

Americas Headquarters

EMEA Headquarters

Asia-Pacific Headquarters

100 California Street, 12th Floor
San Francisco, California 94111

York House
18 York Road
Maidenhead, Berkshire
SL6 1SF, United Kingdom

L7. 313 La Trobe Street
Melbourne VIC 3000
Australia

Delphi Unicode Migration for
Mere Mortals:

Stories and Advice from the Front Lines

Cary Jensen, Jensen Data Systems, Inc.

December 2009

(updated October 2010)

Delphi Unicode Migration for Mere Mortals: Stories & Advice from the Front Lines

Embarcadero Technologies - 1 -

SUMMARY
With the release of Embarcadero® RAD Studio XE (and beginning with the release of RAD
Studio 2009), Embarcadero Technologies has empowered you, the Delphi® and
C++Builder® developer, to deliver first class, Unicode-enabled applications to your
customers. While this important development is opening new markets for your software, in
some cases it presents a challenge for existing applications and development techniques,
especially where code has included assumptions about the size of strings.

This paper aims to guide your Unicode migration efforts by sharing the experiences and
insights of numerous Delphi developers who have already made the journey. It begins with
a general introduction of the issues, followed by a brief overview of Unicode basics. This is
followed by a systematic look at the various aspects of your applications that may require
attention, with examples and suggestions based on real world experience. A list of
references that may aid your Unicode migration efforts can be found at the end of this
paper.

INTRODUCTION
Embarcadero introduced full Unicode support in RAD Studio for the first time in August of
2008. In doing so, they ensured that Delphi and C++Builder would remain at the forefront
of native application development on the Windows platform for a very long time to come.

However, unlike many of the other major enhancements that have been introduced in
Delphi over the years, such as variants and interfaces (Delphi 3), frames (Delphi 5), function
inlining and nested classes (Delphi 2005) and generics (Delphi 2009), enabling Unicode
didn't involve simply adding new features to what was already supported in Delphi.
Instead, it involved a radical change to several fundamental data types that appear in
nearly every Delphi application. Specifically, the definitions for the String, Char, and PChar
types changed.

These changes were not adopted lightly. Instead, they were introduced only after
extensive consideration for the impact that these changes would have for existing
applications as well as how they would affect future development. In addition,
Embarcadero sought the input and advice of many of its Technology Partners who support
and promote Delphi.

In reality, there was no way to implement the Unicode support without some
inconvenience. As one of the contributors to this paper, who requested that I refer to him
simply as Steve, noted, "I think PChars and Strings should never have changed meaning.
... Having said that, any choice the developers of Delphi made would have been criticized.
It was a bit of a no-win situation."

Delphi Unicode Migration for Mere Mortals: Stories & Advice from the Front Lines

Embarcadero Technologies - 2 -

In the end, changing the meaning of String, Char, and PChar was determined to be the
least disruptive path, though not without consequences. On the plus side, Embarcadero
instantly enabled RAD Studio developers to build world class applications that treat both
the graphical interfaces and the data they help manipulate in a globally-conscious manner,
removing substantial barriers to building and deploying applications in an increasingly
global marketplace.

But there was a down side as well. The changes to String, Char, and PChar introduced
potential problems, significant or otherwise, for the migration of applications, libraries,
shared units, and time-test techniques from earlier versions of Delphi/C++Builder.

Let's be realistic about this. Nearly every upgrade of an existing application can potentially
encounter migration issues that require changes to the existing code or require upgrades
to newer versions of third-party component sets or libraries. The same is true when
upgrading to Delphi 2009 or later. Some upgrades will be easier, and some will be more
challenging.

And now we get to real point of this paper. Because of the changes to several
fundamental data types, data types that we have relied upon since Delphi 1 (Char and
PChar) or Delphi 2 (String), it is fair to say that migrating an existing application to Delphi
2009 or later requires more effort than any previous migration.

Contributor Roger Connell of Innova Solutions Pty Ltd offered this observation, "While
[the Delphi team has], in my view, done a sterling job [adding Unicode support, this] has
been the most challenging (in fact the only really challenging) Delphi migration."
Fortunately, there are solutions for every challenge you will encounter, and this paper is
here to help.

I began this project by asking the Delphi community for their input. Specifically, I asked
developers who successfully migrated their existing applications to Delphi 2009 and later
to share their insights, advice, and stories of Unicode migration. What I received in
response was fascinating.

The developers who responded represent nearly every category of developer you can
imagine. Some are independent developers while others are members of a development
team. Some produce vertical market products, some build in-house applications, and
some publish highly popular third-party component sets and tools used by application
developers. Yet others are highly respected authorities on Delphi, developers who speak
at conferences and write the books most of us have read.

Their stories, advice, and approaches were equally varied. While some described
migration projects that were rather straightforward, others found the migration process
difficult, especially in the cases of applications that have been around for a long time, and
included a wide variety of techniques and solutions.

Delphi Unicode Migration for Mere Mortals: Stories & Advice from the Front Lines

Embarcadero Technologies - 3 -

Regardless of whether a particular migration was smooth or challenging, a set of common
approaches, practical solutions, and issues to consider emerged, and I look forward to
sharing those with you.

But the story does not end with the publication of this white paper. I hope to continue to
collect Unicode migration success stories, and update this paper sometime in the future.
As a result, if you are inspired by what you read, and have a story of your own that
complements or extends what you read here, consider becoming a contributor yourself. I'll
say more about this at the end of this paper.

In the next section, I provide a brief summary of basic Unicode definitions and
descriptions. If you are already familiar with Unicode, have a basic understanding of UTF-8
and UTF-16, and know the difference between code pages and code points, you should
either skip this section, or quickly skim if for terms you are unfamiliar with.

But before we continue, there is one more point that I want to make. RAD Studio's support
for Unicode has two complementary, though distinct, implications for those applications
you build. The first is related to how strings are treated differently in code written in Delphi
2009 and later versus how they are treated in earlier versions of Delphi. The second relates
to localization, the process of adapting software to the language and culture of a market.

This paper is designed specifically to address the first of these two concerns.
Implementing support for multiple languages and character sets is beyond the scope of
this paper, and will not be discussed further.

