a connection (using an iDB2Connection
object’s Open method), the override string is appended to the ConnectionString of the
connection object. The provider then parses the ConnectionString left-to-right, so if a
duplicate keyword exists in the string, the rightmost one is used. Because the override string
is appended to the ConnectionString, any keyword listed in both the ConnectionString and in
the override string will use the value from the override string.

The ConnectionString override feature uses the following syntax:

� To set an override:

cwbmptrc -override "connection string override"

� To remove all overrides and return to the default processing:

cwbmptrc -override ""

� To show the current trace settings:

cwbmptrc -v

If an override has been set, cwbmptrc -v shows the override setting.

The cwbmptrc command is located in the folder where you installed iSeries Access for
Windows. If your PC’s path does not point to this folder, you may have to navigate into that
folder in order for the cwbmptrc command to run.

Table 4-10 shows some examples of ConnectionString overrides.

Table 4-10 Sample ConnectionString overrides

4.10.7 Gathering information for IBM Support
If you have exhausted your problem determination and believe that you have found a problem
with the provider, it may be time to contact your IBM Support representative. When contacting
IBM Support, include:

� The exact error message or output from the failing application. For iDB2Exceptions,
include the Message, MessageCode, SqlState, and StackTrace portions.

ConnectionString override Explanation

cwbmptrc -override “DataSource=myiSeries;
ConnectionTimeout=60;”

Overrides the DataSource used for the
connection. Sets the ConnectionTimeout value.

cwbmptrc -override
"Trace=PrintJoblog;Pooling=false;"

Enables the server job log to be spooled when
the job ends. Disables connection pooling.

cwbmptrc -override "DataSource=as1;
DataSource=myiSeries;"

Overrides the DataSource used for the
connection. Because it is listed last, the
DataSource used is myiSeries.

cwbmptrc -override "" All overrides are canceled.

Note: The ConnectionString override feature was added to the provider in service pack
SI13587. Because it was added after the product shipped, there is limited, English-only
help text available for the cwbmptrc -override option in V5R3M0.

Note: The SqlState property is meaningful only for iDB2SQLErrorExceptions.

Chapter 4. IBM DB2 UDB for iSeries .NET provider 169

� The iSeries Access for Windows version and service pack level. Find the version and
service level listed on the General tab of the iSeries Access for Windows Properties dialog
by selecting Start → Settings → Control Panel → iSeries Access for Windows.

� The iSeries host version and cumulative PTF level. To find the host version and cumulative
PTF level from an iSeries command prompt, run the DSPPTF command. The top PTF
listed in Display PTF Status is a marker PTF that has a PTF ID listed in the TL0nnnn
format. (nnnn is a four-digit number that is encoded with your current cume tape level.)

� The iSeries host Database Group PTF level and the HIPER PTF levels. To find these PTF
levels from an iSeries command prompt, run the WRKPTFGRP command.

– Note the level of the database group.

• For V5R2M0, the database group is SF99502.
• For V5R3M0, the database group is SF99503.

– Note the level of the HIPER group.

• For V5R2M0, the HIPER group is SF99519.
• For V5R3M0, the HIPER group is SF99529.

For more information about iSeries fixes, see:

http://www.ibm.com/servers/eserver/support/iseries/fixes/index.html

� The version of Windows on the PC.

� The Microsoft .NET Framework version. In Windows Explorer, navigate to <Windows
Folder> → Microsoft.NET\Framework → <version> → mscorcfg.dll.

Right-click mscorcfg.dll and select Properties. Click the Version tab. Note the File
Version. If multiple versions of the framework are installed, note the one being used by
your application. The version of .NET Framework used by your application can be modified
by settings in your app.config file or machine.config file. For information about .NET
versioning, visit the MSDN Web site at:

http://msdn.microsoft.com/

Search for the article entitled “Using Side-by-Side Execution.”

� A description or sample program describing how to reproduce the problem. If a sample
program cannot be provided to reproduce the problem, collect the cwbmptrc trace output, a
communication trace, and the host server job log. If the problem can be reproduced
without connection pooling enabled, we recommend that you disable connection pooling
(set Pooling=false in your ConnectionString), and make sure you close your connections
when they are complete by calling the Close() method of your iDB2Connection objects.

� A cwbmptrc trace output. (See 4.10.3, “Use provider traces via the cwbmptrc utility” on
page 167.)

� The host server joblog. The name of the host server job can be found by querying the
JobName connection property. The JobName is also recorded in the cwbmptrc trace
output file after a connection is opened successfully. You can use the Trace=PrintJoblog
option in your ConnectionString to cause the joblog to be spooled when the job ends. The
Trace option can also be used to specify additional options, for example to include debug
information in the joblog. See “Trace” on page 63 for more information about using the
Trace ConnectionString property. Alternatively, you can override the ConnectionString
using the Trace option; for example:

cwbmptrc -override “Trace=PrintJoblog, StartDebug”

See “Overriding your ConnectionString” on page 168 for more information about
overriding the ConnectionString.

� A communications trace. (See 4.10.5, “Use communication traces via the cwbcotrc utility”
on page 168.)

170 Integrating DB2 Universal Database for iSeries with Microsoft ADO .NET

http://www.ibm.com/servers/eserver/support/iseries/fixes/index.html
http://msdn.microsoft.com/

� The file version of the following files:

– IBM.Data.DB2.iSeries.dll, which is usually found in your Client Access directory
– cwbdc.dll, which is usually found in your <Windows Folder>\system32 directory

Either use Windows Explorer to navigate to the directory where the file resides or use
Start → Search to search for the specific file. When you locate the file, right-click it and
select Properties. Click the Version tab and record the File Version.

We recommend that when you gather trace information for IBM support, turn off connection
pooling by adding the following to the ConnectionString:

Pooling=false;

If any Trace ConnectionString options are being used, the traces are not turned off until the
connection is terminated, and with Connection Pooling, connections are normally kept around
indefinitely. See “Trace” on page 63 for information about enabling server-side traces using
the Trace ConnectionString option.

With Pooling set to false, your application should explicitly call Close() on the iDB2Connection
object; otherwise, your server-side traces will not be completed until the object is disposed.
With Pooling set to True (the default), your application must explicitly call
iDB2ProviderSettings.CleanupPooledConnections() before terminating, or the traces will not
be completed. See “When pooled connections stay around too long” on page 145 for
information about CleanupPooledConnections.

4.11 Writing code for provider independence
If you have used older data access technologies such as ODBC or OLE DB, you are already
familiar with the idea of provider independence. With those technologies, you access data
from different database providers using the same object names. The only thing that differs is
usually the way you connect to the database. Example 4-120 shows how to connect to an
iSeries database and run a SELECT statement to read data from the database, using the
IBMDA400 OLE DB provider:

Example 4-120 Reading from an iSeries database using the IBMDA400 OLE DB Provider

Private cn As New ADODB.Connection
Private cmd As New ADODB.Command
Private rs As New ADODB.Recordset
Private Sub Form_Load()
 cn.ConnectionString = "Provider=IBMDA400; Data Source=myiSeries;"
 cn.Open

 'Initialize the command to select records
 'from the EMPLOYEE table.
 cmd.CommandText = "select * from sampledb.employee"

 'Point the command to our connection object
 cmd.ActiveConnection = cn

 'Create a recordset object which contains the results
 'of executing our SELECT statement
 Set rs = cmd.Execute

Note: IBM.Data.DB2.iSeries.dll also has an Assembly version, but we want the File
version.

Chapter 4. IBM DB2 UDB for iSeries .NET provider 171

 'Read records from the recordset and display them
 While rs.EOF = False
 Debug.Print "Record: "
 Debug.Print " EMPNO: " & rs.Fields("EMPNO")
 Debug.Print " EMPNAME: " & rs.Fields("LASTNAME") & ", " & rs.Fields("FIRSTNME") &
" " & rs.Fields("MIDINIT")
 Debug.Print " WORKDEPT: " & rs.Fields("WORKDEPT")
 rs.MoveNext
 Wend

 rs.Close
 cn.Close
End Sub

If you want to run the same application, but instead of using OLE DB with IBMDA400, you
want to use the iSeries Access for Windows ODBC driver, all you have to do is change the
Connection information. Example 4-121 shows the previous example rewritten to use ODBC.

Example 4-121 Reading from an iSeries database using the iSeries Access for Windows ODBC driver

Private cn As New ADODB.Connection
Private cmd As New ADODB.Command
Private rs As New ADODB.Recordset
Private Sub Form_Load()
 cn.Properties("Prompt") = adPromptComplete
 cn.ConnectionString = "DRIVER=Client Access ODBC Driver (32-bit);SYSTEM=myiSeries;
ExtColInfo=1; XDynamic=0;"
 cn.Open

 'Initialize the command to select records
 'from the EMPLOYEE table.
 cmd.CommandText = "select * from sampledb.employee"

 'Point the command to our connection object
 cmd.ActiveConnection = cn

 'Create a recordset object which contains the results
 'of executing our SELECT statement
 Set rs = cmd.Execute

 'Read records from the recordset and display them
 While rs.EOF = False
 Debug.Print "Record: "
 Debug.Print " EMPNO: " & rs.Fields("EMPNO")
 Debug.Print " EMPNAME: " & rs.Fields("LASTNAME") & ", " & rs.Fields("FIRSTNME") &
" " & rs.Fields("MIDINIT")
 Debug.Print " WORKDEPT: " & rs.Fields("WORKDEPT")
 rs.MoveNext
 Wend

 rs.Close
 cn.Close
End Sub

While provider independence is fairly easy to implement with ADO and OLE DB, it is more
difficult with ADO.NET.

With the first few versions of ADO.NET, Microsoft does not give users a good way to easily
write code for provider independence. Instead of using generic object or class names,

172 Integrating DB2 Universal Database for iSeries with Microsoft ADO .NET

programmers are expected to write to a specific provider using each provider’s class names.
For example, to open a connection and run a command using the IBM.Data.DB2.iSeries
provider, use the code shown in Example 4-122.

Example 4-122 IBM.Data.DB2.iSeries provider-specific code

static void iSeriesProviderExample()
{

// Create a connection to the iSeries using the
// IBM.Data.DB2.iSeries provider
iDB2Connection cn = new iDB2Connection("DataSource=myiSeries;

DefaultCollection=sampledb;");

// Create a command to execute on the iSeries
iDB2Command cmd = cn.CreateCommand();
cmd.CommandText = "select * from employee";

// Open the connection
cn.Open();

// Execute the command, and get a DataReader in return.
iDB2DataReader dr = cmd.ExecuteReader();

// Process the result set... code not shown

// Close the DataReader and the connection
dr.Close();
cmd.Dispose();
cn.Close();

}

Alternatively, to perform the same task using the System.Data.SqlClient provider to talk to a
SQL Server instance, you would use the code shown in Example 4-123.

Example 4-123 System.Data.SqlClient provider-specific code

static void SQLProviderExample()
{

// Create a connection to a SQL Server instance using the
// System.Data.SqlClient provider
SqlConnection cn = new SqlConnection("Data Source=mySqlServer; User id=myUserId;

Password=myPassword; Initial Catalog=sampledb;");

// Create a command to execute on the SQL server
SqlCommand cmd = cn.CreateCommand();
cmd.CommandText = "select * from employee";

// Open the connection
cn.Open();

// Execute the command, and get a DataReader in return.
SqlDataReader dr = cmd.ExecuteReader();

// Process the result set... code not shown

// Close the DataReader and the connection
dr.Close();
cmd.Dispose();
cn.Close();

}

Chapter 4. IBM DB2 UDB for iSeries .NET provider 173

If you want the ability to switch between the two different providers, keep in mind that the
class names for each provider are different (iDB2Connection versus SqlConnection), so
writing independent code can be difficult. In the next section we show how to make writing
provider-independent code a little easier.

4.11.1 Writing provider-independent code with ADO.NET 1.0 and 1.1
The key to writing provider-independent code with early versions of ADO.NET is to take
advantage of the .NET interfaces implemented by each provider. For example, because all
ADO.NET providers must support a connection class that implements IDbConnection and a
command class that implements IDbCommand, you can write code that uses the interface
names instead of the class names. Because the .NET interface definitions do not offer a way
to create a generic connection object, creating and initializing a connection object is unique
for each provider. Example 4-124 shows how to write provider-independent code to read data
from the database as in our previous examples. The only difference when using the two
providers is the way you create and initialize your connection.

Example 4-124 Provider-independent code using ADO.NET 1.0 and 1.1 interfaces

static void GenericProviderExample(String provider)
{

IDbConnection cn;

// Create a connection to either the iSeries, or to
// a SQL Server instance, depending on what was
// passed as input.
if (provider.CompareTo("iseries") == 0)
{

// Create a connection to the iSeries using the
// IBM.Data.DB2.iSeries provider
cn = new iDB2Connection("DataSource=myiSeries; DefaultCollection=sampledb;");

}
else
{

// Create a connection to a SQL Server instance using the
// System.Data.SqlClient provider
cn = new SqlConnection("Data Source=mySqlServer; User id=myUserId;

Password=myPassword; Initial Catalog=sampledb;");
}

// Create a command to execute
IDbCommand cmd = cn.CreateCommand();
cmd.CommandText = "select * from employee";

// Open the connection
cn.Open();

// Execute the command, and get a DataReader in return.
IDataReader dr = cmd.ExecuteReader();

// Process the result set... code not shown

// Close the DataReader and the connection
dr.Close();
cmd.Dispose();
cn.Close();

}

174 Integrating DB2 Universal Database for iSeries with Microsoft ADO .NET

This is a simple example, but it shows how you can write provider-independent code with just
a little work. You can use provider-independent parameters and transactions just as easily, for
example:

cmd.Parameters.Add(cmd.CreateParameter());
IDataParameter p = (IDataParameter)cmd.Parameters[0];
IDbTransaction t = cn.BeginTransaction();

Although this works well for many of the ADO.NET objects, this approach has some
drawbacks. Because some ADO.NET classes must be newed in order get an instance
(namely Connection, DataAdapter, and CommandBuilder), you still have to write
provider-specific code to create them, as shown with the Connection object in Example 4-124
on page 174.

4.11.2 Writing provider-independent code with ADO.NET 2.0
Writing code for provider independence is a little tricky with earlier versions of ADO.NET, so
Microsoft provides an easier solution in their ADO.NET Version 2.0. They defined a set of
base classes that data providers can inherit from; for example, base classes DbConnection
and DbCommand are used for connections and commands. In addition, they have defined the
notion of provider “factory classes” that can be used to create provider-specific objects. You
can read more about ADO.NET 2.0 at the MSDN Library Web site:

http://msdn.microsoft.com/library/

Select .NET Development → Data Access and Storage → ADO.NET → Technical
Articles → ADO.NET 2.0.

As of this writing, the IBM.Data.DB2.iSeries provider does not support the ADO.NET 2.0 base
classes and provider factory classes. If or when this support is added in the future,
applications will be able to write code more easily that works with different .NET providers.

Chapter 4. IBM DB2 UDB for iSeries .NET provider 175

http://msdn.microsoft.com/library/

176 Integrating DB2 Universal Database for iSeries with Microsoft ADO .NET

Chapter 5. IBM DB2 for LUW .NET provider

This chapter describes the IBM DB2 for LUW .NET provider, integrated in DB2 UDB for Linux,
UNIX, and Windows (codenamed “Stinger”) and in DB2 Connect, the IBM product that
provides functionality for accessing data stored in DB2 UDB for iSeries as well as DB2 for
z/OS® and OS/390®. DB2 Connect offers capabilities to access DB2 family members by way
of several SQL interfaces, gateway functions such as connection pooling, and federated
database functionality. Many applications that support the DB2 family of products leverage
DB2 Connect as a key middleware component.

In this chapter, we see how to access a DB2 Universal Database Version 5, Release 1 (or
later) for AS/400 and iSeries, through DB2 Connect. The IBM DB2 for LUW .NET provider is
also referred to by the namespace it defines, IBM.Data.DB2.

5

© Copyright IBM Corp. 2005. All rights reserved. 177

5.1 DB2 Connect overview
For DB2 clients on a LAN, a DB2 Connect server enables access to data that is stored on
host or iSeries systems. DB2 Universal Database Enterprise Server Edition includes the DB2
Connect Server Support component. All references to DB2 Connect Enterprise Edition also
apply to the DB2 Connect Server Support component.

DB2 Connect provides transparent access to host or iSeries data through a standard
architecture for managing distributed data. This standard is known as Distributed Relational
Database Architecture (DRDA). DRDA enables applications to establish a fast connection to
host and iSeries databases without expensive host or iSeries components or proprietary
gateways.

Although DB2 Connect is often installed on an intermediate server machine to connect DB2
clients to a host or iSeries database, it is also installed on machines where multiple local
users want to access the host or iSeries servers directly. For example, DB2 Connect may be
installed on a large machine with many local users.

DB2 Connect may also be installed on a Web server, Transaction Processor (TP) monitor, or
other three-tier application server machines with multiple local SQL application processes
and threads. In these cases, you can choose to install DB2 Connect on the same machine for
simplicity or on a separate machine to offload CPU cycles.

5.2 Installing and configuring DB2 Connect
This section describes how to install DB2 Connect Enterprise Edition on Windows operating
systems. Before using the DB2 Connect Install program to install the DB2 .NET Data
Provider, the .NET Framework V1.1 must be installed on the computer; otherwise the DB2
Install program will not install the DB2 .NET Data Provider.

For information about the supported AS/400 and iSeries versions, and the required iSeries
server PTFs, see information APAR II13348. You can view information APARs by accessing
the IBM eServer iSeries Support Web site at:

http://techsupport.rchland.ibm.com

Select Technical Databases → Authorized Problem Analysis Reports APARs → Search
APARs. Type your APAR number, in this case II13348. Then select the APAR II13348.

Only the .NET Framework Version 1.1 and Visual Studio .NET 2003 are supported for use
with DB2 for VSE & VM, and DB2 for iSeries servers. The .NET Framework Version 1.0 and
Visual Studio .NET 2002 are not supported for use with these servers.

5.2.1 Host server jobs
When you run applications that use the DB2 for LUW .NET provider, much of the work is
performed by the iSeries server on behalf of your application. This is accomplished with the
help of host server jobs that run on the iSeries. The provider handles transferring the
commands and data back and forth between your PC and the host server jobs through the

Note: There are several different versions of DB2 Connect, from a Personal Edition to an
edition with unlimited access. For more information, visit the DB2 Universal Database for
Linux, UNIX, and Windows Web site at:

http://www.ibm.com/software/data/db2/udb/

178 Integrating DB2 Universal Database for iSeries with Microsoft ADO .NET

http://techsupport.rchland.ibm.com
http://www.ibm.com/software/data/db2/udb/

DRDA interface. The host server has a prestart job, QRWTSRVR, which normally runs under
the QUSRWRK subsystem. The host servers are installed as part of the operating system,
5722SS1 option 12 (Host Servers). Before you can use the DB2 for LUW .NET provider to
communicate with your iSeries host server jobs, the server jobs must be active. For more
information about the DRDA interface and associated server jobs, go the iSeries Information
Center at:

http://www.iseries.ibm.com/infocenter

Select Information center home → Printable PDFs and manuals → Distributed Database
Programming.

5.2.2 Prerequisites
Before you launch the DB2 Setup wizard, ensure that your system meets:

� Memory requirements
� Hardware, distribution, and software requirements
� Disk requirements

If you are planning to use LDAP on Windows 2000 or Windows Server 2003 (32-bit and
64-bit), you must extend the directory schema.

It is recommended that you use an Administrator account to perform the installation. The
Administrator account must belong to the local administrator’s group on the Windows
computer where you are installing your DB2 product and should have the following advanced
user rights:

� Act as part of the operating system
� Create token object
� Increase quotas
� Replace a process level token

You can perform the installation without advanced user rights, but the setup program may be
unable to validate accounts.

