NumPy:比较两个数组中的元素

任何人都遇到过这个问题? 假设你有两个如下所示的数组

a = array([1,2,3,4,5,6]) b = array([1,4,5]) 

有没有办法比较b中存在的元素? 例如,

 c = a == b # Wishful example here print c array([1,4,5]) # Or even better array([True, False, False, True, True, False]) 

我试图避免循环,因为它需要数百万元素的年龄。 有任何想法吗?

干杯

6 Solutions collect form web for “NumPy:比较两个数组中的元素”

事实上,比起其中的任何一个都有一个更简单的解决scheme:

 import numpy as np a = array([1,2,3,4,5,6]) b = array([1,4,5]) c = np.in1d(a,b) 

由此产生的c是:

 array([ True, False, False, True, True, False], dtype=bool) 

使用np.intersect1d。

 #!/usr/bin/env python import numpy as np a = np.array([1,2,3,4,5,6]) b = np.array([1,4,5]) c=np.intersect1d(a,b) print(c) # [1 4 5] 

请注意,如果a或b有不唯一的元素,np.intersect1d会给出错误的答案。 在这种情况下,使用np.intersect1d_nu。

还有np.setdiff1d,setxor1d,setmember1d和union1d。 请参阅使用文档的Numpy示例列表

感谢您的回复kaiser.se。 这不是我正在寻找的东西,而是从朋友的build议和你说的我提出了以下。

 import numpy as np a = np.array([1,4,5]).astype(np.float32) b = np.arange(10).astype(np.float32) # Assigning matching values from a in b as np.nan b[b.searchsorted(a)] = np.nan # Now generating Boolean arrays match = np.isnan(b) nonmatch = match == False 

这是一个繁琐的过程,但它跳动编写循环或使用循环编织。

干杯

Numpy有一个函数numpy.setmember1d(),它可以在有序数组和分离数组上工作,并返回你想要的布尔数组。 如果input数组不符合标准,则需要将其转换为设置格式,并对结果进行转换。

 import numpy as np a = np.array([6,1,2,3,4,5,6]) b = np.array([1,4,5]) # convert to the uniqued form a_set, a_inv = np.unique1d(a, return_inverse=True) b_set = np.unique1d(b) # calculate matching elements matches = np.setmea_set, b_set) # invert the transformation result = matches[a_inv] print(result) # [False True False False True True False] 

编辑:不幸的是,在numpy的setmember1d方法是真的效率低下。 您build议的searchsorting和分配方法的工作更快,但如果您可以直接分配,您可以直接分配结果,并避免大量不必要的复制。 如果b包含不在a中的任何东西,你的方法也会失败。 以下更正了这些错误:

 result = np.zeros(a.shape, dtype=np.bool) idxs = a.searchsorted(b) idxs = idxs[np.where(idxs < a.shape[0])] # Filter out out of range values idxs = idxs[np.where(a[idxs] == b)] # Filter out where there isn't an actual match result[idxs] = True print(result) 

我的基准testing显示,你的方法在91us与6.6ms之间,而在1M元素a和100元素b上,numpy的setmember1d是109ms。

ebresset, 你的答案不会工作,除非a是b的一个子集(而a和b是sorting的)。 否则,searchsorted将返回错误的索引。 我不得不做类似的事情,并结合你的代码:

 # Assume a and b are sorted idxs = numpy.mod(b.searchsorted(a),len(b)) idxs = idxs[b[idxs]==a] b[idxs] = numpy.nan match = numpy.isnan(b) 

你的例子意味着类似集合的行为,更关心数组中的存在,而不是把正确的元素放在正确的位置。 Numpy用它的math数组和matrix做了不同的处理,它只会告诉你关于确切点的项目。 你能为你做这个工作吗?

 >>> import numpy >>> a = numpy.array([1,2,3]) >>> b = numpy.array([1,3,3]) >>> a == b array([ True, False, True], dtype=bool) 
  • Python:元组/字典作为键,select,sorting
  • 我怎样才能输出SUDs产生/接收?
  • 如何检查运行我的脚本的Python版本是什么?
  • Python字典中的按键顺序
  • 散列字典?
  • Django模型Mixins:从models.Modelinheritance还是从对象inheritance?
  • 多处理中的共享内存
  • 在简单的HTTP服务器上启用访问控制
  • 双从单个列表
  • pythonstring编码/解码
  • 用于Google App Engine的Flask vs webapp2