WHAT IS UNICODE?
Unicode is a standard specification for encoding all of the characters and symbols of all of
the worlds written languages for storage, retrieval, and display by digital computers.
Similar to the ANSI (American National Standards Institute) code standard character set,
which represents both control characters (such as tab, line feed, and form feed) and
printable characters of the 26 character Latin alphabet, Unicode assigns at least one
unique number to every character.

Also like the ANSI code standard, Unicode represents many types of symbols, such as
those for currency, scientific and mathematical notation, and other types of exotic
characters. In order to reference such a large number of symbols (there are currently more
than a million), Unicode characters can require up to 4 bytes (32 bits) of data. By
comparison, the ANSI code standard is based on 8-bit encoding, which limits it to 255
different characters at a time.

Each control character, character, or symbol in Unicode is assigned a numeric value, called
its code point. The code point for a given character, once assigned by the Unicode

Delphi Unicode Migration for Mere Mortals: Stories & Advice from the Front Lines

Embarcadero Technologies - 4 -

Technical Committee, is immutable. For example, the code point for ‘A’ is 65 ($0041 hex,
which in Unicode notation is represented as U+0041). Each character is also assigned a
unique, immutable name, which in this case is ‘LATIN CAPITAL LETTER A.’ Both of these
can never be changed, ensuring that today’s encoding can be relied upon indefinitely.

Each code point can be represented in either one, two, or four bytes, with the bulk of
common code points (64K worth) being capable of being represented in two bytes or less.
In Unicode terms, these first 64K symbols are referred to as the basic multilingual plane, or
BMP (you'll want to remember these initials, as they will come up a lot in this paper).

To make things somewhat more complicated, the Unicode standard allows some
characters to be represented by two or more consecutive code points. These characters
are referred to as composite, or decomposable, characters.

For example, the character ö can be represented as $00F6. This character is referred to as
a precomposed character. However, it can also be represented by the o character ($006F)
followed by the diaeresis (¨) character ($0308). The Unicode processing rules compose
these two characters together to make a single character.

This is demonstrated in the following code segment:

var
 s: String;
begin
 ListBox1.Items.Clear;
 s := #$00F6;
 ListBox1.Items.Add('ö');
 ListBox1.Items.Add(s);
 ListBox1.Items.Add((IntToStr(Ord('ö'))));
 s := #$006F + #$0308;
 ListBox1.Items.Add(s);

The purpose of composite characters is to permit a finer grain analysis of the contents of a
Unicode file. For example, a researcher who wanted to count the frequency of the use of
the diaeresis (¨) diacritic, regardless of which character it appeared over, could decompose
all characters that use it, thereby making the counting process straightforward.

Although all currently assigned code points (as well as all imaginable future code points)
can be reliably represented by four bytes, it does not make sense in all cases to represent
each character with this much memory. Most English speakers, for example, use a rather
small set of characters (less than 100 or so).

As a result, Unicode also specifies a number of different encoding standards for
representing code points, each offering trade-offs in consistency, processing, and storage
requirements. Of these, the ones that you will run into most often in Delphi are UTF-8,
UTF-16, and UTF-32. (UTF stands for Unicode Transformation Format or UCS

Delphi Unicode Migration for Mere Mortals: Stories & Advice from the Front Lines

Embarcadero Technologies - 5 -

Transformation Format, depending on who you ask.) You will also occasionally encounter
UCS-2 and UCS-4 (where UCS stands for Universal Character Set).

UTF-8 stores code points with one, two, three or four bytes, depending on the size of the
integer representing the code point. This is the preferred format for standards such as
HTML and XML, where size matters. Specifically, characters, such as those in the Latin
alphabet, which can be represented with a single byte, and which make up the bulk of
HTML (at least in the majority of Web pages), use only a single byte. Only those code
points that cannot be represented in 7 bits make use of additional bytes (as soon as the
code point value is higher than 127, UTF-8 requires at least 2 bytes in order to encode the
value). While this requires additional processing, it minimizes the amount of memory
needed to represent the text, and, consequently, the amount of bandwidth required to
transfer this information across a network.

UTF-16 provides something of a middle ground. For those environments where physical
memory and bandwidth is less important than processing, the BMP characters are all
represented in 2 bytes (16 bits) of data, which is referred to as a code unit. In other words,
code points in the BMP are represented by a single code unit.

Earlier in this section I described how UTF-8 can use 1, 2, 3 or 4 bytes to encode a single
Unicode code point. With respect to UTF-16, there is a similar, yet different situation,
which occurs when your application needs to represent a character outside the BMP.
These code points require two code units (4 bytes), which together form what is called a
surrogate pair. UTF-16 allows you to represent code points that need more than 16 bits, by
using surrogate pairs, and, together, the pair of code units uniquely identify a single code
point.

UTF-32, predictably, represents all code points using four bytes. While the least
economical in terms of physical storage, it requires the least processing.

In addition, UTF-16 and UTF-32 (as well as UCS-2 and UCS-4) come in two flavors: big-
endian (BE) and little-endian (LE). Big-endian encoding leads with the most significant
byte, while little-endian leads with the least significant byte. Which approach is used is
usually identified by a byte order mark (BOM) at the beginning of an encoded file. The
BOM also distinguishes between UTF-8, UTF-16, and UTF-32.

Unlike UTF-16, which can contain either 2 or 4 bytes per character, UCS-2 is always 2 bytes.
As a result, it can only reference characters in the BMP. To put this another way, UCS-2 and
UTF-16 are identical with respect to the BMP. However, UCS-2 does not recognize
surrogate pairs, and cannot represent characters outside of the BMP.

UCS-4, by comparison, is four bytes in length, and can represent the same set of Unicode
code points that UTF-32 can. The UTF-32 standard, however, defines additional Unicode
features, and has effectively replaced UCS-4.

Delphi Unicode Migration for Mere Mortals: Stories & Advice from the Front Lines

Embarcadero Technologies - 6 -

Ok, that’s enough of the technical stuff. In the next section we'll see how this affects us as
Delphi developers.

UNICODE MIGRATION AND DELPHI APPLICATIONS
Unicode support in Delphi did not originate in Delphi 2009, it simply became pervasive
with this release. For example, in Delphi 2007, many of the dbExpress drivers that worked
with Unicode-enabled servers supported Unicode. In addition, since Delphi 2005, Delphi
has been capable of saving and compiling source files in UTF-8 format. And then there's
the WideString type, a two-byte string type, which has been available since Delphi 3.