5.2.3 Installation procedure
To install DB2 Connect Enterprise Edition:

� Log on to the system as a user with administrator authority.

� Close all programs so the installation program can update files as required.

� Insert the CD-ROM into the drive. The auto-run feature automatically starts the DB2 Setup
wizard. The DB2 Setup wizard determines the system language and launches the setup
program for that language. If you want to run the setup program in a different language, or
the setup program fails to auto-start, you can run the DB2 Setup wizard manually.

The DB2 Launchpad opens as shown in Figure 5-1 on page 180.

Chapter 5. IBM DB2 for LUW .NET provider 179

http://www.iseries.ibm.com/infocenter

Figure 5-1 DB2 Connect Enterprise Edition setup

From this window, you can view the installation prerequisites and the release notes, or you
can proceed directly to the installation.

When you have begun the installation, proceed by following the setup program’s prompts.
Online help is available to guide you through the remaining steps; either click Help or press
F1. You can click Cancel at any time to exit the installation.

For information about errors encountered during installation, see the db2.log file, which stores
general information and error messages resulting from the install and uninstall activities. By
default, the db2.log file is located in the x:\db2log directory, where x: represents the drive on
which your operating system is installed.

5.2.4 Connecting to an iSeries database
DB2 Connect enables you to connect to your iSeries database in several ways, including:

� Specify the connection information directly in your ConnectionString.

� Configure a connection using the Configuration Assistant, then use that information in
your ConnectionString.

Connecting using a simple ConnectionString
The easiest way to connect to your iSeries using the DB2 for LUW .NET provider is to specify
your connection information in the ConnectionString. See 5.6.5, “Using the DB2Connection
object and the ConnectionString” on page 199 for a description of all values you can specify
in your ConnectionString. Example 5-1 on page 181 shows an example of a simple
ConnectionString.

180 Integrating DB2 Universal Database for iSeries with Microsoft ADO .NET

Example 5-1 A simple ConnectionString

//Initialize the connection string
String myConnString = "Server=myiSeries:446; Database=myRDB; UID=myUserid;
PWD=myPassword;";

//Create a connection object
DB2Connection cn = new DB2Connection(myConnString);

//Connect to the iSeries
cn.Open();

In this example:

� Server is the name or IP address of your iSeries server.
� 443 is the standard port number for DRDA on the iSeries.
� Database is the name of your relational database (RDB) on the iSeries.
� UID is your iSeries user ID.
� PWD is your iSeries password.

Connecting using the Configuration Assistant
There are times when you may want to use the Configuration Assistant to configure your
database connection. Follow these steps to configure a connection to an iSeries database
using the Configuration Assistant:

1. Launch the Configuration Assistant from your PC desktop by selecting Start →
Programs → IBM DB2 → Set-up Tools → Configuration Assistant.

2. Click Add to add a new data source and respond Yes to launch the Add Database Wizard.

3. In the window Select how you want to set up a connection, click Manually configure a
connection to a database.

4. Click the Protocol tab, and select TCP/IP for protocol and the option Connect directly to
the server. Click Next.

5. In the window Specify TCP/IP communication parameters, type the name of your iSeries
host in the Host name field. The Port number should be 446 to connect to the DRDA
server. Click Next.

6. In the window Specify the name of the database to which you want to connect, type the
name of your iSeries database (RDB name). The database alias is automatically filled in
with the same value as your database name. Click Next.

7. In the window Register this database as a data source, click Next.

8. In the window Specify the node options, select OS/400 for the operating system. Click
Finish.

When your connection has been configured through the Configuration Assistant, you can
connect as shown in Example 5-2.

Example 5-2 A ConnectionString that uses a pre-configured database name

//Initialize the connection string
String myConnString = "Database=myDatabase; UID=myUserid; PWD=myPassword;";

//Create a connection object

Hint: You can determine the RDB (database) name for your iSeries by using the
WRKRDBDIRE command. The system database is indicated by a Remote Location of
*LOCAL.

Chapter 5. IBM DB2 for LUW .NET provider 181

DB2Connection cn = new DB2Connection(myConnString);

//Connect to the iSeries
cn.Open();

In this example:

� Database is the name of the database alias you configured in step 6 on page 181.
� UID is your iSeries user ID.
� PWD is your iSeries password.

5.3 IBM DB2 Development Add-In overview
IBM DB2 Add-In is the collection of features that integrate with the Microsoft Visual Studio
.NET development environment. The Add-In has the following features, through which you
can perform operations on DB2:

� Launch various DB2 development and administration tools.

� Create and manage DB2 projects in the Solution Explorer.

� Access and manage DB2 data connections in the IBM Explorer.

� Create and modify DB2 scripts, including scripts to create stored procedures and
user-defined functions (UDFs).

The DB2 Development Add-In for Visual Studio .NET extends the DB2 server support to
include:

� DB2 for z/OS® and OS/390® versions 6, 7, and 8

� DB2 for iSeries® (AS/400®) versions 5.1 and 5.2

� DB2 for Linux, UNIX®, and Windows V8.1 and later

Currently not all of the features are available for the various DB2 servers. Table 5-1 lists the
restricted features.

Table 5-1 Features availability by distribution

Note: Although it may work, Version 8.2 of Development Add-In for Visual Studio .NET
was not tested using DB2 for iSeries Version 5.3.

Restricted feature Distributed iSeries z/OS V6 z/OS V7 z/OS V8

Generate table/view create script Yes No No No No

Create scalar functions Yes Yes No Yes Yes

Create table functions Yes No No No No

Generate function create script Yes Yes No No No

Generate Web service Yes No No No No

Tablespaces for create table Yes No Yes Yes Yes

182 Integrating DB2 Universal Database for iSeries with Microsoft ADO .NET

5.3.1 Registering the IBM DB2 Development Add-In
The IBM DB2 Development Add-In is installed on the client as a part of IBM DB2 Universal
Database for Windows, Version 8.x. You can check whether the Add-In is installed on the
client PC by examining the splash screen at Visual Studio .NET startup.

The DB2 Add-In can be registered in different ways:

1. Automatic installation

If you installed Visual Studio .NET before installing DB2, the DB2 Development Add-In is
registered automatically. If you installed Visual Studio .NET after you installed DB2 UDB or
you modified your installation, you must manually register the Add-In.

2. By using the IBM DB2 Set-up Tools menu

The IBM Add-In can be registered by selecting Windows Start → Programs → IBM
DB2 → Set-up Tools → Register Visual Studio Add-Ins menu as shown in Figure 5-2.

Figure 5-2 Register Visual Studio Add-Ins menu

3. Register manually

You can also register IBM DB2 Development Add-In with Visual Studio .NET by performing
the following steps:

a. Exit Visual Studio .NET.

b. In the SQLLIB/bin directory, run the db2vsrgx.bat file.

c. Start Visual Studio .NET.

d. The IBM DB2 Development Add-In tools and help are registered.

5.3.2 Unregistering the IBM DB2 Development Add-In
To unregister the IBM DB2 Development Add-In, perform the following steps:

a. Exit Visual Studio .NET.

b. In SQLLIB/bin, run db2vsurgx.bat.

The IBM DB2 Development Add-In tools and help are unregistered. You can unregister the
IBM DB2 Development Add-In help only by entering the following command in your
command window:

db2vsreg -unregister doc

Note: The IBM DB2 Development Add-In is automatically uninstalled when you
uninstall the IBM DB2 Universal Database server or client products.

Chapter 5. IBM DB2 for LUW .NET provider 183

5.3.3 DB2 Toolbar
With the DB2 Toolbar, you can launch the following DB2 tools:

� Development Center
� Control Center
� Replication Center
� Command Editor
� Task Center
� Health Center
� Journal
� Information Center

Figure 5-3 shows how it is depicted in the Microsoft Development Environment.

Figure 5-3 IBM DB2 Toolbar

5.3.4 DB2 Database Project type
The IBM DB2 Development Add-In introduces an IBM Projects folder, which includes a DB2
Database Project type for developing DB2 database server scripts (Figure 5-4 on page 185).

184 Integrating DB2 Universal Database for iSeries with Microsoft ADO .NET

Figure 5-4 DB2 Database Project

With a DB2 Database Project, you can:

� Add new or existing SQL stored procedure scripts.
� Add new or existing CLR stored procedure scripts.
� Add new or existing SQL UDF scripts.
� Add new or existing scripts based on generic templates.
� Add new or existing SQL table, index, view, and triggers scripts.
� Specify build configuration options, including script build order.
� Check script files into Microsoft Visual Source Safe source-control management system.

The Solution Explorer changes when you choose a DB2 Database project (Figure 5-5).

Figure 5-5 DB2 project Solution Explorer

Chapter 5. IBM DB2 for LUW .NET provider 185

5.3.5 IBM Explorer
The IBM DB2 Development Add-In extends the Visual Studio .NET environment by adding a
new tool called IBM Explorer (Figure 5-6), a dockable window that is similar to the Visual
Studio .NET Server Explorer.

Figure 5-6 IBM Explorer

IBM Explorer provides Visual Studio .NET users with access to IBM database connections
using the Data Connections folder, which is designed specifically for DB2 managed provider
connections. From the Data Connections folder in the IBM Explorer, you can:

� Access information about tables and views, including columns, triggers, and index details.

� Work with multiple named DB2 connections supporting connect on demand technology.

� Specify database catalog filters and local caching for higher performance and scalability.

� View properties of server objects including tables, views, stored procedures, and
functions.

� View source code for DB2 stored procedures and functions.

� Retrieve and update data from tables and views.

� Execute test runs for stored procedures and UDFs.

� View source code for stored procedures and functions.

� Generate ADO .NET code.

� Test DB2 procedures and functions.

� Create and manage reusable data adapters.

� Generate DB2 embedded application server Web services.

5.4 IBM DB2 data controls
In .NET, you can generate Windows front-end or Win Form code for interacting with a
database in two ways: either by writing code for each functionality as we have seen in
previous sections or by simply dragging and dropping (binding) database-related controls.
Dragging and dropping controls for database interaction requires few lines of code, and
therefore provides an easy and fast way to develop GUI applications.

Data controls that are available in DB2 are:

� DB2Connection
� DB2Command
� DB2DataAdapter

186 Integrating DB2 Universal Database for iSeries with Microsoft ADO .NET

Figure 5-7 shows how it is depicted in the toolbox of Microsoft Development Environment.

Figure 5-7 DB2 Data objects in Toolbox

To understand how to use each DB2 data control, we offer an example. Data controls can be
used in several combinations; for example, you can use DB2Connection and DB2Command
to execute command text, and programmatically you can assign the result to a
DB2DataReader. In our demo example, we use the DB2Adapter object to get the result data
from the EMPLOYEE table and then display it in a DataGrid control.

To use Data Controls on a Windows form (Win Form):

1. Create a new Windows application in C#.

2. Drag a DB2Connection control from the toolbox to your Windows form. Specify the
ConnectionString property of DB2Connection control in Property Explorer as:

server=myDB2:446;database=myDatabase;Connect Timeout=30;user Id=myUID;Persist
Security Info=true;password=myPWD;

3. Drag a DB2DataAdapter control from the toolbox to your Windows form. As soon as you
drop the DB2DataAdapter control onto the form, a DB2 Data Adapter Configuration
Wizard opens, as shown Figure 5-8 on page 188.

Note: Be sure to add the Persist Security Info=true parameter in the
ConnectionString property. This parameter preserves password information needed to
populate a DataGrid.

Chapter 5. IBM DB2 for LUW .NET provider 187

Figure 5-8 DB2 Data Adapter Configuration Wizard

4. Click Next to open step 1 for specifying connection details, as shown in Figure 5-9. If you
have already created a connection in IBM Explorer, connection details appear
automatically in the Connection Name box. Otherwise, you can specify connection details
by clicking the New Connection button. Click Next to go to step 2.

Figure 5-9 DB2 Data Connection

188 Integrating DB2 Universal Database for iSeries with Microsoft ADO .NET

5. In SQL Statement Options, you can specify whether you want to perform INSERT,
UPDATE or DELETE operations on your data source. By selecting the options, the wizard
automatically creates the necessary actions.

The default SQL type in the wizard is SELECT. In our example in Figure 5-10, we are not
performing an UPDATE operation on the data source, so none of the options is selected.
Click Next to go to step 3.

Figure 5-10 DB2 SQL statement options

Chapter 5. IBM DB2 for LUW .NET provider 189

6. Specify a SELECT statement or Stored procedure. Enter a SQL statement to select all
employees from the EMPLOYEE table, as shown in Figure 5-11. The SQL editor supports
SQL syntax colorization and intellisense to select database objects such as table name.

This step also enables you to specify parameters and table mappings, and provides
functionality to test your edited SQL statement.

Click Next.

Figure 5-11 SQL editor: intellisense feature

190 Integrating DB2 Universal Database for iSeries with Microsoft ADO .NET

7. The Summary window displays a summary of all SQL statements you have selected and
edited, as shown in Figure 5-12. Click Finish to complete the wizard steps.

Figure 5-12 Wizard Summary

Chapter 5. IBM DB2 for LUW .NET provider 191

8. To bind DataAdapter controls, generate a data set: Right-click the newly configured
db2DataAdapter1 control and select Generate Data Set, as shown in Figure 5-13.

Figure 5-13 Generating Data Set from Data Adapter

192 Integrating DB2 Universal Database for iSeries with Microsoft ADO .NET

9. This opens a Generate Data Set window (Figure 5-14). The Generate Data Set dialog
provides functionality to select or specify a Data Set object or to select table names.

Click OK to generate a db2DataSet1 object at the bottom of your design window.

Figure 5-14 Configuring Data Set

10.To display the data from the generated data set in the DataGrid, drag a DataGrid control
and a command button. Rename the command button by changing its text property to
Fill DataGrid, then double-click it to open a code window. In the code window, write the
code shown in Example 5-3 to populate the DataGrid control.

Example 5-3 Configuring button click action

private void button1_Click(object sender, System.EventArgs e)
{

dataGrid1.DataSource = db2DataSet11;
db2DataAdapter1.Fill (db2DataSet11);

}

Chapter 5. IBM DB2 for LUW .NET provider 193

Figure 5-15 shows a snippet of the demo example that appears after executing the
application when you click Fill DataGrid.

Figure 5-15 Displaying data using data controls

5.5 LUW provider features
This section describes how you can use the LUW provider and discusses the features that
are supported and those not supported yet.

5.5.1 Classes to implement ADO.NET interfaces
Figure 5-16 shows the DB2 LUW provider object model.

Figure 5-16 DB2 LUW provider object model

194 Integrating DB2 Universal Database for iSeries with Microsoft ADO .NET

Table 5-2 shows the classes included in the LUW provider.

Table 5-2 Classes implemented in LUW provider

Class Description

DB2Command Represents a SQL statement or stored procedure to execute
against a database.

DB2CommandBuilder Automatically generates single-table commands that are
used to reconcile changes made to a DataSet with the
associated database.

DB2Connection Represents an open connection to a database.

DB2DataAdapter Represents a set of data commands and a connection to a
database that are used to fill the DataSet and update the
database.

DB2DataReader Provides a way to read a forward-only stream of data rows
from a database.

DB2Error Collects information relevant to a warning or error returned by
the database.

DB2ErrorCollection Collects all errors generated by the DB2DataAdapter.

DB2Exception The exception that is generated when an error is returned by
an DB2 database.

DB2InfoMessageEventArgs Provides data for the InfoMessage event.

DB2Parameter Represents a parameter to a DB2Command and, optionally,
its mapping to a DataColumn.

DB2ParameterCollection Represents a collection of parameters relevant to an
DB2Command as well as their respective mappings to
columns in a DataSet.

DB2Permission Enables the DB2 .NET Data Provider to ensure that a user
has a security level adequate to access a DB2 database.

DB2PermissionAttribute Associates a security action with a custom security attribute.

DB2RowUpdatedEventArgs Provides data for the RowUpdated event.

DB2RowUpdatingEventArgs Provides data for the RowUpdating event.

DB2Transaction Represents a SQL transaction to be made at a database.

Chapter 5. IBM DB2 for LUW .NET provider 195

5.5.2 Data types
The DB2 for LUW provider maps DB2 data types to .NET data types, according to Table 5-3.

Table 5-3 Mapping of DB2 data types to .NET data types

5.5.3 Unsupported features
The LUW provider, when used to access DB2 UDB for iSeries, does not support the following
features:

� User-defined data types (UDTs)

� Datalink data type

� The DB2 for LUW .NET provider does not include the ability to set certain iSeries-specific
settings, such as System Naming and Library List.

DB2 type enum DB2 data type .NET data type

SmallInt SMALLINT System.Int16

Integer INTEGER System.Int32

BigInt BIGINT System.Int64

Real REAL System.Single

Double DOUBLE PRECISION System.Double

Float FLOAT System.Double

Decimal DECIMAL System.Decimal

Numeric DECIMAL System.Decimal

Date DATE System.DateTime

Time TIME System.TimeSpan

TimeStamp TIMESTAMP System.DateTime

Char CHAR System.String

VarChar VARCHAR System.String

Binary CHAR FOR BIT DATA System.Byte[]

VarBinary VARCHAR FOR BIT DATA System.Byte[]

Graphic GRAPHIC System.String

VarGraphic VARGRAPHIC System.String

CLOB CLOB System.String

BLOB BLOB System.Byte[]

DbCLOB DBCLOB(N) System.String

196 Integrating DB2 Universal Database for iSeries with Microsoft ADO .NET

5.6 Getting started
To begin using the LUW provider, you must know how to get ready to write an application
using it, which we demonstrate in this section.

5.6.1 Starting Visual Studio .NET
After you have installed DB2 Connect, the splash window of Visual Studio .NET displays the
icon and text corresponding to IBM DB2 Tools. This indicates that the provider is installed and
the help library has been set up properly.

Most of the samples in this chapter use a Console application. To create such a project, click
the Console Application icon and fill in the information as shown in Figure 5-17.

Figure 5-17 Creating a C# Console application

Chapter 5. IBM DB2 for LUW .NET provider 197

5.6.2 Displaying the technical reference
You can access the technical reference from Visual Studio .NET. From the Visual Studio .NET
IDE, select Help → Contents to open the Contents window (Figure 5-18). Expand IBM DB2
.NET Data Provider to display information about classes that are implemented in this
provider, including DB2 .NET Data Provider Samples.

Figure 5-18 Viewing the DB2 LUW provider technical reference

5.6.3 Adding an assembly reference to the provider
To use the IBM.Data.DB2 provider classes, you must add a reference. In the Project Explorer
window, right-click your project name and select Add Reference to open the Add Reference
window shown in Figure 5-19. Click OK and you have now an assembly reference to the
IBM.Data.DB2 provider.

Figure 5-19 Adding a reference

198 Integrating DB2 Universal Database for iSeries with Microsoft ADO .NET

5.6.4 Adding a namespace directive
A namespace directive imports the types contained in a namespace into the immediately
enclosing compilation unit or namespace body, enabling the identifier of each type to be used
without qualification. In a class, insert code to add a using directive as shown:

using IBM.Data.DB2;

To add a namespace directive using Visual Basic .NET, add an Imports statement to your
Visual Basic source file:

Imports IBM.Data.DB2

5.6.5 Using the DB2Connection object and the ConnectionString
In this section, we explain ConnectionString attributes in detail. Table 5-4 describes all the
attributes for the ConnectionString for the DB2 LUW provider.

Table 5-4 ConnectionString attributes for the DB2 LUW provider

Attribute Description Default value (if omitted)

Database Database alias (for catalogued database)
or RDB name

User ID; UID User ID

Password; PWD Password

Server Server name with optional port number for
direct connection (<server name/IP
address>[:<port>])

CurrentSchema The schema to be used after a successful
connection. Upon a successful connection,
a SET CURRENT SCHEMA statement is
sent to the DB2 server. This enables the
application to name SQL objects without
having to qualify them by a schema name.