In fact, one of the contributors to this paper, Steve, wrote "the biggest problem I had [with
migrating to Delphi 2009] was that the application had already been made Unicode
compatible using WideStrings and TNT controls. This made it harder, I guess, than an
application that still used Strings and PChars."

For Delphi 2009 and later, things have changed radically. For example, component names,
method names, variable names, constant names, string literals, and the like, can use
Unicode strings. But for most developers, the biggest change can be found in the string
and character data types. This section begins with a broad look at the changes that have
been made to the string and character types. It continues with specific areas of Delphi
application development that are affected by these changes.

STRINGS, CHARS, AND PCHARS
The String type is now defined by the UnicodeString type, which is a UTF-16 string.
Similarly, Char type is now WideChar, a two-byte character type, and PChar is a
PWideChar, a pointer to a two-byte Char.

The significant point about the changes to these basic data types is that, at a minimum,
each character is represented by at least one code unit (two bytes), and sometimes more.

Coincidental to these changes is that the size of a string, in bytes, is no longer equal to the
number of characters in the string (unless you were using a multibyte character set, like
Chinese. In that case, Delphi's new Unicode implementation actually has simplified things).
Likewise, a value of type Char is no longer a single byte; it is two bytes.

The old string type that you've grown to know and love, AnsiString, still exists. Just as
before, AnsiString values contain one 8 byte ANSI value per character, is reference
counted, and uses copy-on-write semantics. And, if you want an 8-bit character type or an
8-bit character pointer, the AnsiChar and PAnsiChar types, respectively, are also still
available.

Delphi Unicode Migration for Mere Mortals: Stories & Advice from the Front Lines

Embarcadero Technologies - 7 -

Even the traditional Pascal String still exists. These strings, which are not reference
counted, can contain up to a maximum of 255 bytes. These strings are defined by the
ShortString data type, contain their characters in elements 1 through 255, and maintain the
length of the string in the 8-bit zeroth byte.

If you want to continue using AnsiString variables, you can. There is even a special unit,
called AnsiStrings.pas, that includes AnsiString versions of many of the traditional string
manipulation functions (such as UpperCase and Trim). In addition, many of the classic
string-related functions are overloaded, providing you with both AnsiString and
UnicodeString versions. In fact, converting existing String declarations to AnsiString
declarations is an effective technique when migrating legacy code, as you will learn from a
number of contributors to this paper.

Consider the following code snippet, which declares a variable s as an AnsiString:

var
 s: AnsiString;
…

What is different between Delphi 2009 and earlier versions, is the following declaration:

var
 s: String;
…

Here, the variable s is of type UnicodeString. While UnicodeString types share a number of
features with AnsiString types, there are very significant differences. The primary similarity
they share is that they are reference counted, and exhibit copy-on-write behavior.

Reference counting means that Delphi internally keeps track of what code is referring to
the string. When code no longer refers to the string, memory used by the string is
automatically de-allocated.

Copy-on-write is another efficiency. For those types that support copy-on-write (which in
Delphi includes dynamic arrays), if you have two or more variables that refer to a given
value, they all refer to the same memory location, so long as you have not attempted to
change the value referred to by one of the variables. However, once you change the value
referred to by one of the variables, a copy is made and the changes are applied to the
copy only.

Unlike String, the WideString type is the same as when it was originally introduced in
Delphi. Though it represents a two-byte character reference, it is neither reference
counted nor does it support copy-on-write. It is also less efficient, performance-wise, as it
does not use Delphi’s FastMM memory manager. Though some developers used
WideString to implement Unicode support in pre-Delphi 2009, its primary purpose was to
support COM development, and mapped to the BSTR COM data type.

Delphi Unicode Migration for Mere Mortals: Stories & Advice from the Front Lines

Embarcadero Technologies - 8 -

The AnsiString class, which behaves like pre-2009 String types, is different from its
predecessors in one significant way; the internal structure is different. When memory was
laid out for a traditional AnsiString, it contained one byte for each character in the string
plus eight additional bytes. Four of these additional bytes held the length of the
AnsiString, and the other four were used for reference counting.

By comparison, now both the AnsiString and UnicodeString types use twelve additional
bytes (in addition to the memory required to hold the character data), four more bytes
than the traditional AnsiStrings. Like traditional AnsiStrings, the last eight bytes are used
for the string length (in characters for AnsiStrings and code units for UnicodeStrings) and
reference counting. Of the additional four bytes used in both AnsiStrings and
UnicodeStrings, two represent the element size of the characters, and the remaining two
refer to the string's code page.

The element size of AnsiString is 1, and currently, the UnicodeString element size is 2 (but
this could conceivably change in the future, which is why there is room in the internal
structure). Code page, on the other hand, is a more involved topic, and is discussed later
in this paper in conjunction with the issue of string conversions.

GETTING STARTED
Let’s begin with the good news. Some legacy applications convert to Delphi 2009 and
later with few or no modifications. To the extent that you are working primarily with VCL
components (whose support for Unicode has in most cases been considered carefully), or
components from third-party vendors who have taken the time to understand the
implications of Unicode support, you have an advantage.

One of the contributors, Rej Cloutier, a programmer/software architect, reported that he
has not actually made a complete conversion of his application yet, but did perform a test
migration to Delphi 2010. "The result," he wrote, "was a very effortlessly migration. For
one thing, all [our] string functions are encapsulated in a single unit ...[as a result], only one
unit require a close lookup (about 3-4 minor modifications). About 8 DBMSs compiled
successfully (each have between 100k and 185k lines of code)."

“Here is a different example. I have literally hundreds of Delphi projects that I use in my
training material. Some of these projects were originally written way back in the Delphi 1
days, while others are new, demonstrating some of Delphi's newest features. Over the
years, I have kept these projects up to date as I've updated my training material. As a
result, most have been most recently compiled with BDS 2006 or RAD Studio 2007.”

“Since the release of Delphi 2009 I have migrated over 100 of these projects to Delphi
2009 or Delphi 2010. In all, only five or so of these projects required modifications, and

Delphi Unicode Migration for Mere Mortals: Stories & Advice from the Front Lines

Embarcadero Technologies - 9 -

those were primarily associated with passing data to routines in DLLs and reading/writing
text files.”