Connection Lifetime Amount of time (seconds) that the
connection can remain idle in the
connection pool

60

Connection Reset True: This particular connection will be put
into the connection pool when it is closed.
False: This particular connection will not be
put into the connection pool when it is
closed.

false

Enlist True: Enlistment to Distributed Transaction
Coordinator (DTC) is allowed. (This will
enlist only if a COM+ transaction is in
progress at connect time.)
False: Enlistment to Distributed Transaction
Coordinator (DTC) is not allowed.

true

Chapter 5. IBM DB2 for LUW .NET provider 199

Example 5-4 shows how to create a connection.

Example 5-4 Using DB2Connection

//Create connection string
string myConnString = "Server=myiSeries:446; Database=myRDB; UID=myUserid;
PWD=myPassword;";
//Create connection object
DB2Connection myConnection = new DB2Connection(myConnString);
//Connect to database
myConnection.Open();

Connections can be opened in two ways:

� Explicitly by calling the Open method on the connection
� Implicitly when using a DataAdapter

Table 5-5 and Table 5-6 on page 201 describe some important interfaces of the Connection
object.

Table 5-5 Connection object properties

Isolation Level;
IsolationLevel

Isolation level for the connection. Possible
values are:

ReadCommitted
ReadUncommitted
RepeatableRead
Serializable

This keyword is supported only for
applications participating in a distributed
transaction, such as a COM+ application.
For applications that do not participate in a
distributed transaction, this keyword is not
supported and an InvalidArgument
exception is thrown.

Max Pool Size Maximum pool size no maximum

Min Pool Size Minimum pool size 0

Persist Security Info True: Allow security-sensitive information,
such as password, to be returned as part of
the connection string after the connection
has been opened or if the connection has
ever been in an opened state.
False: Security-sensitive information is not
returned as part of the connection string.
False is strongly recommended.

false

Pooling Connection pooling switch (true/false) true

Public property Description

ConnectionString This is required for making a connection with a database. It requires the
database source name and other parameters.
For example, for DB2 .NET provider you can specify a ConnectionString
property with Connection cnn as:

cnn.ConnectionString ="Database=myDB2";

Attribute Description Default value (if omitted)

200 Integrating DB2 Universal Database for iSeries with Microsoft ADO .NET

Table 5-6 Connection object methods

5.6.6 Using the DB2Command object
DB2Command represents a SQL statement or stored procedure to execute against a
database. This command can use parameters and be executed in a transaction. Example 5-5
illustrates the use of the DB2Command.

Example 5-5 Using DB2Command

//Create connection string
string myConnString = "DATABASE=myDB2;";
//Create connection object
DB2Connection myConnection = new DB2Connection(myConnString);
//Connect to database
myConnection.Open();
//Create DB2Command using existing connection object
DB2Command cmd = myConnection.CreateCommand();
//Establish SQL statement to be executed
cmd.CommandText = “UPDATE SAMPLEDB.EMPLOYEE SET Salary = Salary * 1.05;“;
//Create a transaction
DB2Transaction trans = cnn.BeginTransaction();
//Execute the command
cmd.ExecuteNonQuery();
//Complete the transaction
trans.Commit();

Table 5-7 and Table 5-8 on page 202 describe some important interfaces of the Command
object.

Table 5-7 Command object properties

Public method Description

Open Opens a database connection that is specified in a ConnectionString property,
such as:

cnn.Open();
The Connection object throws an exception if it fails to open a database
connection.

Close Used to close the database connection. For example:
cnn.Close();

CreateCommand Returns a Command object associated with the connection, which can be
used to perform SQL operations on a database. For example:

DB2Command cmd = cnn.CreateCommand();

BeginTransaction Begins a transaction at the local level.

Public property Description

CommandType Describes whether the Command object will execute a SQL statement or
Stored Procedure.

CommandText Used to set or get a SQL statement or Stored Procedure to execute at a
database. The default value of the CommandType property is
CommandType.Text. For example:

cmd.CommandText = "select * from STAFF";
cmd.CommandType = CommandType.Text;

Chapter 5. IBM DB2 for LUW .NET provider 201

Table 5-8 Command object methods

5.6.7 Using the DB2DataReader object
The DB2DataReader provides a way to read a forward-only stream of data rows from a
database. Example 5-6 illustrates the use of the DB2DataReader object.

Example 5-6 Using DB2DataReader

//Create connection string
string myConnString = "DATABASE=myDB2;";
//Create connection object
DB2Connection myConnection = new DB2Connection(myConnString);
//Connect to database
myConnection.Open();
//Create DB2Command using existing connection object
DB2Command cmd = myConnection.CreateCommand();
//Establish SQL statement to be executed
cmd.CommandText

= “SELECT FirstNme, LastName, HireDate FROM SAMPLEDB.EMPLOYEE ORDER BY HireDate ASC;“;
//Create a DataReader
DB2DataReader reader;
//Execute the command to fill the DataReader
reader = cmd.ExecuteReader();
//Iterate the DataReader
while(reader.Read())
{

//Retrieve data from reader row
String myFirstName = reader.GetString(0);
String myLastName = reader.GetString(1);
DateTime myHireDate = reader.GetDate(2);
//Make something with these values
Console.WriteLine(myLastName.Trim()+", "+myFirstName.Trim()

+" - "+myHireDate.ToShortDateString());
}
//DataReader must be closed
reader.Close();
//Close the connection
myConnection.Close();

When we run this code snippet, we see the result shown in Figure 5-20 on page 203.

Public method Description

CreateParameter Used for handling parameters. The parameter could be input-only, output-only,
bidirectional, or a stored procedure return value parameter.

ExecuteNonQuery Can be used to perform UPDATE, INSERT, or DELETE SQL operations on a
database. This method returns the number of rows that are affected after
executing the SQL statement. For example:

cmd.Connection.Open();
rowsAffected = cmd.ExecuteNonQuery();

ExecuteReader Used for reading results by executing a SELECT statement on a database.

ExecuteScalar Used for retrieving a single value from a database. This reduces overhead
required for the ExecuteReader method. For example:

cmd.CommandText = "select count(*) from STAFF";
Int32 count = (int32) cmd.ExecuteScalar();

202 Integrating DB2 Universal Database for iSeries with Microsoft ADO .NET

Figure 5-20 DB2DataReader sample output

Table 5-9 and Table 5-10 describe important properties and methods of the DataReader
class.

Table 5-9 DataReader class properties

Table 5-10 DataReader methods

5.6.8 Using the DB2DataAdapter object
The DB2DataAdapter represents a set of data commands and a connection to a database
that are used to fill the DataSet and update the database. The DB2DataAdapter serves as a
bridge between a DataSet and database for retrieving and saving data. The DB2DataAdapter
provides this bridge by using Fill to load data from the database into the DataSet and using
Update to send changes made in the DataSet back to the database.

We can use DB2DataAdapter to fill a DataSet as shown in Example 5-7. (Error control has
been omitted for brevity.)

Example 5-7 Using DB2DataAdapter to retrieve a DataSet

private DataSet GetStaffDataSet()
{

//Create connection string
string myConnString = "DATABASE=myDB2;";
//Create empty DataSet
DataSet myDataset = new DataSet();

Public property Description

FieldCount Returns the number of columns in the current row.

HasRows Indicates whether DataReader has one or more rows.

Public method Description

Read Used to read records one by one. This method automatically advances the
cursor to the next record and returns true or false, indicating whether
DataReader was able to read any rows.

Close Closes the DataReader.

Getxxxx Used to get data of type xxxx. For example, the GetBoolean method is used
to get Boolean records, and the GetChar method is used to get char-type
data.

Chapter 5. IBM DB2 for LUW .NET provider 203

//Create connection object
DB2Connection myConnection = new DB2Connection(myConnString);
//Use DataAdpater to connect to database and retrieve results
DB2DataAdapter myAdapter = new DB2DataAdapter();
myAdapter.SelectCommand = new DB2Command(“SELECT * FROM STAFF”, myConnection);
myAdapter.Fill(myDataset);
//Return filled DataSet
return myDataset;

}

Table 5-11 and Table 5-12 show some important DataAdapter public properties and methods.

Table 5-11 DataAdapter properties

Table 5-12 DataAdapter methods

5.7 Advanced topics
In this section we cover advanced features of LUW .NET provider.

5.7.1 Using large objects (LOBs)
A LOB is a large block of data that is stored in a database, such as an image or sound file.
Note that LOBs are not stored in table rows, but in separate pages referenced by a pointer in
the row.

The three types of LOB data types in DB2 are:

� Character large objects (CLOBs)

These are typically used to store blocks of text items, such as ASCII or PostScript files.

� Double-byte character large objects (DBCLOBs)

A DBCLOB is used to store large DBCS character-based data such as documents written
with a single character set. A DBCLOB value can be up to 1,073,741,823 double-byte
characters long.

Public property Description

DeleteCommand Gets or sets a SQL statement or Stored Procedure to delete records from the
data set. For example:

DB2DataAdapter adpt = new DB2DataAdapter ();
DB2Command cmd;
cmd = new DB2Command("DELETE FROM Customers WHERE CustomerID =
'', cnn);
adpt.DeleteCommand = cmd;

InsertCommand Inserts new records into a database using SQL or Stored Procedure.

SelectCommand Selects records in a database using SQL or Stored Procedure.

UpdateCommand Used to update records in a database using SQL or Stored Procedure.

Public method Description

Fill Used to fill records in DataSet. For example:
adpt.Fill(dataset); //fills dataset

Update Used to update rows in DataSet and a database by performing INSERT,
DELETE, or UPDATE operations.

204 Integrating DB2 Universal Database for iSeries with Microsoft ADO .NET

� Binary large objects (BLOBs)

BLOB has no structure that can be interpreted by the database management system but
is known only by its size and location.

The IBM DB2 for LUW .NET provider has the capability to handle LOBs. By using this
provider, code can be written to SELECT, INSERT, UPDATE, or DELETE LOBs from a
database.

To demonstrate, we create an Employee Photo Viewer application. This application takes an
employee name selected by the user and displays the employee’s photo, which is stored as a
BLOB data type in the EMP_PHOTO table.

The running Employee Photo Viewer application looks as shown in Figure 5-21.

Figure 5-21 Accessing LOB data sample

To start, open a new Visual C# Windows application project and put controls on the default
form. The code for this application is divided into two parts, the first for populating the combo
box with user names, and the second for displaying the photo of an employee as per the
selection in the combo box. Both parts use the connection object created by the getCnn()
function. The code for the getCnn() function is shown in Example 5-8.

Example 5-8 Employee Photo Viewer getCnn method

private DB2Connection getCnn ()
{

DB2Connection conn = null;
try
{

conn=new DB2Connection("database=myDB2;Connect Timeout=30;user
Id=myuserid;password=mypassword;");

conn.Open ();
}
catch (DB2Exception e)
{

MessageBox.Show (e.Message);
conn.Close ();

}
return conn;

}

The application uses the combo box control to give the user a way to select an employee
name. The ValueMember property is used in conjunction with the SelectedValue property to
get the employee number that is associated with the employee’s name.

The code snippet in Example 5-9 on page 206 shows how the combo box is populated for
employee names, and the ValueMember property is used to assign an employee number.

Chapter 5. IBM DB2 for LUW .NET provider 205

Example 5-9 Employee Photo Viewer populateEmpNameCombo method

private void populateEmpNameCombo()
{

DB2Connection cnn = null;
cnn=getCnn();
// Create the DataSet
DataSet ds = new DataSet();
// Fill the Dataset using Data Adapter
DB2DataAdapter da1 = new DB2DataAdapter("SELECT distinct a.EMPNO,a.FIRSTNME FROM
SAMPLEDB.EMPloyee a, SAMPLEDB.EMP_PHOTO b where a.empno = b.empno",cnn);
DataTable dataTable = new DataTable();
da1.Fill(dataTable);
comboBox1.Items.Clear ();

//Define the event handler for combo box SelectedValueChanged event
this.comboBox1.SelectedValueChanged += new
System.EventHandler(this.comboBox1_SelectedValueChanged);
//assign combo box properties to populate the database.
comboBox1.DataSource = dataTable;
comboBox1.DisplayMember = "FIRSTNME";
comboBox1.ValueMember = "EMPNO";
cnn.Close();

}

The populateEmpNameCombo() method is invoked in the Form Load event, which populates
the data when the application gets started, as shown in Example 5-10.

Example 5-10 Employee Photo Viewer populateEmpNameCombo method

private void Form1_Load(object sender, System.EventArgs e)
{

populateEmpNameCombo();
}

When the user selects any name in the combo box, the SelectedValueChanged event is
executed. In this event the LOB data for the employee photo is retrieved from the
EMP_PHOTO table using the selected employee name. The SelectedValue property of the
combo box returns the employee number associated with the selected employee name as
shown in Example 5-11.

Example 5-11 Employee Photo Viewer comboBox1_SelectedValueChanged event handler

private void comboBox1_SelectedValueChanged(object sender, System.EventArgs e)
{

if (comboBox1.SelectedIndex >= 0)
{

DB2Connection cnn = null;
cnn=getCnn();
DB2Command cmd = cnn.CreateCommand();
cmd.CommandText =

"SELECT picture FROM sampledb.emp_photo " +
"where empno='" + comboBox1.SelectedValue + "'";

The ExecuteReader method returns the result by executing the SQL statement against the
EMP_PHOTO database as shown in Example 5-12 on page 207. The data reader is used to
get the LOB data of the employee’s photo.

206 Integrating DB2 Universal Database for iSeries with Microsoft ADO .NET

Example 5-12 Employee Photo Viewer event handler continued

DB2DataReader reader;
reader = cmd.ExecuteReader();//;

Next, the data reader is used with the MemoryStream object to consume the LOB data in
stream format as shown in Example 5-13.

Example 5-13 Employee Photo Viewer event handler continued

if(reader.Read())
{

int maxSize = 102400;
Byte[] out_picture = new Byte[maxSize];
reader.GetBytes(4,0,out_picture,0,maxSize);
MemoryStream mem = new MemoryStream(out_picture);

Finally, the employee image is displayed by assigning stream data from the MemoryStream
object using the FromStream method of the Image object, as shown in Example 5-14.

Example 5-14 Employee Photo Viewer event handler continued

picEmp.Image =Image.FromStream(mem);
}
reader.Close();
cnn.Close();

}
}

5.7.2 Using the DB2CommandBuilder object
The DB2CommandBuilder object provides dynamic updating logic for the data in a dataset
object. Methods of the DB2CommandBuilder object take care of transact SQL statements
(INSERT, UPDATE, and DELETE) without writing any SQL statements. To achieve this,
DB2CommandBuilder methods use schema information of a table specified using
SelectCommand. Using this table schema information, it automatically builds INSERT,
UPDATE, and DELETE command objects and required SQL statements. The command
builder object is used in association with data adapter object. When data adapter invokes
update method, the automatically built command object gets invoked.

Basic requirements for using the DB2CommandBuilder
The DB2CommandBuilder can generate updating logic if all of the following are true:

� The query returns data from only one table.

� A table should have a primary key.

� The primary key is included in the results of the query.

� The primary key ensures that the query-based updates that the DB2CommandBuilder
generates can update one row at most.

� The SelectCommand must be specified. The DB2CommandBuilder object uses the
DB2DataAdapter object’s SelectCommand property to fetch the metadata necessary for
the updating logic.

Chapter 5. IBM DB2 for LUW .NET provider 207

In this example of DB2CommandBuilder and how it works, we show how to update the
SALARY of an employee without writing an update SQL statement.

1. Create a new Console Application in C# and import the necessary namespaces
(Example 5-15).

Example 5-15 C# namespaces

using IBM.Data.DB2;
using System.Data;

2. Declare connection, data adapter, and command builder objects and open a connection to
the database as shown in Example 5-16. Note that the command builder object is created
by passing a data adapter object. The command builder object automatically generates
transact SQL statements (INSERT, UPDATE, and DELETE), depending on the Select SQL
statement passed to the data adapter object.

Example 5-16 DB connection code

DB2Connection cnn = new DB2Connection("server=19.15.192.121:446;database=myDB2;Connect
Time-out=30;user Id=myUID;password=myPWD;");
//select SQL statement is also get used by command builder to build schema information
DB2DataAdapter dADP = new DB2DataAdapter("select * from sampledb.employee where
empno='000010'", cnn);
DB2CommandBuilder cBLD = new DB2CommandBuilder(dADP);
cnn.Open();

3. Declare a dataset object and fill the data in it using data adapter (Example 5-17).

Example 5-17 Dataset object declaration

//declare dataset object and fill with employee information
DataSet empDS = new DataSet();
dADP.Fill(empDS, "EMPLOYEE");

4. For verification purposes, print the existing salary of the employee, then set the salary to
the new value as shown in Example 5-18.

Example 5-18 Data shown on console

//salary before update
Console.WriteLine ("Employee Salary before update " +
empDS.Tables["EMPLOYEE"].Rows[0]["SALARY"]);
//new salary
empDS.Tables["EMPLOYEE"].Rows[0]["SALARY"]=92345.39;

5. Salary in a data set row can be updated using the Update() method of the data adapter
(see Example 5-19). The Update() statement calls the respective INSERT, UPDATE, or
DELETE statements for each inserted, updated, or deleted row in the DataSet.

Example 5-19 Update method

//update salary
dADP.Update(empDS, "EMPLOYEE");

208 Integrating DB2 Universal Database for iSeries with Microsoft ADO .NET

6. Verify the updated salary and close the connection (Example 5-20).

Example 5-20 Update verification and close connection

//check updated salary
Console.WriteLine ("Employee Salary after update " +
empDS.Tables["EMPLOYEE"].Rows[0]["SALARY"]);
//close connection
cnn.Close();

Advantages and disadvantages of using the CommandBuilder
The CommandBuilder object has advantages and disadvantages, which we discuss here.

Advantages
� The CommandBuilder object requires less code for updating transact SQL statements. It

enables you to generate updating logic without writing any SQL statements for UPDATE,
INSERT, and DELETE queries.

� The CommandBuilder is also useful in any application where you need to support
updating, but you will not know the structure of your queries at design time.

� You can also generate transact SQL statements using the CommandBuilder object. In the
previous example, you can get an Update SQL statement using following statements:

string UpdateSQLStatement = cBLD.GetUpdateCommand().CommandText
Console.WriteLine (UpdateSQLStatement);

� From that SQL statement, you can also check and construct values of various properties
on the Parameter objects it constructs.

Disadvantages
� For using the CommandBuilder object, you should follow the basic requirements listed in

“Basic requirements for using the DB2CommandBuilder” on page 207.

� A CommandBuilder will not help you submit updates using stored procedures.

� Due to dynamic generation of SQL statements, the CommandBuilder does not offer the
best possible run-time performance.

5.7.3 Performing transactions
DB2 LUW provider supports transactions in conjunction with the .NET code. A transaction is a
set of related tasks that either succeeds (commits) or fails (aborts) as a unit. In .NET you can
perform transactions in two ways, depending on your environment:

� Local transaction
� Distributed transaction

Figure 5-22 on page 210 illustrates the different ways to perform transactions in .NET.

Chapter 5. IBM DB2 for LUW .NET provider 209

Figure 5-22 Different ways to perform transactions in .NET

Local transactions
Local transactions are performed on a single database and can be performed by using ADO
.NET. In the local transaction model, the code uses the transaction support features of either
ADO.NET or Transact-SQL directly in component code or stored procedures, respectively.

Local transaction enables you to explicitly begin a transaction, control each connection and
resource enlistment within the transaction boundary, determine the outcome of the
transaction (commit or abort), and end the transaction.