Is this a fair representation of the ease with which legacy Delphi application can be
converted? No. As contributor Steve rightly asserted, "I really do not think you can
compare code samples to complicated real world applications."

But there is a lesson here. Those demonstration projects were built to show how to use
features found in Delphi, and they touched on topics such as packages, DLLs,
components, Delphi's open tools API, COM, DataSnap, user interface design, threads and
thread synchronization, and much more. In other words, most of those applications
demonstrated Delphi's RTL (runtime library), VCL (visual component library), compiler and
debugger options, the integrated development environment, and Delphi's editor. And,
these things did not break, for the most part. In other words, the migration of the Delphi
environment to Unicode was consistent and cohesive.

It's when you reach outside of Delphi's immediate realm where things can get difficult, and
which is also why Steve's observation about demonstration projects is correct. Real world
applications are normally rich is features and leverage not only capabilities of the
operating system directly, but also rely on outside libraries, packages, streams, files, and
code. This, it turns out, is where you can run into issues.

Another difference between code demos and real world applications is that most legacy
applications that are worth migrating have been around for a while. As a result, they often
use techniques that were originally important for performance or features, but for which
there are better alternatives today. Similarly, over time, they may have been written by
different developers using somewhat different approaches. Also, third-party tools and
libraries that were originally used may no longer be supported. The list goes on.

If you are looking for some kind of objective measure of the complexity of your Unicode
migration, contributor Steffen Friismose suggests that you take a look at the Unicode
Statistics Tool, which you can download from Embarcadero's Code Central. The Unicode
Statistics Tool examines your source code, and produces an estimate of the relative
complexity of your Unicode migration. You can find this tool, and its description, at
http://cc.embarcadero.com/item/27398.

Based on the input I received from the many contributors to this paper, you may need to
consider the following issues and techniques when migration an existing application to
Delphi 2009 or later:

• The size of Strings and Chars

• Falling back to AnsiString

• String conversions

Delphi Unicode Migration for Mere Mortals: Stories & Advice from the Front Lines

Embarcadero Technologies - 10 -

• Sets of Char

• Pointer operations and buffers

• Reading and writing external data

• External libraries and third-party components

• Database-related issues

Each of these topics will be considered separately.

THE SIZE OF STRINGS AND CHARACTERS
In the pre-Delphi 2009 days, the size of a string, in bytes, was predictable. Nowadays, it's
not that simple. Because the UnicodeString type is UTF-16, you might be inclined to
conclude that the size of a string, in bytes, is equal to 2 times the number of characters it
contains (since a Char is two bytes long). In other words:

var
 SizeOfString: Integer;
 MyString: String;
begin
 MyString := 'Hello World';
 SizeOfString := Length(MyString) * 2;

And, yes, this works almost all of the time. And the next code segment is even better:

var
 SizeOfString: Integer;
 MyString: String;
begin
 MyString := 'Hello World';
 SizeOfString := Length(MyString) * StringElementSize(MyString);

The second example is better because (drum roll please), it makes fewer assumptions
about the size of strings. Specifically, it uses the StringElementSize function to calculate
the size of Char in bytes, rather than just assuming that it is the value 2.

But if you are interested in how many characters a particular string contains, it's not so
simple. You might be tempted to think that the Length function returns the number of
characters in a string, but that is not so. Length returns the number of code units in a
UnicodeString.

The issue was best expressed by contributor Jasper Potjer of Unit 4 Agresso, who wrote,
"Imagine a 5-character UTF-16 string containing [one] surrogate pair. Will Length return
the number of characters [code points] (5), or the number of 16-bit words [code units] (6)?"
He had several additional, related questions, and I will take the liberty here to paraphrase
the essence of his overall question.

Delphi Unicode Migration for Mere Mortals: Stories & Advice from the Front Lines

Embarcadero Technologies - 11 -

1. Does the Length function return the number of code points or the number of
code units?

2. If the first character in a UnicodeString is represented by a surrogate pair, does
MyString[1] contain the code point (the character) or the code unit (half of the
surrogate pair)?

3. Can a Char type hold a surrogate pair? In other words, does a Char hold a code
point or a code unit?

4. If the Length function returns code units, and not code points, how can I
determine how many characters there are in a UnicodeString?

Oddly, in doing research for this paper, I didn't find very many discussions of this. The one
exception was a blog by Jacob Thurman, which you can find at
http://www.jacobthurman.com/?p=30. I also consulted with Seppy Bloom and Thom
Gerdes, both of whom work on the Delphi development team.

And, once again, paraphrasing, here are the answers to the preceding questions.

1. Each element in a UnicodeString is a code unit. As a result, the size of a string, in
bytes, is its length multiplied by the size of its elements (StringElementSize or 2,
take your pick). While the length of a UnicodeString in characters is often the same
as its length in code points, this is not true when a UnicodeString contains surrogate
pairs.

2. MyString[1] contains a code unit, which may or may not be a code point.

3. No, a single Char cannot hold a surrogate pair. A Char can hold a single code
unit.

4. To accurately determine the number of characters in a UnicodeString, you can
use one of the helper functions in the SysUtils unit. For example, if your
UnicodeString contains a mixture of BMP characters and surrogate pairs, use the
ElementToCharLen function. (In short, you take an approach similar to the one
needed when using multibyte character sets prior to Delphi 2009.)

These answers are demonstrated in the following code segment:

var
 s: String;
begin
 s := 'Look '#$D840#$DC01'!';
 ListBox1.Items.Add(s);
 ListBox1.Items.Add(IntToStr(Length(s)));
 ListBox1.Items.Add(IntToHex(Ord(s[6]),0));
 ListBox1.Items.Add(IntToHex(Ord(s[7]),0));
 ListBox1.Items.Add(IntToStr(Length(s) * StringElementSize(s)));
 ListBox1.Items.Add(IntToStr(ElementToCharLen(s, Length(s))));

The resulting contents of ListBox1 look like the following figure.