Distributed transactions
Distributed transactions are performed in a distributed environment that includes one or more
databases, such as multiple resource managers located on remote computers.

Distributed transactions can be performed by registering the .NET assembly with COM+. The
.NET Framework provides various declarative attributes that specify how to participate in the
transaction. This model enables you to easily configure multiple components to perform work
within the same transaction.

Distributed transactions can be performed by using the SetAbort() and SetCommit() methods,
or by using the AutoComplete attribute.

The IBM DB2 for LUW .NET provider can handle both local and distributed transactions,
which we discuss in the next section.

Loosely-coupled transactions are not supported
The Microsoft COM+ transactional environment expects that a resource (such as DB2) that
has two concurrent branches of the same global transaction would treat these two branches
as a common transaction. In the case of DB2, that implies that locks would be shared
between these two branches as best as possible. The reason for this required behavior is that
COM+ can either use different connection to execute different portions of a common

210 Integrating DB2 Universal Database for iSeries with Microsoft ADO .NET

transaction. Because different connections are used, Microsoft XA Transaction Manager uses
differing branch qualifiers for each connection. Additionally, it is quite possible that COM+
objects executed within the same global transaction are dispersed across different physical
machines, so different connections are required. Because the DB2 UDB for iSeries does not
support loosely coupled distributed transactions as of this writing, this support is not available
through the DB2 for LUW .NET provider when using an iSeries.

Performing local transactions with the DB2 LUW provider
IBM DB2 for LUW .NET provider has the capability to handle transactions at the local level.
You can define where to start a transaction using the BeginTransaction method of the
connection object, and you can control where to commit and roll back results using the
Commit and RollBack methods respectively.

The DB2Transaction class is used for controlling local transactions. In the following example,
the UPDATE SQL query updates the STAFF table, a transaction object commits the update
using the Commit method, and the Rollback method rolls back the entire transaction if any
errors occur.

To understand how the local transaction works, try this example:

1. Create a console application in Visual Studio .NET, add a reference to the DB2 provider,
and import the necessary namespaces. In a code window declare the data objects as
shown in Example 5-21.

Example 5-21 Performing local transactions with DB2 LUW provider: declaring objects

DB2Connection cnn = null;
DB2Transaction trans = null;
DB2Command cmd = null;

2. The connection and command object are created with CommandText for updating the
record in the table, as shown in Example 5-22.

Example 5-22 Performing manual transactions with DB2 LUW provider: creating objects

try
{

cnn = new DB2Connection(("database=myDB2;user Id=myuiserid;password=mypassword;");
cmd = new DB2Command();
cmd.Connection = cnn;
cmd.CommandText = "update sampledb.staff set salary = 20000 where id =20";
cnn.Open();

3. In the next statement, the BeginTransaction method of the connection object is used to
initiate the transaction object, then it is assigned to the Transaction property of the
command object as shown in Example 5-23.

Example 5-23 Performing manual transactions with DB2 LUW provider: initiating a transaction

trans = cnn.BeginTransaction ();
cmd.Transaction = trans;

4. The ExecuteNonQuery method executes update statements on the database and returns
the total number of updated rows as shown in Example 5-24.

Example 5-24 Performing manual transactions with DB2 LUW provider: executing the statement

int rowsUpdated = cmd.ExecuteNonQuery();
Console.WriteLine ("Rows Updated = " + rowsUpdated);

Chapter 5. IBM DB2 for LUW .NET provider 211

If everything runs as planned, the Commit method of the transaction object commits the
update in the STAFF table, as shown in Example 5-25.

Example 5-25 Performing manual transactions with DB2 LUW provider: committing the transaction

trans.Commit ();
cnn.Close ();

}

However, if any errors occur, the transaction is rolled back using the Rollback method shown
in Example 5-26.

Example 5-26 Performing manual transactions with DB2 LUW provider: committing the transaction

catch (Exception e)
{

trans.Rollback();
Console.Out.WriteLine(e.Message);

}

Performing distributed transactions with the DB2 LUW provider
Distributed transaction in .NET can be performed using COM+, which provides an enterprise
development environment, based on COM technology, for creating component-based,
distributed applications. In .NET, the System.EnterpriseServices namespace provides the
necessary infrastructure for enterprise applications. With the help of this namespace a .NET
object can access COM+ services.

Covering the entire System.EnterpriseServices namespace is beyond the scope of this book,
but to understand how COM+ works and some basic concepts, we now go through the
sample code for creating a serviced component.

Creating a COM+ component
To use a .NET assembly as COM+ component, you should follow these steps:

� Apply the TransactionAttribute to the class.

The TransactionAttribute attribute specifies the type of transaction or a transaction support
level that is available to the attributed class. This attribute accepts as a parameter a value
from an enumeration in the System.EnterpriseServices namespace called
TransactionOption and supports any of the following automatic transaction values:

– Disabled

The object should ignore any transaction in the current context.

– NotSupported

Specifies that the object should create the component in a context with no governing
transaction.

– Required

Specifies that the object should share a transaction if one exists, or create a new
transaction if necessary.

– RequiresNew

Specifies that the object should create the component with a new transaction,
regardless of the state of the current context.

– Supported

Indicates that the object should share a transaction if one exists.

212 Integrating DB2 Universal Database for iSeries with Microsoft ADO .NET

The Transaction attribute must be applied at the class level, as in the code snippet
shown in Example 5-27.

Example 5-27 Applying the transaction attribute

[Transaction(TransactionOption.Supported)]
public class demoClass
{
}

� Derive your class from the ServicedComponent Class.

� Sign the assembly with a strong name.

� Register the assembly that contains your class with the COM+ catalog.

In .NET, the COM+ transaction can be controlled using two approaches:

� Using SetComplete and SetAbort methods

With this approach, you can use either the SetComplete or SetAbort method of the
System.EnterpriseServices.ContextUtil class to explicitly commit or abort a transaction, as
shown in Example 5-28.

Example 5-28 Using SetComplete and SetAbort methods

if(!TransactionSucess())
{
 //Something goes wrong.
 ContextUtil.SetAbort();
}
else
{
 //All goes well.
 ContextUtil.SetComplete();
}

� Using AutoComplete

You can control the transactional behavior of the COM+ class methods by using the
AutoComplete attribute. In this approach, the method marked with the AutoComplete
attribute explicitly calls SetComplete() if the method works without any exception;
otherwise, it makes an explicit call to SetAbort(). The code snippet in Example 5-29 shows
how to write an AutoComplete attribute for a method.

Example 5-29 Using SetComplete and SetAbort methods

public class demoClass
{
 [AutoComplete]
 public demoMethod()
 {
 }
}

Chapter 5. IBM DB2 for LUW .NET provider 213

Using the SetAbort and SetComplete methods to control transactions
The following steps explain how to develop, configure, and install COM+ components using
the SetAbort and SetComplete methods. Note that the steps for creating a COM+ component
using the SetAbort and SetComplete methods or AutoComplete attribute are the same except
for the code.

1. COM+ services are bundled into an assembly (.dll) or into a class library. Therefore, to
create a COM+ component, you have to create a new Class Library project in Visual
Studio .NET. Start Visual Studio .NET and create a new Class Library project with the
name db2TransServer in Visual C# Projects types as shown in Figure 5-23.

Figure 5-23 File → New → Project (creating a new class library project)

2. Visual Studio .NET creates a new class library project with default files. Rename
Class1.cs to updateEmployee.cs in the Solution Explorer window, and change the class
name and default constructor from Class1 to updateEmployee.

3. From the Visual Studio .NET menu bar, select Project → Add References and add
references to the IBM.Data.DB2 and System.EnterpriseServices components
(Figure 5-24 on page 215).

214 Integrating DB2 Universal Database for iSeries with Microsoft ADO .NET

Figure 5-24 Adding references

4. In the code window of the updateEmployee class, include the necessary namespaces as
shown in Example 5-30.

Example 5-30 Including namespaces

using System;
using System.Data ;
using System.EnterpriseServices ;
using IBM.Data.DB2;
using System.Runtime.CompilerServices;
using System.Reflection;

The System.EnterpriseServices namespace handles the transaction operations. The
System.Runtime.CompilerServices and System.Reflection namespaces are used for
declaring assembly-related information.

5. To use an assembly as a COM+ component, give it a strong name using the
ApplicationName and AssemblyKeyFileAttribute attributes as shown in Example 5-31. A
strong name consists of the assembly’s identity—its simple text name, version number,
and culture information (if provided)—plus a public key and a digital signature. Note that
you can write this information in the AssemblyInfo.cs file. Be sure the code does not have
entries in both code and AssemblyInfo.cs files, or a compiler error will occur.

Example 5-31 Using ApplicationName and AssemblyKeyFileAttribute attributes

// Supply the COM+ application name.
[assembly: ApplicationName("db2TransServer")]
// Supply a strongly-named assembly.
[assembly: AssemblyKeyFileAttribute(@"\a\db2TransServerCrypt.snk")]

Chapter 5. IBM DB2 for LUW .NET provider 215

6. The Strong Name tool (sn.exe) helps to sign assemblies with strong names by generating
a public/private key pair. This public and private cryptographic key pair is used during
compilation to create a strongly named assembly. sn.exe provides options for key
management, signature generation, and signature verification. The key pair files usually
have a .snk extension. You can generate a key pair from a command prompt by specifying
the file location and name, as shown in Example 5-32.

Example 5-32 Using the sn tool to generate a key pair file

c:\WINNT\Microsoft.NET\Framework\v1.1.4322>sn -k c:\a\db2TransServerCrypt.snk

Microsoft (R) .NET Framework Strong Name Utility Version 1.1.4322.573
Copyright (C) Microsoft Corporation 1998-2002. All rights reserved.

Key pair written to c:\a\db2TransServerCrypt.snk

C:\WINNT\Microsoft.NET\Framework\v1.1.4322>

Be sure to specify the path information of the .snk file when specifying the
AssemblyKey-FileAttribute attribute. In our example, we store the .snk file at c:\a, which is
reflected in the attribute parameter as (@"\a\db2TransServerCrypt.snk")

7. Specify additional attributes. The System.EnterpriseServices namespace has several
COM+ related .NET attributes that control the behavior of the class when participating in
transactions.

For example, in our code we use the ApplicationAccessControl attribute to indicate
whether security can be configured for an assembly, as shown in Figure 5-33. Because we
are not applying any security, we set the value to false. (If you do not specify this property,
the security configuration is enabled by default.)

Example 5-33 Disabling COM+ security configuration

//Disable COM+ security configuration
[assembly: ApplicationAccessControl(false)]

Similarly, the ApplicationActivation attribute is used to specify whether the class should be
added to a library or a server COM+ application. The attribute takes a parameter of a type
of enumeration called ActivationOption. The ActivationOption enumeration supports the
following values:

– Library, which specifies a COM+ library application

– Server, which specifies a COM+ server application

The default value is Library but in our example we use Server activation by specifying the
attribute as shown in Example 5-34.

Example 5-34 Setting Application activation

//Set Application activation to activated object in a system-provided process
[assembly: ApplicationActivation(ActivationOption.Server)]

216 Integrating DB2 Universal Database for iSeries with Microsoft ADO .NET

8. Insert the Transaction attribute [Transaction(TransactionOption.Required)] before the class
declaration to indicate that the transaction is required for the class (Figure 5-35).

Example 5-35 Inserting the Transaction attribute

namespace db2TransServer
{

[Transaction(TransactionOption.Required)]
public class updateEmployee : ServicedComponent
{

public updateEmployee()
{
}

9. This example gives functionality to update the employee salary by specifying the
employee number and new salary. To fulfill this requirement, the updateEmpSalary
method is declared, as shown in Example 5-36.

Example 5-36 updateEmpSalary method

public bool updateEmpSalary(string empNo, decimal salary)
{
}

10.Declare the DB2 connection and command objects for performing database operations.
The UPDATE query is specified while declaring the command object that updates the
salary for a given employee number, as shown in Figure 5-37.

Example 5-37 updateEmpSalary method continued

DB2Connection cnn = new DB2Connection ("database=myDB2;user
Id=myuserid;password=mypassword;");

DB2Command cmd = new DB2Command ("update sampledb.employee set salary=" + salary +
"where empno='" + empNo + "'",cnn);

11.The next part of the code controls the transaction using the SetComplete and SetAbort
methods. Here the ExecuteNonQuery method executes the SQL statement specified by
the command object and returns the number of rows updated. In the following try-catch
block, the logic is designed in such a way that the result gets committed only if there is one
row updated. If any error occurs then the transaction is simply aborted. The code is shown
in Figure 5-38.

Example 5-38 updateEmpSalary method continued

try
{

cnn.Open();
int rowsUpdated = cmd.ExecuteNonQuery();
if (rowsUpdated == 1)
{

ContextUtil.SetComplete();
return true;

}
else
{

//UPDATE failed
ContextUtil.SetAbort();
throw new Exception("Invalid account.");

}
}
catch (Exception exc)

Chapter 5. IBM DB2 for LUW .NET provider 217

{
ContextUtil.SetAbort();
throw new Exception(exc.Message + " Set Abort Called..");

}
finally
{

cmd.Dispose();
cnn.Close();

}
}

12.When the coding is complete, compile the code and build the assembly (.dll file). In order
to use this .dll file with COM+ you have to register it and load it into the COM+ application.
This can be achieved using a .NET Services Installation tool (Regsvcs.exe). This tool
performs the following actions:

a. Loads and registers an assembly.

b. Generates, registers, and installs a type library into a specified COM+ application.

c. Configures services coded in the class.

Example 5-39 shows how the Regsvcs utility is used to configure the .NET assembly as a
COM+ component.

Example 5-39 Using .NET Services Installation tool

c:\WINNT\Microsoft.NET\Framework\v1.1.4322>regsvcs
C:\NET\NET1.1\db2TransServer\bin\Debug\db2TransServer.dll
Microsoft (R) .NET Framework Services Installation Utility Version 1.1.4322.573
Copyright (C) Microsoft Corporation 1998-2002. All rights reserved.

Installed Assembly:
Assembly: C:\NET\NET1.1\db2TransServer\bin\Debug\db2TransServer.dll
Application: db2TransServer
TypeLib: C:\NET\NET1.1\db2TransServer\bin\Debug\db2TransServer.tlb

C:\WINNT\Microsoft.NET\Framework\v1.1.4322>

After registering and configuring the assembly, open the COM+ MMC (Microsoft Management
Console) (Figure 5-25 on page 219) by selecting Start → Settings → Control Panel →
Administrative Tools → Component Services.

218 Integrating DB2 Universal Database for iSeries with Microsoft ADO .NET

Figure 5-25 Component Services window

Using the AutoComplete attribute to control transactions
In addition to using the SetAbort and SetComplete methods to control transactions, you can
use the AutoComplete attribute to control the transaction. The same code for updating the
employee salary that we discussed in the previous section can be written using the
AutoComplete attribute, as shown in Example 5-40.

Example 5-40 updateEmpSalary method continued

[AutoComplete]
public bool updateEmpSalary(string empNo, decimal salary)
{

DB2Connection cnn =
new DB2Connection ("database=myDB2;Connect Timeout=30;user

Id=myuserid;password=mypassword;");
DB2Command cmd = new DB2Command ("update sampledb.employee set salary=" +

salary + " where empno='" + empNo + "'",cnn);

try
{

cnn.Open();
cmd.ExecuteNonQuery();

}
catch (Exception exc)
{

throw new Exception(exc.Message + " Set Abort Called..");
}
finally
{

cmd.Dispose();
cnn.Close();

}
}

Chapter 5. IBM DB2 for LUW .NET provider 219

Testing the COM+ assembly
After building the serviced component, you can create a client application for testing. To
demonstrate, we create a simple console application to access the COM+ component.

The steps for creating a client application involve:

1. Export and install proxy (only on remote machine).
2. Write client code by adding references to proxy and EnterpriseServices namespace.

Export and Install proxy
This step involves two tasks, one to export the proxy from the server and one to install the
proxy on the client.

To export the proxy from the server machine, open Component Services by selecting Start →
Settings → Control Panel → Administrative Tools → Component Services.

1. Create an export package by right-clicking the component (db2TransServer) in the
Component Services tree and selecting Export, as shown in Figure 5-26.

Figure 5-26 Exporting COM+ application

2. This opens the export wizard. Click Next.

Note: This step is required only if you want to access the serviced component from a
remote machine. If you are testing a client application on the same machine (such as in a
development environment) where the serviced component is developed and registered,
this step is not required.

220 Integrating DB2 Universal Database for iSeries with Microsoft ADO .NET

3. In the next wizard screen, click Browse and specify the file name and location for
exporting the COM+ component, as shown in Figure 5-27.

Figure 5-27 Wizard for Exporting COM+ application

4. Click Next and the window in Figure 5-28 opens. Click Finish.

Figure 5-28 Successful Exporting of a COM+ application

These steps create an .MSI file (db2TransServer.MSI) and a .CAB file
(db2TransServer.MSI.cab) in the specified path.

Chapter 5. IBM DB2 for LUW .NET provider 221

To install the proxy on a client, copy and paste the .MSI file and CAB files onto the client
machine and run the .MSI file (db2TransServer.MSI). You can verify the proxy dll in the
C:\Program Files\ComPlus Applications directory with a unique key folder as shown:

C:\Program Files\ComPlus Applications\{603D5F4E-A5C1-4D6D-A6B3-8B34898173EC}

Writing client code
To write client code, create a console application and add a reference to the
System.EnterpriseServices namespace. This namespace is required for accessing serviced
(COM+) components. To access a serviced component you also have to add a reference to
the proxy dll. As we discuss in the previous section, when you install an exported package
(.MSI file) on a client machine, a proxy dll is created in C:\Program Files\ComPlus
Applications. Add a reference to the proxy by clicking Browse and selecting the component
from the C:\Program Files\ComPlus Applications directory as shown in Figure 5-29.

Figure 5-29 Importing a reference for the COM+ proxy

To access the COM+ method we need only a few lines of code to create an instance of the
COM+ component and to access the updateEmployee method, as shown in Example 5-41.

Example 5-41 Accessing COM+ method

db2TransServer.updateEmployee ts = new db2TransServer.updateEmployee();
ts.updateEmpSalary("000010",99999.0);

222 Integrating DB2 Universal Database for iSeries with Microsoft ADO .NET

5.8 Best practices
In this section we discuss some things you can do to improve the performance of your DB2
connections.

5.8.1 Connection pooling
Establishing and severing connections to the database server can be a resource-intensive
process that adversely affects both PC and DB2 server performance.

To reduce this overhead, DB2 uses connection pooling to maintain open connections to the
database in a readily accessible pool. Connection pooling is a technique that enables reuse
of an established connection infrastructure for subsequent connections. Connection pooling
helps to reduce the overhead of database connections and handles connection volume. This
increases the scalability of applications by optimizing the use of host database servers.

How connection pooling works
When an application attempts to Open a database connection, the resource manager (or
agent) checks for available connections in the pool. If a connection is not available in the pool,
the manager creates a new connection for the requesting application. When the application
issues a Close request, the manager does not pass this request along to the DB2 server.
Instead, the manager returns the connection to the pool. The manager owns its connection to
the DB2 server and the corresponding DB2 thread. When another application issues an Open
request, the available connection thread in the pool is assigned to this new application. To
ensure a secure operation, user identity information is passed along to the DB2 thread, which
in turn performs user authentication.

Connection pooling is very helpful in Web and client/server environments where the
frequency of connections and disconnections is high.

.NET and DB2 connection pooling
When you use the DB2 .NET provider, connection pooling is on by default. However, you can
control the pooling mechanism by setting parameters in the ConnectionString property of
Db2Connection. Table 5-13 shows some of the key parameters of the ConnectionString
property that relate specifically to pooling.