Delphi Unicode Migration for Mere Mortals: Stories & Advice from the Front Lines

Embarcadero Technologies - 12 -

Although there are 7 characters in the printed string, the UnicodeString contains 8 code
units, as returned by the Length function. Inspection of the 6th and 7th elements of the
UnicodeString reveal the high and low surrogate values, each of which are code units.
And, though the size of the UnicodeString is 16 bytes, ElementToCharLen accurately
returns that there were a total of 7 code points in the string.

While these answers suffice for surrogate pairs, unfortunately, things are not exactly the
same when it comes to composite characters. Specifically, when a UnicodeString contains
at least one composite character, that composite character may occupy two or more code
units, though only one actual character will appear in the displayed string. Furthermore,
ElementToCharLen is designed specifically to handle surrogate pairs, and not composite
characters.

Actually, composite characters introduce an issue of string normalization, which is not
currently handled by Delphi's RTL (runtime library). When I asked Seppy Bloom about this,
he replied that Microsoft has recently added normalization APIs (application programming
interfaces) to some of the latest versions of Windows, ® including Windows® Vista,
Windows® Server 2008, and Windows® 7.

Seppy was also kind enough to offer a code sample of how you might count the number of
characters in a UnicodeString that includes at least one composite character. I am
including this code here for your benefit, but I must offer these cautions. First, this code
has not been thoroughly tested, and has not been certified. If you use it, you do so at your
own risk. Second, be aware that this code will not work on pre-Windows XP installations,
and will only work with Windows XP if you have installed the Microsoft Internationalized
Domain Names (IDN) Mitigation APIs 1.1.

Here is the code segment:

const
 NormalizationOther = 0;
 NormalizationC = 1;
 NormalizationD = 2;
 NormalizationKC = 5;
 NormalizationKD = 6;

function IsNormalizedString(NormForm: Integer; lpString: LPCWSTR;
 cwLength: Integer): BOOL; stdcall; external 'Normaliz.dll';

Delphi Unicode Migration for Mere Mortals: Stories & Advice from the Front Lines

Embarcadero Technologies - 13 -

function NormalizeString(NormForm: Integer; lpSrcString: LPCWSTR;
 cwSrcLength: Integer; lpDstString: LPWSTR;
 cwDstLength: Integer): Integer; stdcall; external 'Normaliz.dll';

function NormalizedStringLength(const S: string): Integer;
var
 Buf: string;
begin
 if not IsNormalizedString(NormalizationC, PChar(S), -1) then
 begin
 SetLength(Buf, NormalizeString(NormalizationC,
 PChar(S), Length(S), nil, 0));
 Result := NormalizeString(NormalizationC, PChar(S),
 Length(S), PChar(Buf), Length(Buf));
 end
 else
 Result := Length(S);
end;

The following code snippet, which includes a UnicodeString in which two composite
characters appear, demonstrate the use of the NormalizedStringLength function:

var
 s: String;
begin
 ListBox1.Items.Clear;
 s := 'Hell'#$006F + #$0308' W'#$006F + #$0308'rld';
 ListBox1.Items.Add(s);
 ListBox1.Items.Add(IntToStr(Length(s)));
 ListBox1.Items.Add(IntToHex(Ord(s[5]),0));
 ListBox1.Items.Add(IntToHex(Ord(s[6]),0));
 ListBox1.Items.Add(IntToStr(Length(s) * StringElementSize(s)));
 ListBox1.Items.Add(IntToStr(ElementToCharLen(s, Length(s))));
 ListBox1.Items.Add(IntToStr(NormalizedStringLength(s)));

The resulting contents of ListBox1 look like the following figure:

As you can see, the displayed string contains 11 letters, though Length returns 13 code
units (which is correct). Furthermore, the 5th and 6th elements of the UnicodeString
contain the component parts of the first composite character. Finally, although
ElementToCharLen reports that there are 13 characters, NormalizedStringLength reports
that it displays 11 characters.

Delphi Unicode Migration for Mere Mortals: Stories & Advice from the Front Lines

Embarcadero Technologies - 14 -

What should you make of this? Is ElementToCharLen incorrect? Actually, no. The
UnicodeString does contain 13 code points — it's just that the Unicode rules twice
combines two of these code points into a composite code point, which results in the
characters that are displayed. (It normalizes the string.)

Compare this to the prior example with surrogate pairs. Each surrogate pair required two
code units, but these code units represented a single code point. ElementToCharLen is
counting code points.

Remember the example I mentioned earlier in this paper when introducing composite
characters. I suggested that a researcher may be interested in the frequency of the
diaeresis, independent of the character over which it appears. In that situation the
diaeresis is a distinct character, for counting purposes. In any case, I should mention that
composite characters are quite rare in normal applications, being reserved for special
cases, like the researcher example.

Before leaving this section, I want to say something about the Character.pas unit, which
first appeared in Delphi 2009. That unit contains the TCharacter class, along with a large
number of class functions that can be used to identify information about individual
characters in a UnicodeString. Each of the class functions also have a corresponding stand-
alone function that calls it directly.

For example, there are functions that identify whether a particular character is an upper
case or a lower case character, whether it is a symbol, a punctuation character, or a control
character. There are also functions to convert individual characters to and from UTF-32.

For some reason, the Character.pas unit ended up being mentioned only one other time,
and then only in passing, in this paper. Take a look at this unit. There's some nice stuff
there.

FALLING BACK TO ANSISTRING
From the feedback I received from contributors, there are two general approaches to
migrating existing applications to Delphi 2009 and later. One is to leave your String, Char,
and PChar declarations as they are and focus your attention on those instances where
these new Unicode types are invalid (such as calls that pass a PChar to an external
procedure that requires a byte array).

The second approach is to convert String declarations to AnsiString, Chars to WideChars,
and PChars to PWideChars. This "go with what you know" approach tends to minimize the
impedance mismatch between ANSI characters and UTF-16 characters.

There is a strong argument that can be made for embracing Unicode when migrating your
existing applications. Marco Cantù, author of the Delphi 2009 Handbook, writes, "in most
cases you really want to convert your code to using the new UnicodeString type" and he

Delphi Unicode Migration for Mere Mortals: Stories & Advice from the Front Lines

Embarcadero Technologies - 15 -

notes that there are a number of efficiencies gained by doing so, such as improving the
speed of many calls to the Windows API (which is mostly Unicode these days).