Table 5-13 ConnectionString parameters specific to connection pooling

Parameter Default value Description

Connection
Lifetime

60 Amount of time (in seconds) that the connection can
remain idle in the connection pool

Connection
Reset

false If true, this particular connection will be put into the
connection pool when it is closed.
If false, this particular connection will not be put into
the connection pool when it is closed.

Max Pool Size no maximum Indicates maximum pool size

Min Pool Size 0 Indicates minimum pool size

Pooling true Connection pooling switch (true/false)

Chapter 5. IBM DB2 for LUW .NET provider 223

The DB2Connection also has a ReleaseObjectPool method, which indicates that the
resources of the connection pool can be released when the last underlying connection is
released. This method is useful when you want the connection object to not be used again.
When all connections in the pool are closed, the pool can be disposed of. Note that calling the
method alone does not actually release the active connections that exist in the pool.

Before the pool is finally disposed, this must occur:

1. Call Close to release the DB2Connection object from the environment.
2. Allow each connection object to time out.
3. Call ReleaseObjectPool.
4. Invoke garbage collection.

Conversely, if you call Close on all active connections, and invoke garbage collection but do
not call ReleaseObjectPool, the resources reserved for the pool will remain available.

After a pool is released, a request for a new DB2Connection creates a new pool.

224 Integrating DB2 Universal Database for iSeries with Microsoft ADO .NET

Chapter 6. Selecting the .NET provider

Choosing the appropriate .NET data provider for your application depends on your
environment. In this chapter we provide a list of recommendations for selecting the right
provider depending on your application’s architecture and its functional requirements.

Currently, any of four providers can be used to access DB2 UDB for iSeries from .NET
applications:

� DB2 UDB for iSeries .NET provider (IBM.Data.DB2.iSeries

The ADO.NET-managed provider that is included with iSeries Access for Windows starting
with V5R3M0.

� DB2 UDB .NET provider (IBM.Data.DB2)

The DB2 for Linux, UNIX, and Windows (LUW)–managed provider implemented by IBM
software group.

� Microsoft.Data.Odbc

The Microsoft-supplied ODBC bridge provider that uses the iSeries Access for Windows
ODBC driver for underlying database connectivity.

� System.Data.OleDb

The Microsoft-supplied OLEDB bridge provider using an iSeries Access for Windows OLE
DB provider (IBMDA400, IBMDASQL, IBMDARLA) for underlying database connectivity.

The .NET Framework includes the OLE DB .NET Data Provider and the ODBC .NET Data
Provider. To use these providers, you must install the IBM iSeries Access for Windows
product and select the appropriate Data Access component (ODBC or OLE DB Provider
component). IBM DB2 managed providers are discussed at length in Chapter 4, “IBM DB2
UDB for iSeries .NET provider” on page 33 and in Chapter 5, “IBM DB2 for LUW .NET
provider” on page 177. Here we briefly cover the functionality of the two bridge providers
shipped with the .NET Framework.

6

Note: The OleDb bridge to IBMDA400 or IBMDARLA has not been tested for use with
the Data Queue, Remote Command and Program Call, and Record Level Access
support. This chapter assumes that the OleDb bridge is used to perform only SQL
operations.

© Copyright IBM Corp. 2005. All rights reserved. 225

6.1 ODBC .NET Data Provider
The ODBC .NET provider is a bridge that handles calls from .NET into a traditional ODBC
driver. Specifically, the ODBC .NET Data Provider can be used with the iSeries Access for
Windows ODBC driver.

The ODBC bridge involves jumping in and out of the .NET Framework environment for every
interface call because, from the .NET point of view, the ODBC driver constitutes unmanaged
code, which means that it has been compiled directly into a binary executable. Managed code
is compiled into a .NET assembly that can be executed in the context of .NET Common
Language Runtime (CLR). For managed code to call unmanaged code, marshalling of data
must take place, and this can affect overall performance.

Similar to the IBM DB2 UDB for iSeries .NET provider, the iSeries Access ODBC driver uses
the highly optimized, proprietary protocol to connect to the back-end database server job on
the iSeries. The ODBC client sends SQL requests over the network to an iSeries server job.
The server job runs the SQL requests on behalf of the client, and the results are reformatted
and marshaled to the client. The iSeries database server jobs are called QZDASOINIT, and
typically run in the QUSRWRK subsystem. This is illustrated in Figure 6-1.

Figure 6-1 ODBC .NET provider accessing the DB2 UDB for iSeries database

The iSeries ODBC driver supports connection keywords that you can use to control the
connection properties and to improve the application’s performance. The complete list of the
connection keywords can be found at the iSeries Information Center Web site at:

http://publib.boulder.ibm.com/pubs/html/as400/infocenter.html

As mentioned in Chapter 4, “IBM DB2 UDB for iSeries .NET provider” on page 33, several
database-related functions are not supported at this time by the DB2 UDB for iSeries .NET

Note: When using a secure connection, the iSeries database server job is called
QZDASSINIT.

226 Integrating DB2 Universal Database for iSeries with Microsoft ADO .NET

http://publib.boulder.ibm.com/pubs/html/as400/infocenter.html

provider. However, most of this functionality is available through the iSeries ODBC driver. As a
reminder, here is the list of the additional features that are supported by the ODBC driver:

� Datalink data type

� Extended dynamic SQL (also known as SQL packages)

� COM+, including Microsoft Distributed Transaction Coordinator (DTC) and Microsoft
Transaction Services (MTS)

� Distributed relational database architecture (DRDA), including the CONNECT and
DISCONNECT statements

As an example, you could take advantage of the extended dynamic SQL support with the
ODBC driver by setting appropriate connection properties using the connection keywords.
However, before we illustrate the use of the extended dynamic SQL with a coding example,
we offer an explanation of why, under certain circumstances, this particular feature might be
important for good SQL performance. The SQL packages are server-side repositories for
SQL statements. Packages contain the internal structures (such as parse trees and access
plans) that are needed to execute SQL statements. Because SQL packages are a shared
resource, the information built when a statement is prepared is available to all users of the
package. This saves processing time, especially in an environment where many users are
using the same or similar statements. Because SQL packages are permanent, this
information is also saved across job initiation or termination and across IPLs. In fact, SQL
packages can be saved and restored onto other systems.

Example 6-1 shows sample use of ODBC driver–specific keywords to set a database
connection that enables extended dynamic SQL support. The SampleOdbc program, written
in VisualBasic.NET, is used to read the rows from the STAFF table and display them on the
console. Then one of the retrieved rows is updated and the data is redisplayed on the
console.

Example 6-1 Sample ODBC .NET provider application

Imports System
Imports System.Data
Imports System.Data.OleDb
Imports Microsoft.VisualBasic
[1] Imports Microsoft.Data.Odbc

Public Class Form1

 Public Shared Sub Main()

 Dim strConnectionString As String
 strConnectionString = _
[2] "DSN=myiSeries;UID=myuserid;PWD=mypassword;DBQ=SAMPLEDB;EXTCOLINFO=1;"

strConnectionString = strConnectionString & _
[3] "ExtendedDynamic=1;DefaultPkgLibrary=myschema;"

Dim pConn As New OdbcConnection(strConnectionString)
 Dim pInsertQuery As String = _
 "SELECT id, name, job, salary FROM Staff FOR UPDATE"

Dim adapter As New OdbcDataAdapter(pInsertQuery, pConn)
 Dim custCB As OdbcCommandBuilder = New OdbcCommandBuilder(adapter)

Dim ds As DataSet = New DataSet()
 adapter.Fill(ds, "Staff")
 Console.WriteLine("------------------------")

Note: Some of these features are also supported by the DB2 for LUW .NET provider.

Chapter 6. Selecting the .NET provider 227

 Console.WriteLine("DataSet contents after Fill:")
 printDataSet(ds)

 Console.WriteLine("------------------------")
 ds.Tables("Staff").Rows(1)("NAME") = "Joanna"
 [4]adapter.UpdateCommand = New _
 OdbcCommand("UPDATE Staff SET Name='Joanna' WHERE ID=20",pConn)
 adapter.Update(ds, "Staff")

 Console.WriteLine("------------------------")
 Console.WriteLine("DataSet contents after Update:")
 printDataSet(ds)
 Console.WriteLine("------------------------")

 End Sub

 Public Shared Sub printDataSet(ds As DataSet)
 Dim table As DataTable
 Dim col As DataColumn
 Dim row As DataRow
 Dim i As Integer

 For Each table in ds.Tables
 For Each col in table.Columns
 Console.Write(col.ColumnName & vbTab & vbTab)
 Next
 Console.WriteLine()

 For Each row in table.Rows
 For i = 0 To table.Columns.Count - 1
 Console.Write(row(i).ToString() & vbTab & vbTab)
 Next
 Console.WriteLine()
 Next
 Next
 End Sub

End Class

At [1] the ODBC bridge assembly is imported so that the sample application can use
unqualified names of the provider classes.

At [2] an OdbcConnection object is created to open a database connection to the iSeries
server. Note that the connection string contains parameters that are typical for an ODBC
driver. The DSN property is used to point to the target iSeries data source. The DSN must be
previously registered with the ODBC Administration utility. The alternate solution is to use the
DSN-less syntax for the connection string that eliminates the need for the DSN setup. Here is
an example of such a connection string:

DRIVER=Client Access ODBC Driver (32-bit);SYSTEM=myiSeries;UID=myUserid;PWD=myPassword;

In addition to the required parameters such as DSN, UID, and PWD, we also specify the
optional EXTCOLINFO parameter. Setting that property causes the ODBC driver to retrieve
additional metadata information such as the base table name for a view. Although not
required for our simple SELECT statement, this property may be necessary for more complex
queries that involve joins. Setting this parameter ensures that the OdbcCommandBuilder will
work properly. Note, however, that EXTCOLINFO causes an additional data flow between the
database server and the ODBC driver, which can slow down the performance of the solution.

228 Integrating DB2 Universal Database for iSeries with Microsoft ADO .NET

At [3] the ExtendedDynamic keyword specifies whether to use extended dynamic (package)
support. A value of 1 enables the packages. This is the default for the iSeries Access for
Windows ODBC driver. The DefaultPkgLibrary specifies the library for the SQL package. You
can omit the DefaultPkgLibrary, in which case the package will be created in the default
library, QGPL.

6.2 OLE DB .NET Data Provider
The V5R3 release of iSeries Access for Windows includes three OLE DB providers:

� New SQL-only provider (IBMDASQL) that supports SQL Commitment Control and MTS.

� New RLA-only provider (IBMDARLA) that supports true record blocking and forward-only
cursors for record level access.

� The IBMDA400 provider, which supports SQL statements, record level access, remote
command and program call, and data queues. It does not support Commitment Control for
SQL commands, and does not support MTS.

The OleDb .NET Data Provider uses native OLE DB through a COM interop module to enable
data access. This provider is a bridge that handles calls from .NET into a traditional
COM-style OLE DB Provider. Although .NET applications can connect to the three iSeries
Access for Windows OLE DB providers, testing for the Data Queue, Remote Command and
Program Call, and Record Level Access support has not been done using the OleDb bridge
to IBMDA400 or IBMDARLA.

Similar to the ODBC bridge, the OLE DB .NET provider involves jumping in and out of the
.NET Framework environment for every interface call because, from the .NET point of view,
the iSeries OLE DB provider constitutes unmanaged code.

When running SQL statements and stored procedures, the iSeries OLE DB providers
communicate with a back-end database server job called QZDASOINIT by using an iSeries
protocol that is highly optimized for performance and functionality.

Figure 6-2 on page 230 illustrates the software components that are involved in connecting a
.NET application to the iSeries database through the OLE DB bridge.

Note: The three OLE DB providers are packaged into a single DLL file.

Note: When using a secure connection, the iSeries database server job is called
QZDASSINIT.

Chapter 6. Selecting the .NET provider 229

Figure 6-2 OLE DB bridge

The OLE DB bridge can be considered in these cases, where a .NET application requires
provider functionality that is not implemented in the DB2 UDB for iSeries .NET provider.
Additional features that are available through iSeries OLE DB providers include:

� Datalink data type.

� SQL packages.

� Record level access; you can use either the IBMDA400 or the IBMDARLA OLE DB
provider (see Note).

� Data queues; you can use the IBMDA400 OLE DB provider (see Note).

� Remote command and program call; you can use the IBMDA400 OLE DB provider (see
Note).

� COM+, including Microsoft Distributed Transaction Coordinator (DTC) and Microsoft
Transaction Services (MTS). To use Microsoft distributed transaction coordinator, you can
use the System.Data.OleDb .NET provider to bridge to the IBMDASQL OLE DB provider.

So, for example, you could use the IBMDASQL provider to participate in a distributed
transaction monitored by COM+ and DTC.

6.3 Provider performance
As we discuss in previous sections, the OLE DB and ODBC bridge providers use the services
of native OLE DB and ODBC drivers respectively. Both drivers are unmanaged code, so the
communication between a bridge and a driver involves jumping in and out of the .NET
framework. In this section we provide performance data collected for a simple .NET

Note: Although some features may work, record level access, data queues, and remote
command and program call have not been tested through the OleDb bridge. Some of these
features are also supported by the DB2 for LUW .NET provider.

230 Integrating DB2 Universal Database for iSeries with Microsoft ADO .NET

application that uses various .NET providers. The data should aid you in the process of
selecting a provider that will meet the performance objectives for your .NET application.

For each of the test runs, the sample application uses one of the four supported providers to
execute several basic SQL statements that retrieve and manipulate data in a single table. To
eliminate the effect of data caching that the iSeries performs automatically, a sample table
called COFFEES is recreated before each run. Example 6-2 shows the DDL script used to
create the table.

Example 6-2 DDL to create a sample table

DROP TABLE COFFEES;
CREATE TABLE COFFEES (

ID INTEGER GENERATED ALWAYS AS IDENTITY (
START WITH 1 INCREMENT BY 1
NO MINVALUE NO MAXVALUE
NO CYCLE NO ORDER
CACHE 20),
COF_NAME VARCHAR(32) CCSID 37 DEFAULT NULL ,
SUP_ID INTEGER DEFAULT NULL ,
PRICE DOUBLE PRECISION DEFAULT NULL ,
SALES INTEGER DEFAULT NULL ,
TOTAL INTEGER DEFAULT NULL ,
CONSTRAINT MYSCHEMA.COFFEES_PK PRIMARY KEY(ID)) ;

COMMIT;

The sample application measures the elapsed time for the following database operations:

� INSERT: We use the NewRow method on a DataTable object to create a DataRow object.
The object is populated with sample data and added to the DataRowCollection. We add
5,000 new rows. The new rows are then inserted into the database through a
DataAdapter. Note that the measured elapsed time for the insert operation is scoped to
the Update method on the DataAdapter object. So, in fact, we measure the efficiency of
the .NET provider. This is illustrated in Example 6-3.

Example 6-3 Inserting rows through a DataAdapter

For i = 1 To batchSize
drNewCoffee = dsCoffees.COFFEES.NewRow()
drNewCoffee.BeginEdit()
drNewCoffee("COF_NAME") = "Super_Kona_" & i
drNewCoffee("SUP_ID") = 150
drNewCoffee("PRICE") = 9.95
drNewCoffee("SALES") = 1000
drNewCoffee("TOTAL") = 1000
drNewCoffee.EndEdit()
dsCoffees.COFFEES.Rows.Add(drNewCoffee)

Next i
Try

start_time = Now
daCoffees.Update(dsCoffees.COFFEES)

Attention: The performance information in this document is only for guidance. System
performance depends on many factors, including system hardware, system and user
software, and user application characteristics. Customer applications must be evaluated
carefully before estimating performance. IBM does not warrant or represent that a user can
or will achieve a similar performance. No warranty on system performance or price/
performance is expressed or implied in this document.

Chapter 6. Selecting the .NET provider 231

stop_time = Now
elapsed_time = stop_time.Subtract(start_time)

Catch Xcp As Exception

...
End Try

� UPDATE: We update all 5,000 rows inserted in the previous operation using the DataRow
class to modify the COF_NAME column. The Update method on the DataAdapter class is
used to propagate the changes to the back-end database. This is shown in Example 6-4.

Example 6-4 Update through a DataAdapter

For Each drCoffee In dsCoffees.COFFEES.Rows
drCoffee("COF_NAME") = "Colombian Select Extra" & drCoffee("ID")

Next
Try

start_time = Now
daCoffees.Update(dsCoffees.COFFEES)
stop_time = Now
elapsed_time = stop_time.Subtract(start_time)

Catch Xcp As Exception
...

End Try

� Fast DELETE: We use the ExecuteNonQuery method on the Command object to delete
all rows in the table. At V5R3, the performance of a DELETE statement that has no
WHERE clause has been greatly improved. If the statement is executed under no
commitment control, the system performs the native CLRPFM operation, which is very
fast. For statements that run under commitment control, the system performs a specialized
CHGPF command. In our case we use DELETE FROM COFFEES WITH NC, which
instructs the system to execute the statement with no commitment control. The WITH NC
clause in the statement means No Commit (a proprietary iSeries isolation level).
Example 6-5 illustrates the relevant code sample.

Example 6-5 Fast delete using a Command object

Try
cmdFastDelete.CommandText = "DELETE FROM COFFEES WITH NC"
coniSeries.Open()
start_time = Now
cmdFastDelete.ExecuteNonQuery()
stop_time = Now
coniSeries.Close()
elapsed_time = stop_time.Subtract(start_time)

Catch Xcp As OdbcException
...

End Try

� SELECT: We use the Fill method on the DataAdapter object (Example 6-6 on page 233).
To avoid the effects of data caching, we actually exit the application and restart it before
measuring the performance of the SELECT statement; this releases the database
connection that is implicitly pooled by the provider. That in turn recycles the back-end
QZDASOINIT job that is associated with the connection. Note that with the IBM DB2 UDB
for iSeries .NET provider, we could use the Pooling=false connection property to disable
the connection pooling.

232 Integrating DB2 Universal Database for iSeries with Microsoft ADO .NET

Example 6-6 Select using a DataAdapter object

Try
start_time = Now
dsCoffees.Clear()
daCoffees.Fill(dsCoffees.COFFEES)
stop_time = Now
elapsed_time = stop_time.Subtract(start_time)

Catch Xcp As Exception
...

End Try

� DELETE: We again delete all rows but this time we use the Delete method on the
DataRow object to mark all rows in the Table object as deleted. Then we use the Update
method on the DataAdapter object to propagate the changes to DB2 (Example 6-7).

Example 6-7 Delete all rows using a DataAdapter object

For Each drCoffee In dsCoffees.COFFEES.Rows
drCoffee.Delete()

Next
Try

start_time = Now
daCoffees.Update(dsCoffees.COFFEES)
stop_time = Now
coniSeries.Close()
elapsed_time = stop_time.Subtract(start_time)

Catch Xcp As Exception
...

End Try

So, after discussing the sample code and the methodology that are used to capture the basic
performance data, we present the results. Keep in mind that your results may vary from the
data shown in this section, as we did not make specialized changes: All performance-related
settings were left at their default values. For example, the SELECT performance for the
ODBC driver could be improved by increasing the BlockSize property to a larger value, such
as 128 KB. (32 KB is the default.) Similarly, the performance of the DB2 LUW .NET provider
would be much better if we used the chaining feature implemented by this provider. With
chaining enabled, the insert, update, and delete commands executed through a connection
are queued on the client. This method is useful for executing a large batch of insert, update,
and delete commands because it minimizes the network flow to the server. Note, however,
that chaining is not supported by the DB2DataAdapter object so we would have to rewrite our
application to take advantage of this functionality.