But in most cases, it's not really a matter of going all Unicode versus reverting to all
AnsiString, but rather a mixture of these two approaches. As Marco points out, "When
loading or saving files, moving data from and to a database, using Internet protocols
where the code must remain in an 8-bit per character format ... in all those cases convert
your code to use AnsiString."

But there is a purely practical side to this issue as well. If you need to get the conversion
done fast, and there is little other refactoring going on, it may simply be more expedient
to stay with single byte Char types. On the other hand, if your application is undergoing a
major facelift, is going to be maintained actively for a long time in the future, and you have
the luxury of time to make the changes, a strong argument can be made for a full boat
Unicode conversion.

Let's first take a look at the AnsiString approach. Roger Connell wrote, "The
[Embarcadero] supplied list of things to do [to migrate legacy code to Unicode] provided
an intolerable burden with so many lines of code [needing attention]. I chose to maintain
strings within my code as AnsiString and [I] put together a converter to do that. I plan to
slowly retrofit ... Unicode support [later, as time permits]."

There is simply nothing wrong with this approach. And, Roger, a member of the Australian
Delphi User Group (ADUG), has been so kind as to make his conversion utility publicly
available. You can find this utility, along with the prerequisite cautions about its use, at:

http://www.innovasolutions.com.au/delphistuf/ADUGStringToAnsiStringConv.htm

In addition to providing a fast track to Delphi 2009 and later, Roger writes, "[This
approach] leaves you with code that compiles in D6, D7 and D2009. You may get some
performance hits in the UI but my logic is ... [that the performance hits] were there in D7."

However, simply falling back to AnsiStrings is not always the answer. Contributor Mariano
Vincent de Urquiza of MVU Technologies LLC wrote, "A massive replacement of String to
AnsiString and Char to AnsiChar didn’t cut it. Every procedure had to be reviewed and
tested and this spread to multiple units; this was really frustrating, I thought it would never
end."

Lars Dybdahl, Software Development Manager at Daintel ApS, advocates a variety of
approaches to handling strings, depending on the type of code. For example, he wrote,
"We had some very old code, using pointers and external components, which was really
difficult to convert. However, the amount of string data that goes in and out of this code
was low, so the easy solution was to rename String to RawByteString, PChar to PAnsiChar
and use the ANSI versions of the Windows API. This meant that this part of the program

Delphi Unicode Migration for Mere Mortals: Stories & Advice from the Front Lines

Embarcadero Technologies - 16 -

does not support Unicode, but in some cases that can be ok, like encryption modules
where binary data is handled in string variables."

Lars offers this additional suggestion: "After the renaming [of the data types], and making
the unit work, it can often be helpful to change the interface to use String (UnicodeString),
so that other units, which use UnicodeStrings, can use this unit without producing
warnings. This basically encapsulates the conversion to/from UnicodeString in the
implementation section."
Along these same lines, a contributor who asked to remain anonymous wrote, "I wrote a
D2007 CharInSet [function] and used that where needed. I also changed Char to AnsiChar
here and there (Windows API [calls], third party DLL interfaces, file format definitions, etc.).
[I also] got rid of some "text" type files. When D2009 arrived I tried the demo version, and
it all worked in a day or two. I've always been a bit scared of PChar, that might have
helped."

While Roger Connell noted that changing your String declarations to AnsiString permitted
code to be backward compatible with earlier versions of Delphi, such a conversion is not
actually necessary. Some developers have had success using the String declarations just as
they are (which will compile as either AnsiString or UnicodeString, depending on the
version of Delphi).

Nard Moseley of Digital Metaphors, publisher of ReportBuilder, a popular reporting tool
for Delphi, describes their migration: "ReportBuilder is a large complex code base of over
700,000 lines of source code. ... In moving ReportBuilder to Unicode, we followed the
strategy recommended by Delphi Chief Scientist Allen Bauer. In essence, think of your
application as a box. Inside the box all strings are Unicode. The outside edges of the box
represent the outside edges of the application - those places where the application
communicates with other systems/files/etc that may use different character encodings."

He also states: "One of the additional challenges we faced is the requirement to support
the old ANSI VCL and the new Unicode VCL with a single code base. Our goal is always to
minimize the amount of conditional compilation - to keep the source code as clean as
possible. The strategy we focused on was to build a facade for Unicode VCL classes such
as TCharacter and TEncoding. In other words, rather than calling these classes directly we
call a set of internal classes that can conditionally call the TCharacter and TEncoding
classes."

Another vote for the "let String be String" approach came from David Berneda, whose
company Steema Software publishes TeeChart, a charting tool that both ships with Delphi
and which is also available in a Professional Edition. David wrote, "We did nothing special,
just making sure everything was a String (so everything compiles fine in all Delphi versions)
... when calling non-Unicode APIs, using ShortString and doing the ... PAnsiChar(text)
castings."

Delphi Unicode Migration for Mere Mortals: Stories & Advice from the Front Lines

Embarcadero Technologies - 17 -

STRING CONVERSIONS
String conversions occur when you assign a string of one type to that of another type.
String conversions also occur when you cast a string to a data type different from the
original. While string conversions are sometimes necessary in new application
development with Delphi 2009 and later, they are commonplace in applications being
migrated.

But before we go any further, I want to share an observation that Jan Goyvaerts wrote
about in his blog. He notes that Delphi injects a lot of extra string type verification code
when the $STRINGCHECKS compiler option is turned on (which is the default). He points
out that, since Delphi is strongly typed, you can safely turn this compiler directive off, and
gain performance benefits at the same time. C++Builder developers, however, should
leave this compiler directive turned on.

When it comes to string conversions, there's good new and bad news. The good news is
that string types are assignment compatible with other string types, and char types are
assignment compatible with other char types. During assignment, conversion may be
necessary, but in the case of string-to-string assignment, this conversion occurs
automatically.

The bad news is that, depending on the conversion, there may be data loss.
Understanding why this loss occurs is one of more challenging steps on the road to
Unicode mastery. Let's begin by taking a deeper look at a topic mentioned in passing
earlier in this paper: code pages.

CODE PAGES
The term code page refers to a mechanism that was used to extend the original 7-bit
ASCII character set (#$00 - #$7F). In the original MS-DOS, these values in the #$80 through
#$FF range were mainly used for line drawing characters. (The code pages used in MS-
DOS were referred to as original equipment manufacturer, or OEM, code pages).

In earlier versions of Windows, a variety of different code pages, often called Windows
code pages, were introduced to support the many languages that Windows needed to
display. In these code pages, the characters in the #$80 through #$FF range are mostly
language/culture specific characters and symbols.

Each code page is distinguished by a code page identifier. For example, most US
computers use code page 1252, code page 437 refers to the OEM code page used on the
original IBM PC, and code page 950 refers to the ANSI and OEM code page for
Traditional Chinese.

In order to accommodate languages, such as Japanese and Chinese, where well more
than 128 additional characters are needed, Windows supports both single byte code

Delphi Unicode Migration for Mere Mortals: Stories & Advice from the Front Lines

Embarcadero Technologies - 18 -

pages as well as multibyte code pages. In multibyte code pages, one or more bytes
identify a particular character. For example, in a double byte character set (DBCS), a lead
byte, which is a value always greater than #$7F, is used in combination with a trailing byte
to identify a particular character. Code page 932 / Japanese and code page 950 /
Traditional Chinese are double byte character sets.

Each Windows installation has a default code page, and it defines the character set that is
used, by default, for non-Unicode characters on that machine. It also defines the character
set of the default AnsiString type (and this is true for all Delphi versions).

Earlier you learned that the layout for Strings in Delphi 2009 and later contains 2 bytes
used to hold the code page. For UnicodeString types, the code page is 1200, which tells
Windows that these strings are UTF-16LE. For AnsiStrings, the code page is the default
Windows code page, or the code page defined for a custom AnsiString type.

But take note, by default, all AnsiString variables in an application will have the same code
page, the default code page of your Windows installation. Creating two AnsiStrings with
different code pages in an application is something that you have to do by explicitly telling
Delphi that you want a specific code page (some examples of this are shown in the code
snippets listed in the next section).

Several of the contributors to this paper also provide technical edits of one of its drafts.
One of these technical editors, Lars Dybdahl, asked me to remove the reference two
paragraphs back to the fact that UnicodeString has a code page. I decided to leave the
reference, but I am going to quote what he told me, since I believe his reasoning will help
some of you in your migration process.

Lars wrote, "I never used the code page number of UTF-16 for anything when doing
Delphi 2009, or when migrating. ... one of the difficult things that I encountered, was to
figure out that UnicodeString always uses the same UTF-16LE encoding. Once that was
cleared up, things became much easier, because if I just kept as much as possible in
UnicodeStrings, everything would just work perfectly. If the documents that I read [before I
started my Unicode migration had not mentioned] the code page of UnicodeString, but
focused on the fact that UnicodeStrings are easy and fast, in contrast to AnsiStrings, I
would have saved valuable hours."

STRING CONVERSIONS AND DATA LOSS
As mentioned previously, when converting from one string type (code page) to another,
there is a possibility of data loss. Data loss will occur if the source string contains one or
more characters that do not exist in the code page of the target string.

This is demonstrated with a simple example. Consider the following code snippet:

type
 IBMAnsi = type AnsiString(437); //IBM OEM

Delphi Unicode Migration for Mere Mortals: Stories & Advice from the Front Lines

Embarcadero Technologies - 19 -

var
 s: IBMAnsi;
 a: AnsiString;
begin
 //Use this line if 1252 is not already your default code page
 DefaultSystemCodePage := 1252;
 s := #$B4;
 a := s;
 ListBox1.Items.Add(s);
 ListBox1.Items.Add(a);
 s := a;
 ListBox1.Items.Add(s);

After running this code, ListBox1 contains the following values:

The OEM code page 437 character #$B4 refers the Unicode character U+2524, which is
named BOX DRAWINGS LIGHT VERTICAL AND LEFT. (It might be worth mentioning that
#$B4 is an AnsiChar literal, which is not the same thing as a WideChar literal. #$2524 is a
WideChar literal) This particular character does not exist in the default code page for the
Windows installation on which this code was run (which in this case, is 1252). As a result,
data was lost and the wrong character was printed.

The final two lines of this code segment are there to demonstrate that it's not simply a
matter of the two code pages having different characters at #$B4. Here, the value of the
AnsiString is passed back to the IBMAnsi variable and then displayed. As you can see, we
do not get the original character back.

If we declared variable a to be a String (UnicodeString), instead of an AnsiString, no loss
occurs. Specifically, the U+2524 character appears in both string types. This is
demonstrated by the following output, which is produced when a is declared as String:

RAWBYTESTRING
There is a special type of AnsiString called RawByteString. The RawByteString type does
not have its own code page, and therefore, string assignments to a RawByteString type do
not produce an implicit conversion. Instead, the code page of a value assigned to a
RawByteString is the code page of whatever was assigned to it. This makes the
RawByteString type an ideal data type for passing AnsiString parameters. If you pass
AnsiString parameters using any other data type, an implicit type conversion will take

Delphi Unicode Migration for Mere Mortals: Stories & Advice from the Front Lines

Embarcadero Technologies - 20 -

place if the two parameters do not have the same code page, possibly producing data
loss.

This "adoption" of the AnsiString source code page by a RawByteString is demonstrated
in the following code. Notice that when an IBMAnsi value is assigned to a RawByteString,
the RawByteString adopts the code page 437. When that same RawByteString variable is
assigned a value from an AnsiString that uses the default code page, it adopts the code
page 1252 (which is the default code page of the Windows installation on the computer on
which this code was executed).

type
 IBMAnsi = type AnsiString(437); //IBM OEM
var
 i: IBMAnsi;
 a: AnsiString;
 r: RawByteString;
begin
 //Use this line if 1252 is not already your default code page
 DefaultSystemCodePage := 1252;
 I := #$B4;
 r := I;
 ListBox1.Items.Add(i);
 ListBox1.Items.Add(IntToStr(StringCodePage(i)));
 ListBox1.Items.AddI;
 ListBox1.Items.Add(IntToStr(StringCodePageI));

 a := #$B4;
 r := a;
 ListBox1.Items.Add(a);
 ListBox1.Items.Add(IntToStr(StringCodePage(a)));
 ListBox1.Items.AddI;
 ListBox1.Items.Add(IntToStr(StringCodePageI));

After running this code, ListBox1 look like that in the following figure:

Most Unicode migrations do not have to worry about implicit conversion issues. On the
other hand, if you have one of those applications that are affected by implicit code page
conversions, you may be facing a more complicated Unicode conversion than most.