Furthermore, all tests involve just one client accessing a dedicated system. Of course, this is
not a typical iSeries production environment. The iSeries performance and scalability will
shine in environments with hundreds or thousands of concurrent users running a wide
spectrum of business applications. We provide this data to give you a better understanding of
how to choose a provider which is right for your application. Table 6-1 on page 234 shows the
performance measurements.

Chapter 6. Selecting the .NET provider 233

Table 6-1 Single user performance test for various .NET providers (results shown in seconds)

6.4 Conclusions
Choosing the appropriate .NET data provider for your application depends on your
environment. If you plan to access only the iSeries database, the DB2 UDB for iSeries .NET
provider should be your choice. This managed provider provides better performance than
using the System.Data.OleDb provider to bridge to the iSeries Access OLE DB provider, or
using the Microsoft.Data.Odbc provider to bridge to the iSeries Access ODBC driver.

Consider the DB2 UDB (LUW) provider if you need to access different DB2 UDB platforms
such as DB2 UDB for Windows or DB2 UDB for z/OS in addition to iSeries, or if you wish to
take advantage of the GUI Add-Ins we discuss in Chapter 5, “IBM DB2 for LUW .NET
provider” on page 177. Using this provider should also be considered if you want to take
advantage of the functionality that currently is not supported by the DB2 UDB for iSeries .NET
provider, such as distributed transactions managed by MTS/COM+.

Consider using one of the “bridge” providers, if you developed your application for
heterogeneous environments in which some of the target databases may not have a
managed .NET provider.

DB2 for iSeries
.NET provider

DB2 LUW
.NET provider

ODBC “bridge”
provider

ILE DB “bridge”
provider over
IBMDASQL

INSERT 13.81 18.23 26.32 14.39

UPDATE 14.14 17.92 28.21 14.76

SELECT 0.3 0.26 0.39 0.55

FAST DELETE 0.11 1.00 0.1 0.1

DELETE 11.82 18.31 19.57 10.39

Note: Performance comparisons using the DB2 for LUW .NET provider have not been
done. The performance should be comparable to that of the DB2 for iSeries .NET provider.

234 Integrating DB2 Universal Database for iSeries with Microsoft ADO .NET

Part 3 Scenarios

In this part we illustrate some possible scenarios, such as the use of ASP .NET Web forms.

Part 3

© Copyright IBM Corp. 2005. All rights reserved. 235

236 Integrating DB2 Universal Database for iSeries with Microsoft ADO .NET

Chapter 7. ASP .NET scenario (Web forms)

An ASP .NET page or a Web form can be connected to the database using ADO .NET and a
database provider. In Chapter 2, “Introduction to the Microsoft .NET framework” on page 11
we discussed ADO .NET, and in Chapters 4, 5, and 6 we discuss various providers. In this
chapter we discuss different techniques for accessing DB2 UDB for iSeries databases from
an ASP .NET Web application. In particular we discuss:

� An overview of ASP .NET

� An example demonstrating how to use the IBM DB2 UDB for iSeries .NET provider from
an ASP .NET Web page

� An example demonstrating how to use the IBM DB2 for LUW .NET provider from an ASP
.NET Web page

� Recommendations for using providers

7

© Copyright IBM Corp. 2005. All rights reserved. 237

7.1 An overview of ASP.NET
ASP (Active Server Pages) .NET is a part of the Microsoft .NET framework; it is used for
making dynamic and interactive Web pages. ASP .NET is the next generation of ASP but it is
not an upgraded version of ASP nor is it fully backward compatible with ASP.

ASP .NET provides following features:

� Increased performance by running compiled code
� A large set of new programmable controls and XML-based components
� Event-driven programming
� Better user authentication
� Higher scalability
� Easier configuration and deployment

Moreover, ASP .NET derives its features from .NET Framework; these include support for
many languages, ADO .NET support, exception management, garbage collection, Common
Type System (CTS), and many more features we discuss in Chapter 1, “Introduction to DB2
UDB for iSeries” on page 3.

7.1.1 ASP .NET Web page (Web form)
The ASP .NET Web page, often called Web form, interacts with users with the help of Web
controls. During design time a Web form is stored in a file with the .aspx extension. An ASP
.NET Web page can be written using either of these models:

� In-line model
� Code-behind model

In-line model
In this model, the code is directly embedded within the ASP .NET page. Here the code is
written in <script> blocks in the same .aspx file that contains the HTML and controls.

When the page is deployed, the source code is deployed along with the Web forms page,
because it is physically in the .aspx file. However, you do not see the code; only the results
are rendered in HTML form when the page runs.

In-line code and DB2 providers
When using the in-line coding method, you must modify your application’s web.config file or
the system-wide machine.config file to add an assembly reference to the IBM DB2 UDB for
iSeries provider or the IBM DB2 for LUW .NET provider.

For example, use the following statement to add a reference to the IBM.Data.DB2.iSeries
provider:

<add assembly="IBM.Data.DB2.iSeries, Version=10.0.0.0, Culture=neutral,
PublicKeyToken=9cdb2ebfb1f93a26"/>

In addition to adding the assembly reference to the .config file, you should add an Import
statement for the .NET provider to your Web form (for example, the .aspx file) to avoid having
to fully qualify each use of a .NET provider class name with the IBM.Data.DB2.iSeries or
IBM.Data.DB2 prefix.

Tip: The PublicKeyToken listed here can be found by displaying the .NET Global Assembly
Cache (GAC).

238 Integrating DB2 Universal Database for iSeries with Microsoft ADO .NET

An example of the Import statement for IBM.Data.DB2.iSeries provider is given below:

<%@ Import NameSpace="IBM.Data.DB2.iSeries" %>

Applications that use the in-line code model but do not add the proper assembly references
encounter the following error:

Compilation Error
Description: An error occurred during the compilation of a resource required to service
this request. Review the following specific error details, and modify your source code
appropriately.

Compiler Error Message: BC30002: Type 'iDB2Connection' is not defined.

Code-behind model
In this model, the HTML and the controls are in the .aspx file, and the code is written in a
separate .aspx.vb or .aspx.cs file. The code-behind model keeps your business logic
separate from your Web page design, and in general is easier to write and maintain.

All project class files (without the .aspx file itself) are compiled into an assembly (.dll file),
which is deployed on the server without any source code. When a request for the page is
received, then an instance of the .dll file is created and executed on the Web server.

Code-behind and DB2 providers
When using the code-behind model with a DB2 provider, you must add a project reference to
the IBM DB2 UDB for iSeries provider (IBM.Data.DB2.iSeries) or the IBM DB2 for LUW .NET
provider (IBM.Data.DB2). In addition, you should also add a using (C#) or Imports (VB .NET)
statement to your source files (for example, .cs or .vb files) to avoid having to fully qualify each
use of a .NET provider class name with the provider prefix.

We discuss adding a project reference to the providers in 4.4.3, “Adding an assembly
reference to the provider” on page 43 and in 5.6.3, “Adding an assembly reference to the
provider” on page 198.

7.1.2 How does ASP .NET work?
By default, Visual Studio .NET creates ASP .NET Web pages using the code-behind model
and compiles it into an assembly or .dll file. An assembly is deployed and configured on IIS to
become a Web application.

Figure 7-1 on page 240 shows how an ASP .NET Web page is processed on the Web server.

Chapter 7. ASP .NET scenario (Web forms) 239

Figure 7-1 How ASP.NET works

When the user navigates to one of the Web forms (http://www.myweb.com/default.aspx, for
example), the following sequence occurs:

1. IIS starts the ASP .NET worker process (aspnet_wp.exe) if it is not already running. The
ASP .NET worker process loads the assembly associated with the Web form by allocating
one process space, called the application domain. The application domain is created for
each application and provides isolation between processes.

2. The assembly composes a response to the user based on the content of the Web form
that the user requested and any program logic that provides dynamic content.

3. IIS returns the response to the user in the form of HTML.

7.1.3 Configuration files in ASP .NET
In .NET, configuration files are XML files that can be changed as needed without having to
recompile applications. The configuration file can be used to store your connection string,
user ID, or password. The .NET Framework has three basic configuration files:

� Application configuration file

In ASP .NET, the application configuration file is known as web.config and can be used to
store Web application–related settings, such as connection string. At run time, ASP .NET
uses the configuration information provided by the web.config file.

� Machine configuration file

The machine.config file has all of the settings for the machine and can be found in the
CONFIG directory of the runtime install path.

The machine.config file is useful for storing connection strings, if there is more than one
Web application using a common connection string.

� Security configuration file

This file contains information about the code group hierarchy and permission sets
associated with a policy level.

240 Integrating DB2 Universal Database for iSeries with Microsoft ADO .NET

7.2 Web controls
Web controls, an essential part of any ASP .NET Web page, act as user interface (UI)
elements. Web controls are classified in different ways:

� Built-in controls

– HTML controls
– Web form controls
– Field validator controls

� Custom controls

Built-in controls
Built-in controls are available and included with Visual Studio .NET. The next section
describes available built-in controls in the .NET Framework.

HTML controls
These traditional HTML controls are represented using HTML tags. In Visual Studio .NET you
can drag and drop HTML controls or you can directly write HTML script for displaying the
controls. These are client-side controls that process the code using script language.

Web form controls
ASP .NET is popular because of the variety of Web form controls. Due to the Web form
controls, designing and programming Web pages is simple and fast. Web form controls are
created and run on the server. After processing at the server, they render the output into the
appropriate HTML code for sending it to the client. All Web form controls inherit from a
common base class: System.Web.UI.WebControls.

Table 7-1 shows some of the important Web controls and their descriptions.

Table 7-1 Web form controls

Web control Description

Label Can be used to display read-only text on the HTML page.

TextBox Can be used to display an input area on the HTML form.

Button, LinkButton, ImageButton These are various types of buttons differentiated according to
their appearance. When clicked, they post command
information back to the server.

Hyperlink A hyperlink control that responds to a click event.

DropDownList, ListBox Behaves the same as HTML controls but can be bound to a
data source.

DataGrid A powerful Web control to display data, and which has
features such as paging, sorting, and formatting. Can also be
used for various other operations (editing, deleting).

DataList Used to display data in a non-tabular format. Requires more
coding for design layout using templates. Supports editing
and deleting data.

Repeater This control is not derived from the WebControl class, and
therefore does not have the stylistic properties. Does not
have built-in functionality for editing and deleting data.

Chapter 7. ASP .NET scenario (Web forms) 241

Field validator controls
Field validator controls are used to validate the data on the client browser before the user
submits the data to the back-end server. These controls automatically write client-side
JavaScript code into the HTML page so the values can be checked without the round-trip to
server.

Some of the field validator controls are:

� RequiredFieldValidator
� CompareValidator
� RangeValidator
� RegularExpressionValidator
� CustomValidator

Custom controls
In addition to the built-in controls, you can also build your own custom controls in the .NET
Framework.

7.3 Using the IBM DB2 UDB for iSeries .NET provider
In Chapter 4, “IBM DB2 UDB for iSeries .NET provider” on page 33, we discuss the IBM DB2
UDB for iSeries .NET provider in detail. In this section we show how to use the IBM DB2 UDB
for iSeries .NET provider in conjunction with a Web form.

We assume that you are developing ASP .NET application using Visual Studio .NET 1.1 and
have the IBM DB2 iSeries provider properly installed on your server machine. It is always a
good practice to check the connectivity between your development environment and the
iSeries before you start programming. (See 4.2.2, “Host server jobs” on page 35.) Be sure
that IIS is running properly in the development environment where you are building your Web
application.

To start, open Visual Studio .NET and select File → New → Project to open the New Project
window (Figure 7-2 on page 243). Under Project Types, select Visual C# Projects, and in the
Templates pane, select ASP .NET Web Application. Specify a location, such as the Web
server name (localhost) and an application name (iSeriesWeb).

Click OK, and Visual Studio .NET automatically creates a Web application on the specified
Web server with a default configuration file and a Web page.

CheckBox, CheckBoxList Displays a check box or a group of check boxes. Can be
bound and used to display Boolean data.

RadioButton, RadioButtonList Displays a radio button or a group of radio buttons. Can be
bound and used to display Boolean data.

Image Displays an image within the page.

Calendar Creates an HTML version of a pre-settable calendar.

Web control Description

242 Integrating DB2 Universal Database for iSeries with Microsoft ADO .NET

Figure 7-2 New Project window

In Solution Explorer, rename the default WebForm1.aspx Web page to iSeries.aspx
(Figure 7-3).

Figure 7-3 Solution Explorer: renaming WebForm1.aspx to iSeries.aspx

To access the database on the iSeries, you must add a reference to the
IBM.Data.DB2.iSeries provider. Right-click the project name (iSeriesWeb) in Solution
Explorer and select Add Reference to open the Add Reference window (Figure 7-4 on
page 244).

In the Add Reference window, select IBM DB2 UDB for iSeries .NET Provider and click
Select to add the provider to the Selected Components list. Click OK to add the reference to
the iSeries provider.

Chapter 7. ASP .NET scenario (Web forms) 243

Figure 7-4 Reference window: adding a reference to the IBM DB2 UDB for iSeries .NET provider

Alternatively, you can verify the added references in the project by expanding the References
node in your Solution Explorer window, as shown in Figure 7-5.

Figure 7-5 Solution Explorer: references in the project

244 Integrating DB2 Universal Database for iSeries with Microsoft ADO .NET

In this application, we show how to populate a ListBox control and DataGrid control using the
IBM DB2 UDB for iSeries .NET provider. We use the ListBox control to populate the First
Name column from the EMPLOYEE table and use the DataGrid to display the STAFF table.

To design the user interface, double-click or drag the controls from the Web Forms toolbox on
the iSeries.aspx design page, and change the text for Button1 to Fill List Box and the text
for Button2 to Fill Data Grid as shown in Figure 7-6.

Figure 7-6 Web page design: user interfaces

You can apply various designs and styles to the DataGrid control by right-clicking it and
selecting Property Builder.

In the next section, we see the actual code that is used to populate the controls with data from
the iSeries database.

Populating the ListBox
To add code for populating the ListBox control, double-click Fill List Box. Visual Studio .NET
automatically opens the code window with code for the button’s click event (Example 7-1).

Example 7-1 Code for click event of Button1

private void Button1_Click(object sender, System.EventArgs e)
{

Create a connection using an iDB2Connection object (Example 7-2 on page 246).

Important: When using the provider through ASP .NET / IIS, the connection string should
always contain the authentication credentials, such as the UserID and Password elements.
Otherwise a logon window may appear at the server side, which would make the Web
client appear to hang.

Chapter 7. ASP .NET scenario (Web forms) 245

Example 7-2 Code for the click event of Button1: creating the connection

try
{

iDB2Connection connDB2=new iDB2Connection(
"DataSource=myiSeries;"
+"userid=myuserid;password=mypassword;DefaultCollection=sampledb;");

Create an iDB2Command object using a valid SQL statement and instance of connection
object, then open the connection (Example 7-3).

Example 7-3 Code for the click event of Button1: creating the command

iDB2Command idbc = new iDB2Command("select FIRSTNME, LASTNAME from employee",CommandType.Text,
connDB2);
connDB2.Open ();

After opening the connection, execute the command object using the ExecuteReader ()
method and assign it to the DataSource property of the ListBox control (Example 7-4).

Example 7-4 Code for the click event of Button1: executing the command

ListBox1.Items.Clear();
ListBox1.DataSource = idbc.ExecuteReader();

Assign the DataTextField and DataValueField properties of the list box with the appropriate
column names (Example 7-5), and bind the ListBox using the DataBind() method. The
DataTextField property specifies a field in the DataSource to display as the items of the list in
a list control, and the DataValueField specifies a field that contains the value of each item in a
list control. You can use a client-side script to get the DataValueField of the selected list item.

Example 7-5 Code for the click event of Button1: binding the control

ListBox1.DataTextField = "FIRSTNME" ;
ListBox1.DataValueField = "LASTNAME";

ListBox1.DataBind();

Close the connection using the Close() method (Example 7-6).

Example 7-6 Code for the click event of Button1: closing the connection

connDB2.Close();
}
catch (Exception eR)
{

Response.Write (eR.Message.ToString());
}

}

246 Integrating DB2 Universal Database for iSeries with Microsoft ADO .NET

Example 7-7 shows the entire code for populating the ListBox control.

Example 7-7 Complete code for the click event of Button1

private void Button1_Click(object sender, System.EventArgs e)
{

try
{

iDB2Connection connDB2=new iDB2Connection(
"DataSource=myiSeries;" +
"userid=myuserid;password=mypassword;DefaultCollection=sampledb;");

iDB2Command idbc = new iDB2Command("select FIRSTNME, LASTNAME from
employee",CommandType.Text, connDB2);

connDB2.Open ();
ListBox1.Items.Clear();
ListBox1.DataSource = idbc.ExecuteReader();

ListBox1.DataTextField = "FIRSTNME" ;
ListBox1.DataValueField = "LASTNAME";

ListBox1.DataBind();

connDB2.Close();
}
catch (Exception eR)
{

Response.Write (eR.Message.ToString());

}
}

Binding the DataGrid
The DataGrid control is a very powerful control for displaying data, and it supports selection,
editing, deletion, paging, and sorting features.

In this example we show how to display data in the DataGrid control from the STAFF table.
You can add code for binding the DataGrid control by double-clicking the Fill Data Grid button
as shown in Example 7-8.

Example 7-8 Code for the click event of Button2 to bind the datagrid

private void Button2_Click(object sender, System.EventArgs e)
{

try
{

The first step in making a connection with iSeries is to create a connection as shown in
Example 7-9.

Example 7-9 Code for the click event of Button2 to bind the DataGrid: creating the connection

iDB2Connection connDB2=new iDB2Connection(
"DataSource=myiSeries;" +

"userid=myuserid;password=mypassword;DefaultCollection=sampledb;");

Create the DataSet and iDB2DataAdapter objects. The DataSet object represents an
in-memory cache of data from the STAFF table, and the iDB2DataAdapter is created to fill the
DataSet and update the data source.

Chapter 7. ASP .NET scenario (Web forms) 247

Bind the DataGrid control with the DataSource using the DataBind() method (Example 7-10).

Example 7-10 Code for the click event of Button2 to bind the DataGrid: filling the dataset

DataSet ds = new DataSet();
iDB2DataAdapter adpt = new iDB2DataAdapter();

adpt.SelectCommand = new iDB2Command("select * from STAFF", connDB2);
adpt.Fill(ds);

DataGrid1.DataSource = ds;
DataGrid1.DataBind ();
connDB2.Close();

Example 7-11 shows the complete example for binding the DataGrid with the database using
the DB2 UDB for iSeries provider.

Example 7-11 Complete code for the click event of Button2 to bind the DataGrid

private void Button2_Click(object sender, System.EventArgs e)
{

try
{

iDB2Connection connDB2=new iDB2Connection(
"DataSource=myiSeries;" +

"userid=myuserid;password=mypassword;DefaultCollection=sampledb;");

DataSet ds = new DataSet();
iDB2DataAdapter adpt = new iDB2DataAdapter();
adpt.SelectCommand = new iDB2Command("select * from staff",

connDB2);
adpt.Fill(ds);

DataGrid1.DataSource = ds;
DataGrid1.DataBind ();
connDB2.Close();

}
catch (Exception e)
{

Response.Write (e.Message);
}

}

After clicking both buttons, the output is shown on the iSeries.aspx Web page (Figure 7-7 on
page 249).

248 Integrating DB2 Universal Database for iSeries with Microsoft ADO .NET

Figure 7-7 Output of iSeries.aspx Web page (using the IBM DB2 UDB for iSeries provider)

7.4 Using the IBM DB2 for LUW .NET provider
In this section we show how to use the IBM DB2 for LUW .NET provider to populate the
DataRepeater and DataList Web controls.

We start with the procedure that we discussed in 7.3, “Using the IBM DB2 UDB for iSeries
.NET provider” on page 242 and create a new ASP .NET Web application. Rename it to
luwWeb. Rename the default WebForm1.aspx page to luw.aspx.

In “Using the IBM DB2 UDB for iSeries .NET provider” on page 242 we discussed how to add
a reference to the IBM DB2 UDB for iSeries provider. Follow the same steps, but this time add
a reference to the IBM DB2 for LUW provider. The Add References window looks similar to
Figure 7-8 on page 250. In this window, select IBM.Data.DB2.dll and click OK.

Chapter 7. ASP .NET scenario (Web forms) 249

Figure 7-8 Add Reference window: adding reference to IBM DB2 LUW .NET provider

Next, design your Web page by dragging the controls from the Toolbox window and renaming
the button text as shown in Figure 7-9.

Figure 7-9 Design window

250 Integrating DB2 Universal Database for iSeries with Microsoft ADO .NET

Designing the Repeater control
The Repeater is a good choice for displaying data in a format other than HTML <table>.

Note that the Repeater control is not derived from the WebControl class, so it does not have
the stylistic properties (Font, BackColor, BorderStyle) that are common to all Web controls.
Also, the Repeater control does not provide any built-in features for editing, sorting, or paging
of the data.

To represent the data, the following templates can be used with the Repeater control:

� AlternatingItemTemplate
� ItemTemplate
� HeaderTemplate
� FooterTemplate
� SeparatorTemplate

In this example we use HeaderTemplate, ItemTemplate, and FooterTemplate to display the
data in tabular form. To add code for templates, go to the HTML code window and add code
for the Repeater control as shown in Example 7-12.

Example 7-12 Code for repeater control

<asp:repeater id="Repeater2" runat="server">
<HeaderTemplate>

<table border="1">
<tr>

<td>Name of Employee</td>
<td>BirthDate</td>
<td>Phone No</td>

</tr>
</HeaderTemplate>
<ItemTemplate>

<tr>
<td><%# DataBinder.Eval(Container.DataItem, "FIRSTNME")%>

<%# DataBinder.Eval(Container.DataItem, "LASTNAME")%>
</td>
<td><%# DataBinder.Eval(Container.DataItem, "BIRTHDATE", "{0:d}")%></td>
<td><%# DataBinder.Eval(Container.DataItem, "PHONENO")%></td>

</tr>
</ItemTemplate>
<FooterTemplate>

</table>
</FooterTemplate>
</asp:repeater>

The design page automatically reflects the code that you added in the templates, as shown in
Figure 7-10 on page 252.

Chapter 7. ASP .NET scenario (Web forms) 251

Figure 7-10 Auto-updated Design window after inserting template for Repeater control

Designing the DataList control
The DataList Web control is useful for displaying data that can be highly customized in its
layout. The DataList control is capable of performing sorting, paging, and editing of its data,
but requires more coding than the DataGrid control.

It uses the following templates to represent the data in a variety of design layouts:

� AlternatingItemTemplate
� EditItemTemplate
� HeaderTemplate
� FooterTemplate
� SeparatorTemplate

In this example we use HeaderTemplate and ItemTemplate to lay out the data. To specify
template properties, open the HTML code window and enter the code as shown in
Example 7-13 for the DataList control.

Example 7-13 Code for DataList control

<asp:datalist id="Datalist1" style="Z-INDEX: 102; LEFT: 424px; POSITION: absolute; TOP:
48px"
runat="server" Width="184" Height="88">
<HeaderStyle BackColor="#aaaadd"></HeaderStyle>
<AlternatingItemStyle Back-Color="Gainsboro"></AlternatingItemStyle>
<EditItemStyle BackColor="yellow"></EditItemStyle>
<HeaderTemplate>
Staff and Salary
</HeaderTemplate>
<ItemTemplate>
Staff Name:
<%# DataBinder.Eval(Container.DataItem, "NAME") %>

Salary:
<%# DataBinder.Eval(Container.DataItem, "SALARY") %>

</ItemTemplate>
</asp:datalist>

252 Integrating DB2 Universal Database for iSeries with Microsoft ADO .NET

The design page automatically reflects the code for the DataList control, which is added using
templates and shown in Figure 7-11.

Figure 7-11 Auto-updated Design window after inserting the template for DataList control

Binding the Repeater control
After specifying the templates and design layout, we have to bind it in order to display the
actual data. In this example we use the web.config file for declaring the connection string. The
connection string can be specified using the appSettings element. To declare the connection
string, open the web.config file and add the following code after the </system.web> element:

<appSettings>
<add key="connectionString" value="database=myDB2;Connect Timeout=30; user

Id=myuserid;password=mypassword;" />
</appSettings>

Save and close the web.config file and open the Design window for the luw.aspx Web page.
Double-click Fill Repeater so that Visual Studio .NET automatically adds an event for the
button. Add code to create a new connection, as shown in Example 7-14.

Example 7-14 Code for the Fill Repeater button

private void Button1_Click(object sender, System.EventArgs e)
{

try
{

DB2Connection connDB2=new DB2Connection ();

Note: We assume here that the database name myDB2 is already configured and created
on your development machine. For more details, see 5.2.4, “Connecting to an iSeries
database” on page 180.

Chapter 7. ASP .NET scenario (Web forms) 253

After creating the instance of the DB2Connection object, specify the connection string
declared in the web.config file as shown in Example 7-15.

Example 7-15 Code for Fill Repeater button

connDB2.ConnectionString =
ConfigurationSettings.AppSettings["ConnectionString"];

Specify the SQL statement using the DB2Command object and bind the Repeater control.
Example 7-16 shows the complete code for using the Repeater control with the IBM DB2 for
LUW provider.

Example 7-16 Binding the Repeater control using the IBM DB2 for LUW provider

private void Button1_Click(object sender, System.EventArgs e)
{

try
{

DB2Connection connDB2=new DB2Connection ();

 connDB2.ConnectionString = ConfigurationSet
tings.AppSettings["ConnectionString"];

DB2Command cmdDB2=new DB2Command (
"SELECT * FROM SAMPLEDB.EMPLOYEE", connDB2);

connDB2.Open();

Repeater1.DataSource = cmdDB2.ExecuteReader();
Repeater1.DataBind();

connDB2.Close();
}
catch (Exception ex)
{

Response.Write (ex.Message);
}

}

Binding the DataList control
The code for binding the DataList control is the same as discussed previously in “Binding the
Repeater control” on page 253, except for the SQL statement. In this example we use the
STAFF table to display the data in the DataList control.

Example 7-17 shows the complete code for displaying the data using the DataList control.

Example 7-17 Binding the Repeater control using the IBM DB2 for LUW provider

private void Button2_Click(object sender, System.EventArgs e)
{

try
{

DB2Connection connDB2=new
DB2Connection(ConfigurationSettings.AppSettings["ConnectionS
tring"]);

DB2Command cmdDB2=new DB2Command(
"SELECT * FROM SAMPLEDB.STAFF", connDB2);

connDB2.Open();

254 Integrating DB2 Universal Database for iSeries with Microsoft ADO .NET

DataList1.DataSource = cmdDB2.ExecuteReader();
 DataList1.DataBind();

connDB2.Close();
}
catch (Exception ex)
{

Response.Write (ex.Message);
}

}

After clicking Fill Repeater and Fill DataList, the luw.aspx Web page looks like Figure 7-12.

Figure 7-12 Output of the luw.aspx Web page using the IBM DB2 for LUW provider

Chapter 7. ASP .NET scenario (Web forms) 255

256 Integrating DB2 Universal Database for iSeries with Microsoft ADO .NET

Appendix A. Sample programs

Throughout much of this book, coding examples are shown using the C# programming
language. We also provide downloadable sample programs in both C# and Visual Basic that
illustrate many of the examples from this book. This appendix is a reference that explains the
contents of each sample program. We have arranged the samples in the order they appear in
the book. See Appendix B, “Additional material” on page 261 for information about
downloading the samples.

A

© Copyright IBM Corp. 2005. All rights reserved. 257

Samples for the IBM DB2 UDB for iSeries .NET provider
This section describes the sample programs for many of the examples shown in Chapter 3,
“ADO .NET object hierarchy” on page 17 and Chapter 4, “IBM DB2 UDB for iSeries .NET
provider” on page 33. We provide samples in both Visual Basic and in C#.

Sample program Description References

AdoNetConnectedMode Uses a stored procedure to
retrieve Employee information

3.2, “Connected mode” on page 23
Example 3-6 through Example 3-9

AdoNetDisconnectedMode Uses a DataAdapter to read and
write Department information

3.3, “Disconnected mode” on page 25
Example 3-10 through Example 3-19

SimpleConnectionExample Connects to the iSeries and
displays the JobName

4.5.1, “A simple connection example” on
page 45
Example 4-1

ConnectionPropertiesAndMethods Shows how to initialize and use
iDB2Connection objects

4.5.2, “iDB2Connection and
ConnectionString properties” on page 48
Example 4-2 through Example 4-39

CommandPropertiesAndMethods Shows how to create and use
iDB2Command objects

4.5.3, “iDB2Command properties and
methods” on page 65
Example 4-41 through Example 4-54

UsingParameters Shows how to use parameters in
your SQL statements

4.5.4, “Using parameters in your SQL
statements” on page 74
Example 4-55 through Example 4-61

CallingStoredProcedures Shows how to call stored
procedures, pass parameters,
handle result sets, and return
values

4.5.5, “Calling stored procedures” on
page 79
Example 4-62 through Example 4-68

DataTypeExamples Shows different ways to handle
data types, including char data
tagged with CCSID 65535, date
and time values, and decimal
data

4.5.7, “Provider data types” on page 87
Example 4-69 through Example 4-82

ExceptionHandling Shows how to handle exceptions
in your application

4.5.8, “Handling exceptions” on page 102
Example 4-83 through Example 4-86

DataReaderConsole Shows how to use a DataReader
to read from a table in a Console
application

“A Console DataReader example” on
page 107
Example 4-87

DataReaderWindow Shows how to use a DataReader
to read from a table in a Windows
application

“A Windows DataReader example” on
page 108
Example 4-88

DataAdapterWithCommandBuilder Uses a DataAdapter with
CommandBuilder to read from a
table

4.6.2, “A simple DataAdapter with
CommandBuilder example” on page 110
Example 4-89

UsingTransactions Shows how to use
iDB2Transaction objects to
control a transaction

4.6.3, “Using transactions” on page 116
Example 4-90 through Example 4-93

258 Integrating DB2 Universal Database for iSeries with Microsoft ADO .NET

Sample for the IBM DB2 for LUW .NET provider
This is the sample program for the Employee Photo Viewer example shown in Chapter 5,
“IBM DB2 for LUW .NET provider” on page 177. This sample is provided in C#.

UsingQCMDEXC Shows different ways to use the
QCMDEXC stored procedure to
call i5/OS programs and
commands

4.6.5, “Calling a program or CL command
using QCMDEXC” on page 120
Example 4-94 through Example 4-101

CultureSpecificSettings Shows how culture settings can
change the way data is handled
by the provider

4.7.1, “Internationalization and support for
multiple languages” on page 129
Example 4-102 through Example 4-104

LobWindow Reads LOB data using
ExecuteScalar and displays the
result in a PictureBox

4.7.2, “Using large objects (LOBs)” on
page 132
Example 4-105

LobConsole Reads LOB data using the
GetChars method

4.7.2, “Using large objects (LOBs)” on
page 132
Example 4-106

UpdatableDataSet Uses a DataAdapter to read and
write data

4.7.3, “Updating DataSets” on page 136
Example 4-107 through Example 4-109

UsingDataLinks Shows how to Select and Insert
using Datalinks

4.7.5, “Using DataLinks” on page 141
Example 4-110 through Example 4-112

ConnectionPooling Illustrates how connection
pooling works

4.7.6, “Connection pooling” on page 143
Example 4-113 through Example 4-114

AdoNetForwardOnlyReadOnly Shows an ADO forward-only,
read-only example converted to
ADO.NET

“Forward-only, read-only recordset example
using ADO.NET” on page 155
Example 4-116

AdoNetUpdatableRecordset Shows an ADO updatable
recordset example converted to
ADO.NET

“Updatable recordset example using
ADO.NET” on page 163
Example 4-118

TryCatchExample Shows how to handle exceptions
using a Try/Catch block

4.10.1, “Handle exceptions using try/catch
blocks” on page 166
Example 4-119

ProviderIndependence Shows different ways to use
multiple providers in your
application

4.11, “Writing code for provider
independence” on page 171
Example 4-122 through Example 4-124

Sample program Description References

Sample program Description References

EmployeePhotoViewer Reads Employee pictures as LOB data and
displays them in a PictureBox

5.7.1, “Using large objects (LOBs)” on
page 204
Example 5-8 through Example 5-14

Appendix A. Sample programs 259

260 Integrating DB2 Universal Database for iSeries with Microsoft ADO .NET

Appendix B. Additional material

This redbook refers to additional material that can be downloaded from the Internet as
described below.

Locating the Web material
The Web material associated with this redbook is available in softcopy on the Internet from
the IBM Redbooks Web server. Point your Web browser to:

ftp://www.redbooks.ibm.com/redbooks/SG246440

Alternatively, you can go to the IBM Redbooks Web site at:

ibm.com/redbooks

Select Additional materials and open the directory that corresponds with the redbook form
number, SG246440.

Using the Web material
The additional Web material that accompanies this redbook includes the following file:

File name Description
SG24-6440-SamplePrograms.zip Zipped Code Samples

System requirements for downloading the Web material
The following system configuration is recommended:

� iSeries requirements

– OS/400 Version 5 Release 3 or later

– 5722-SS1 Host Servers

– 5722-XE1 iSeries Access for Windows V5R3

B

© Copyright IBM Corp. 2005. All rights reserved. 261

ftp://www.redbooks.ibm.com/redbooks/SG246440
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

� PC requirements

– Windows XP

– iSeries Access for Windows V5R3

– Microsoft .NET framework and Microsoft Visual Studio .NET

How to use the Web material
To extract the files, right-click the zip file and select Extract all. It will extract the files into a
folder named c:\SG24-6440-SamplePrograms on your computer. Inside that folder are three
folders:

iDB2Samples-VB Contains Visual Basic samples for the DB2 UDB for iSeries .NET
provider.

iDB2Samples-VC Contains Visual C# samples for the DB2 UDB for iSeries .NET
provider.

DB2Samples-VC Contains a Visual C# sample for the DB2 for LUW .NET provider.

To use the sample programs, navigate into the appropriate directory and double-click the .sln
file. This opens Visual Studio .NET. The iDB2 samples were created using Visual Studio .NET
2002, so if you run them on a later version of Visual Studio .NET, the first time you open the
.sln file you will be asked if you want to convert the files to the newer version. Select Yes. The
DB2 sample was created using Visual Studio .NET 2003.

Each solution contains multiple samples. To work with a particular sample, display the
Solution Explorer. Locate the sample you wish to run, then right-click it and select Set as
Startup Project. Then run the sample.

We recommend that you run each sample by stepping through the examples using Visual
Studio .NET in debug mode so you can see what each sample does. The samples may have
to be modified to run in your environment. Most of them use the SAMPLEDB database we
discuss in Chapter 1. Because the samples were written to be used by anyone, you may have
to change at least the ConnectionString used by the samples. For example, in many places
where we use the name myiSeries, you should substitute the name of your iSeries server.

262 Integrating DB2 Universal Database for iSeries with Microsoft ADO .NET

Related publications

The publications listed in this section are considered particularly suitable for a more detailed
discussion of the topics covered in this redbook.

IBM Redbooks
For information on ordering these publications, see “How to get IBM Redbooks” on page 264.
Note that some of the documents referenced here may be available in softcopy only.

� Advanced Functions and Administration on DB2 Universal Database for iSeries,
SG24-4249

� DB2 UDB V8.2 on the Windows Environment, SG24-7102

� DB2 Universal Database for iSeries Administration: The Graphical Way on V5R3,
SG24-6092

� iSeries Access for Windows V5R2 Hot Topics: Tailored Images, Application
Administration, SSL, and Kerberos, SG24-6939

� Lotus Domino and .NET coexistence, REDP-3868

� Stored Procedures, Triggers, and User Defined Functions on DB2 Universal Database for
iSeries, SG24-6503

� Striving for Optimal Journal Performance on DB2 Universal Database for iSeries,
SG246286

� WebSphere and .NET coexistence, SG24-7027

� WebSphere MQ Solutions in a Microsoft .NET environment, SG24-7012

Other publications
This publication is also relevant as an information source:

� Jeffrey Richter, Applied Microsoft .NET Framework Programming, Microsoft Press, 2002,
ISBN 0735614229

Online resources
These Web sites and URLs are also relevant as further information sources:

� DB2 Universal Database for iSeries home page

http://www.ibm.com/iSeries/db2

� DB2 Information Center

http://publib.boulder.ibm.com/infocenter/db2help/index.jsp

� DB2 UDB, DB2 Connect, and DB2 Information Integrator Version 8 product manuals

http://www.ibm.com/software/data/db2/udb/support/manualsv8.html

© Copyright IBM Corp. 2005. All rights reserved. 263

http://www.ibm.com/iSeries/db2
http://www.ibm.com/software/data/db2/udb/support/manualsv8.html
http://publib.boulder.ibm.com/infocenter/db2help/index.jsp

� DB2 Universal Database: Selected Common SQL Features for Developers of Portable
SQL Applications

http://www.ibm.com/servers/enable/site/db2/db2common.html

� IBM Publications Center

http://www.ibm.com/shop/publications/order

� iSeries Information Center

http://publib.boulder.ibm.com/pubs/html/as400/infocenter.html

� iSeries Access for Windows

http://www.ibm.com/servers/eserver/iseries/access/windows

� Microsoft Library

http://msdn.microsoft.com/library/

How to get IBM Redbooks
You can search for, view, or download Redbooks, Redpapers, Hints and Tips, draft
publications, and Additional materials, as well as order hardcopy Redbooks or CD-ROMs, at
this Web site:

ibm.com/redbooks

Help from IBM
IBM Support and downloads

ibm.com/support

IBM Global Services

ibm.com/services

264 Integrating DB2 Universal Database for iSeries with Microsoft ADO .NET

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.ibm.com/support/
http://www.ibm.com/support/
http://www.ibm.com/services/
http://www.ibm.com/services/
http://msdn.microsoft.com/library/
http://www.ibm.com/shop/publications/order
http://publib.boulder.ibm.com/pubs/html/as400/infocenter.html
http://www.ibm.com/servers/eserver/iseries/access/windows
http://www.ibm.com/servers/enable/site/db2/db2common.html

Index

Symbols
code point 149
$ code point 149
.NET Framework version 170
.NET languages 14
.NET redistributable 13
? parameter marker 78
@ code point 149
@ parameter marker 76

Numerics
5722-XE1 33
5722-XW1 34

A
AcceptChanges 23, 25
access path 5
Accessing physical files with multiple members 123
ADO 149
ADO.NET 18–19
ADODB objects 158
ALIAS 123
ALTER TABLE 91
Although 38
assembly reference 43, 198
Authentication on the iSeries 49
Autocommit 119
AutoComplete 219
automatic transaction enlistment 118

B
BeginTransaction 20, 64, 201
Best practices 146, 223
Binary large objects (BLOBs) 132, 205
BIT DATA 90
BLOB 132, 205

C
Calling a program 120
Calling stored procedures 80
Cancel 70
CCSID 65535 90, 128
ChangeDatabase 65
Character large objects (CLOBs) 132, 204
CheckConnectionOnOpen 55, 107
Choosing your Execute method 86
CL command 120
CleanupPooledConnections 145, 171
Clear (DataSet method) 23, 25
CLOB 132, 204
Close 20, 65, 201, 203
CLR 14

© Copyright IBM Corp. 2005. All rights reserved.
CLS 14–15
columns in SQL 5
COM+ 210, 212
CommandBuilder example 110
CommandText 20, 67, 201
CommandTimeout 67
CommandType 20, 67, 201
Common Language Runtime 14
Common Language Runtime features 15
Common Language Specification 14–15
Common Type System 15
communication error 103–104, 106
communication traces 168
compression 57, 148
concurrency violation 138, 150
Configuration Assistant 181
Connection 68
Connection pooling 54, 105, 143, 223
ConnectionString 19, 48, 200
ConnectionTimeout 50
Console Application 43
CreateCommand 20, 201
CreateParameter 21, 175, 202
CTS 15
culture-specific settings 130
CurrentCulture 130
CurrentUICulture 129
cursor 150
cwbcotrc utility 168
cwbmptrc utility 167
cwbping 36

D
Data Description Specification (DDS) 5
data field 5
Data queues 38
Data types 37, 87, 196
DataAdapter 22, 127, 129, 203

example 110, 203
Database 51, 180
DataCompression 57
DataLinks 38, 141
DataReader 21, 127, 202

example 107, 202
DataSet 22
DataSetName 23
DataSource 49
Dates 94
DB2 UDB for iSeries

overview 4
programming languages 4
sample schema 8

DB2Command 201
Methods 202
 265

CreateParameter 202
ExecuteNonQuery 202
ExecuteReader 202
ExecuteScalar 202

Properties 201
CommandText 201
CommandType 201

DB2CommandBuilder 207
rules for using 207

DB2Connection 19, 199
ConnectionString properties 199

Connection Lifetime 199, 223
Connection Reset 199, 223
CurrentSchema 199
Database 199
Enlist 199
Isolation Level 200
Max Pool Size 200, 223
Min Pool Size 200, 223
Password 199
Persist Security Info 200
Pooling 200, 223
PWD 199
Server 199
UID 199
User ID 199

Methods 200
BeginTransaction 201
Close 201
CreateCommand 201
Open 201

DB2DataAdapter 203
Methods 204

Fill 204
Update 204

Properties 204
DeleteCommand 204
InsertCommand 204
SelectCommand 204
UpdateCommand 204

DB2DataReader 202
Methods 203

Close 203
Read 203

Properties 203
FieldCount 203
HasRows 203

DBCLOB 132, 204
DDS (Data Description Specification) 5
Decimal separator 100
DefaultCollection 52–53
DefaultIsolationLevel 59
DeleteCommand 22, 204
delimited identifiers 149
Deploying your application 146
DeriveParameters 70
Dispose 71
Distributed Transaction Coordinator (DTC) 39, 199
Distributed transactions 118, 210
Double-byte character large objects (DBCLOBs) 132,

204
DRDA 39, 178

E
Exceptions 102, 166

DB2Exception 195
iDB2CommErrorException 103
iDB2SQLErrorException 102
Message property 102
MessageCode property 103
MessageDetails property 102
Provider-specific 37
SqlState property 103

Execute 86
ExecuteNonQuery 21, 71, 202
ExecuteReader 21, 71, 202
ExecuteScalar 21, 71, 202
extended dynamic 38

F
field 5
FieldCount 21, 203
Fill 115, 204

G
garbage collection 148
GetXML 23, 25

H
Handling exceptions 102
HasRows 21, 203
HexParserOption 58
Host setup 40

I
IASP 51
IBM DB2 UDB for iSeries .NET provider 33
IBM Support 169
IBM.Data.DB2 177
IBM.Data.DB2.iSeries 33
IBMDA400 OLE DB provider 38, 152, 159, 171
IBMDARLA OLE DB provider 38
IBMDASQL OLE DB provider 38
iDB2Command 65

constructor 66
Methods 70

Cancel 70
CreateParameter 175
DeriveParameters 70
Dispose 71
ExecuteNonQuery, ExecuteReader, and Exe-
cuteScalar 71
Prepare 74

Properties 67
CommandText 67
CommandTimeout 67
CommandType 67

266 Integrating DB2 Universal Database for iSeries with Microsoft ADO .NET

Connection 68
Parameters 69, 74
Transaction 69
UpdatedRowSource 69

iDB2CommandBuilder 139
rules for using 139

iDB2Connection 19, 48
ConnectionString properties 48

CheckConnectionOnOpen 55
ConnectionTimeout 50
Database 51
DataCompression 57
DataSource 49
DefaultCollection 52
DefaultIsolationLevel 59
HexParserOption 58
JobName 63
LibraryList 52
MaximumDecimalPrecision 60
MaximumDecimalScale 60
MaximumInlineLobSize 58
MaximumPoolSize 54
MaximumUseCount 55
MinimumDivideScale 60
MinimumPoolSize 55
Naming 51
Password 49
Pooling 54
Provider 62
QueryOptionsFileLibrary 59
ServerVersion 62
SortLanguageId 57
SortSequence 56
SortTable 57
SSL 50
State 62
Trace 63
UserID 49

constructor 48
Format of the ConnectionString 48
Methods 64

BeginTransaction 64
ChangeDatabase 65
CleanupPooledConnections 145
Close 65
CreateCommand 65
Open 65

Overriding your ConnectionString 168
iDB2DataAdapter 127
iDB2DataReader 71
iDB2Date 94
iDB2Decimal 97
iDB2Exception 169
iDB2Time 94
iDB2TimeStamp 94
IIS 49
Imports statement 44, 199
independent auxiliary storage pool (IASP) 51
index in SQL 5
inline LOB data 58

InsertCommand 22, 204
integrated relational database 4
Intermediate Language 14
Internet Information Services (IIS) 49
iSeries Access for Windows 34
iSeries Information Center 36, 179
iSeries isolation level 59
ISO formats for date, time, and timestamp 94
Isolation levels 59, 119

J
JDBC 149
job description 51
Joblog 46, 64, 170
JobName 46, 63, 170

K
Kerberos 50
key columns 140
keyed logical file 5

L
languages 129
Large decimal and numeric data 60
Large objects (LOBs) 58, 128, 132, 204

example 132, 204
techniques 135

LibraryList 52
LOB locators 58
Local transactions 116, 210
logical file 5

M
MaximumDecimalPrecision 60
MaximumDecimalScale 60
MaximumInlineLobSize 58
MaximumPoolSize 54
MaximumUseCount 55
method

BeginTransaction 20, 64, 201
Close 20–21, 65, 201
CreateCommand 20, 65, 201
ExecuteNonQuery 24
Fill 22
Open 19, 65, 200–201
Read 21
Update 22

Microsoft Intermediate Language 15
MinimumDivideScale 60
MinimumPoolSize 55
MSDN Library Web site 34
MSIL 15
MTS 39
Multiple members of a DDS file, accessing 123

using an ALIAS 123
using OVRDBF 123

Multiple results 84

 Index 267

N
named parameter 78
namespace directive 44, 199
Naming convention 51
nullable columns 140
nullable fields 147

O
object

Command 20
DB2Command 201
iDB2Command 65

Connection 19
DB2Connection 180

DataAdapter 22
DB2DataAdapter 203
iDB2DataAdapter 110

DataReader 21
DB2DataReader 202
iDB2DataReader 71

Parameter 24
DB2Parameter 195
iDB2Parameter 69

ODBC 149, 172
OLE DB 149
OLE DB properties 151

Add Statements To SQL Package 151
Block Fetch 151
Catalog Library List 151
ConnectionTimeout 151
Convert Date Time To Char 151
Current Catalog 151
Cursor Sensitivity 151
Data Compression 151
Data Source 151
DBMS Version 151
Default Collection 151
Force Translate 151
Hex Parser Option 151
Initial Catalog 151
Job Name 151
Maximum Decimal Precision 151
Maximum Decimal Scale 151
Minimum Divide Scale 151
Password 151
Provider 152
Query Options File Library 152
Sort Language ID 152
Sort Sequence 152
Sort Table Name 152
SQL Package Library Name 152
SQL Package Name 152
SSL 152
State 152
Trace 152
Unusable SQL Package Action 152
Use SQL Packages 152

OleDbConnection 19
Open 20, 65, 201

optimistic 150
optimistic concurrency 138, 140, 150
outfile, processing 123
Overriding your ConnectionString 168
OVRDBF 123

P
parameter markers 76, 147
Parameters 69, 74, 76
Password 49
PC setup 39
performance 146, 230
pessimistic concurrency 150
physical data 5
physical files 5
Platform Support 13
Pooling 54, 200
Prepare 74, 148
prestart job 35, 179
primary key 140, 147
problem determination 63
program call 38
Provider architecture 34, 178
Provider data types 87, 196
provider independence 171
proxy 220
PTF 170

Q
QAQQINI 59
QCMDEXC 120
Query options file 59
QueryOptionsFileLibrary 59
QUSRWRK subsystem 35, 179
QZDASOINIT 34
QZDASSINIT 35

R
RDB 51
Read 203
ReadXml 23, 25
record field 5
record level access 38
record selection 5
records 5
Redbooks Web site 264

Contact us xi
relational database

integration overview 4
Remote command 38
Result data 83, 86
return value parameters 83
rows 5
RowUpdatedEvent 139
run-time authorization identifier 52

S
sample schema 40

268 Integrating DB2 Universal Database for iSeries with Microsoft ADO .NET

sampledb 40
Secure Sockets Layer 50
SelectCommand 22, 204
Selective Setup 39
server job 34–35, 178
ServerVersion 62
Service Packs 40
SetAbort 214
SetComplete 214
SharedWeight 56
Sort sequence 132
SortLanguageId 57
SortSequence 56
SortTable 57
special characters 148
spool file, processing 124
SQL 5

view defined 5
SQL (Structured Query Language) 5
SQL columns 5
SQL errors 102
SQL index 5
SQL naming 51–52
SQL packages 38
SQL table 5
SQL view 5
SQLCURRULE 58
SqlState 169
SSL 50
State 62
Stored procedures 79, 147
STRHOSTSVR 35
Structured Query Language (SQL) 5
Supported features 36, 194
supported host versions 40, 178
System naming 52

T
table

in SQL 5
rows 5

Technical Reference 39, 41, 198
Time 128
TIME and TIMESTAMP special value 24

00
00 96

Time and Timestamp special values 128
timeout 67
Times 94
Timestamp 128
Timestamps 94
Trace property 63
Tracing the provider 167
Transaction 69
transaction mode 59
Transactions 116

and stored procedures 119
distributed 118, 210
Isolation levels 119
local 116

try/catch 166

U
UDTs 38
unique key 147
Unique keys 140
UniqueWeight 56
unnamed parameter 78
unqualified object names 51–52
Unsupported features 38, 196
Updatable recordset 159
Update 204
UpdateCommand 22, 204
UpdatedRowSource 69
Updating DataSets 136
User defined types (UDTs) 38
UserID 49
using directive 44, 199
Using large objects (LOBs) 132

V
view in SQL 5
view of physical data 5
Visual Studio .NET Add-Ins 182

Data Controls 186
DB2 Database Project type 184
IBM Explorer 186
Registering 183
Toolbar 184
Unregistering 183

W
WriteXml 23, 25
WRKJOB 47

X
XML 23, 27

 Index 269

270 Integrating DB2 Universal Database for iSeries with Microsoft ADO .NET

(0.5” spine)
0.475”<

->
0.873”

250 <
->

 459 pages

Integrating DB2 Universal Database for iSeries w
ith M

icrosoft ADO .NET

Integrating DB2 Universal Database
for iSeries w

ith M
icrosoft ADO .NET

Integrating DB2 Universal Database
for iSeries w

ith M
icrosoft ADO .NET

Integrating DB2 Universal Database for iSeries w
ith M

icrosoft ADO .NET

Integrating DB2 Universal Database
for iSeries w

ith M
icrosoft ADO .NET

Integrating DB2 Universal Database
for iSeries w

ith M
icrosoft ADO .NET

®

SG24-6440-00 ISBN 0738490555

INTERNATIONAL
TECHNICAL
SUPPORT
ORGANIZATION

BUILDING TECHNICAL
INFORMATION BASED ON
PRACTICAL EXPERIENCE

IBM Redbooks are developed
by the IBM International
Technical Support
Organization. Experts from
IBM, Customers and Partners
from around the world create
timely technical information
based on realistic scenarios.
Specific recommendations
are provided to help you
implement IT solutions more
effectively in your
environment.

For more information:
ibm.com/redbooks

Integrating DB2 Universal
Database for iSeries with
Microsoft ADO .NET

Discover the power of
ADO .NET Data
Providers for the
iSeries

Learn best practices,
performance tuning,
and migrating from
OLE DB

Master iSeries .NET
programming

Customers have been using the IBM DB2 UDB for iSeries
for many years with data access technologies such as
ODBC and OLE DB. The newest data access technology
from Microsoft is called ADO.NET. Applications that use
ADO.NET with the iSeries can work with several different
.NET providers:

� The IBM.Data.DB2.iSeries provider, a .NET-managed
provider new to iSeries Access for Windows in V5R3

� The IBM.Data.DB2 provider, a .NET provider that works
with all IBM ̂platforms in conjunction with DB2
Connect

� The Microsoft System.Data.OleDb provider, as a bridge
to one of the OLE DB providers included with iSeries
Access for Windows (IBMDA400, IBMDASQL, and
IBMDARLA)

� The Microsoft System.Data.Odbc provider, as a bridge
to the ODBC driver included with iSeries Access for
Windows

This IBM Redbook shows customers how to use ADO.NET
effectively to harness the power of DB2 UDB for iSeries,
showing examples, best practices, pitfalls, and
comparisons between the different ADO.NET data
providers.

Back cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

	Front cover
	Contents
	Notices
	Trademarks

	Preface
	The team that wrote this redbook
	Become a published author
	Comments welcome

	Part 1 Background
	Chapter 1. Introduction to DB2 UDB for iSeries
	1.1 An integrated relational database
	1.2 DB2 UDB for iSeries: an overview
	1.2.1 DB2 UDB for iSeries basics

	1.3 Connectivity options to DB2 UDB for iSeries
	1.3.1 Multiplatform connectivity
	1.3.2 Windows platform connectivity

	1.4 DB2 UDB for iSeries sample schema

	Chapter 2. Introduction to the Microsoft .NET framework
	2.1 Description of .NET
	2.1.1 Architecture
	2.1.2 Platform support

	2.2 Common Language Runtime (CLR)
	2.2.1 Runtime execution environment

	2.3 Class libraries

	Chapter 3. ADO .NET object hierarchy
	3.1 Overview of ADO .NET
	3.1.1 Connection
	3.1.2 Command
	3.1.3 DataReader
	3.1.4 DataAdapter
	3.1.5 DataSet

	3.2 Connected mode
	3.3 Disconnected mode

	Part 2 Providers
	Chapter 4. IBM DB2 UDB for iSeries .NET provider
	4.1 Introduction
	4.2 IBM.Data.DB2.iSeries architecture
	4.2.1 ADO.NET interfaces
	4.2.2 Host server jobs
	4.2.3 Supported features
	4.2.4 Unsupported features

	4.3 Before we begin
	4.3.1 PC setup
	4.3.2 Host setup

	4.4 Getting started
	4.4.1 Displaying the technical reference
	4.4.2 Starting Visual Studio .NET
	4.4.3 Adding an assembly reference to the provider
	4.4.4 Adding a namespace directive

	4.5 Provider basics
	4.5.1 A simple connection example
	4.5.2 iDB2Connection and ConnectionString properties
	4.5.3 iDB2Command properties and methods
	4.5.4 Using parameters in your SQL statements
	4.5.5 Calling stored procedures
	4.5.6 Choosing your execute method
	4.5.7 Provider data types
	4.5.8 Handling exceptions

	4.6 Common tasks
	4.6.1 A DataReader example
	4.6.2 A simple DataAdapter with CommandBuilder example
	4.6.3 Using transactions
	4.6.4 Calling a program by wrapping it in a stored procedure
	4.6.5 Calling a program or CL command using QCMDEXC
	4.6.6 Choosing between iDB2DataReader and iDB2DataAdapter

	4.7 Advanced topics
	4.7.1 Internationalization and support for multiple languages
	4.7.2 Using large objects (LOBs)
	4.7.3 Updating DataSets
	4.7.4 Using iDB2CommandBuilder
	4.7.5 Using DataLinks
	4.7.6 Connection pooling
	4.7.7 Deploying your application

	4.8 Coding for performance and best practices
	4.9 Migrating from ADO and OLE DB to ADO.NET
	4.9.1 ADO objects and how they map to ADO.NET objects
	4.9.2 ADO recordsets versus ADO.NET DataReaders and DataAdapters
	4.9.3 Updating tables
	4.9.4 Mapping OLE DB properties to ADO.NET
	4.9.5 Examples showing an OLE DB application rewritten to use ADO.NET

	4.10 Troubleshooting
	4.10.1 Handle exceptions using try/catch blocks
	4.10.2 Make sure your server jobs are running
	4.10.3 Use provider traces via the cwbmptrc utility
	4.10.4 Enable server-side diagnostics
	4.10.5 Use communication traces via the cwbcotrc utility
	4.10.6 Overriding your ConnectionString
	4.10.7 Gathering information for IBM Support

	4.11 Writing code for provider independence
	4.11.1 Writing provider-independent code with ADO.NET 1.0 and 1.1
	4.11.2 Writing provider-independent code with ADO.NET 2.0

	Chapter 5. IBM DB2 for LUW .NET provider
	5.1 DB2 Connect overview
	5.2 Installing and configuring DB2 Connect
	5.2.1 Host server jobs
	5.2.2 Prerequisites
	5.2.3 Installation procedure
	5.2.4 Connecting to an iSeries database

	5.3 IBM DB2 Development Add-In overview
	5.3.1 Registering the IBM DB2 Development Add-In
	5.3.2 Unregistering the IBM DB2 Development Add-In
	5.3.3 DB2 Toolbar
	5.3.4 DB2 Database Project type
	5.3.5 IBM Explorer

	5.4 IBM DB2 data controls
	5.5 LUW provider features
	5.5.1 Classes to implement ADO.NET interfaces
	5.5.2 Data types
	5.5.3 Unsupported features

	5.6 Getting started
	5.6.1 Starting Visual Studio .NET
	5.6.2 Displaying the technical reference
	5.6.3 Adding an assembly reference to the provider
	5.6.4 Adding a namespace directive
	5.6.5 Using the DB2Connection object and the ConnectionString
	5.6.6 Using the DB2Command object
	5.6.7 Using the DB2DataReader object
	5.6.8 Using the DB2DataAdapter object

	5.7 Advanced topics
	5.7.1 Using large objects (LOBs)
	5.7.2 Using the DB2CommandBuilder object
	5.7.3 Performing transactions

	5.8 Best practices
	5.8.1 Connection pooling

	Chapter 6. Selecting the .NET provider
	6.1 ODBC .NET Data Provider
	6.2 OLE DB .NET Data Provider
	6.3 Provider performance
	6.4 Conclusions

	Part 3 Scenarios
	Chapter 7. ASP .NET scenario (Web forms)
	7.1 An overview of ASP.NET
	7.1.1 ASP .NET Web page (Web form)
	7.1.2 How does ASP .NET work?
	7.1.3 Configuration files in ASP .NET

	7.2 Web controls
	7.3 Using the IBM DB2 UDB for iSeries .NET provider
	7.4 Using the IBM DB2 for LUW .NET provider

	Appendix A. Sample programs
	Samples for the IBM DB2 UDB for iSeries .NET provider
	Sample for the IBM DB2 for LUW .NET provider

	Appendix B. Additional material
	Locating the Web material
	Using the Web material
	System requirements for downloading the Web material
	How to use the Web material

	Related publications
	IBM Redbooks
	Other publications
	Online resources
	How to get IBM Redbooks
	Help from IBM

	Index
	Back cover