Delphi Unicode Migration for Mere Mortals: Stories & Advice from the Front Lines

Embarcadero Technologies - 21 -

“Things are seriously complex,” Lars Dybdahl writes, “and it easily confuses the
programmer, and when the programmer does not understand how the mechanisms work,
he gets frustrated about the migration process. I had to do experiments in Delphi in order
to understand it, before I started the migration. Especially the fact that an ansistring(1250)
variable can store a string of another code page can be annoying sometimes, because you
cannot depend on the byte values inside to match the string codepage.”

Lars supplied an additional code example to demonstrate some of his points, particularly
about AnsiString and UnicodeString literals, RawBytesStrings, and implicit conversions.
This example is quite interesting, and though longer than most of the other code samples,
and I am including here to provide you with a starting point for your own experiments (I
have provided a few minor edits to his comments, but otherwise preserved the original
mostly the way he offered it).

Procedure Tform1.Button2Click(Sender: Tobject);
type
 String1250 = type AnsiString(1250);
 String1252 = type AnsiString(1252);
var
 as1: String1250;
as1b: String1250;
as1c: String1250;
as2: String1252;
s1,s2: String;
begin
DefaultSystemCodePage := 1252;
// The expressions on the right side look similar, but they are not
as1 := #$C0; // AnsiChar literal that has no code page
as1b := #$C0#$C0; // UnicodeString literal
as1c := RawByteString(#$C0#$C0);// UnicodeString literal with conversion
 //at runtime to local code page -
 //it's not a RawByteString with $C0 values (!)
as2 := #$C0; // AnsiChar literal that has no code page

// Both AnsiChar literals got byte value preserved. The UnicodeString didn't.
Assert (ord(as1[1])=$C0);
Assert (ord(as1b[1])<>$C0);
Assert (ord(as1c[1])=$C0); // as1c now has the 1252 code page
Assert (ord(as2[1])=$C0);

// Now here is a demonstration how things can be seriously confusing.
// Both as1 and as1c are String1250, but as1c now has 1252 as codepage
// because RawByteString() was used to create it. This means that both
// strings only contain $C0 values, but they don't contain the same
// characters.
Assert (length(as1)=1);
Assert (as1[1]+as1c[2] = as1c[1]+as1c[2]);
Assert (as1 +as1c[2] <> as1c[1]+as1c[2]);

// And because of the different code pages, none of these are the same character
s1:=as1;
s2:=as2;
Assert (s1<>s2);
end;

Delphi Unicode Migration for Mere Mortals: Stories & Advice from the Front Lines

Embarcadero Technologies - 22 -

EXPLICIT CONVERSIONS
So, if string conversions occur automatically, is there any need for explicit conversion? The
answer is Yes. One of the more common conversions is when you need to use an
AnsiString value, for example, for passing data to a Windows API call, but the data that
you receive is coming from a source that is not an AnsiString.

Here is a nice example, which was contributed by well-known Delphi expert Bob Swart
(popularly known as Dr. Bob). He writes, "This is one of the nicest simplified real-world
examples that I have. It involves the usage of an "old" Win32 DLL exporting functions that
return PChar results. The old PChar, which is now known as PAnsiChar."

We'll discuss external DLLs in more detail later, so let's concentrate more on the explicit
conversion. Here is the static import statement for a simple routine in a DLL named
AnsiCharDLL.dll:

function EchoAnsiString(const S: PAnsiChar): PAnsiChar; stdcall
 external 'AnsiCharDLL.dll';

As you can see, this routine takes a PAnsiChar and returns a PAnsiChar (in fact, it returns
the PAnsiChar that is receives).

"We can import the function and specify it as using PAnsiChar, that's no problem", Bob
writes. "However," he continues, "when calling a function [like this] that requires a
PAnsiChar value, and using a TEdit (with UnicodeString value) as [the input] value, we need
not one, but TWO explicit string casts."

This is demonstrated in the following code snippet:

ShowMessage(
 EchoAnsiString(
 PAnsiChar(AnsiString(Edit1.Text)))); // double cast !!!

If the value that we want to pass to EchoAnsiString is already an AnsiString, the second
cast (casting to AnsiString), would not be necessary, as shown in this example:

var
 Msg: AnsiString;
begin
 Msg := 'Hello World';
ShowMessage(EchoAnsiString(PAnsiChar(Msg)));

A similar example comes from another well-known Delphi expert, Marco Cantù. This
conversion, taken from page 98, uses the AnsiString cast to call GetProcAddress (a
Windows API call used to dynamically get the entry point of a routine in an external DLL).
Here, the name of the routine being imported is stored in strFnName, which is a
UnicodeString variable:

Delphi Unicode Migration for Mere Mortals: Stories & Advice from the Front Lines

Embarcadero Technologies - 23 -

GetProcAddress (hmodule, PAnsiChar (AnsiString(strFnName)));

Marco also suggests that you turn on all of Delphi "string conversion warnings, some of
which are not enabled by default." The following list is repeated from page 88 of his book:

Explicit string cast
Explicit string cast with potential data loss
Implicit string cast
Implicit string cast with potential data loss
Narrowing given wide/Unicode string constant lost information
Narrowing given WideChar constant to AnsiChar lost information
WideChar reduced to byte char in set expression
Widening given AnsiChar constant to WideChar lost information
Widening given AnsiString constant lost information

Along these lines, contributor Lars Dybdahl suggests, "Get rid of your string warnings by
fixing them, not by ignoring them. Most of them are seriously easy to fix." He also
recommends, "Be careful not to create UnicodeString to AnsiString conversions that are
run extremely often. For instance, like using a TStringList in an AnsiString unit, so that all
assignments to/from the TStringList converts strings. This will slow down your application
significantly."

For the meantime, I'll conclude this section with an interesting observation that also came
from Lars, who writes, "The problem with comparing strings [is] actually very complex. For
instance, let's assume that we have this code:

var
 line: String;
const
 myconstant: String='<something with strange unicode chars>';
...
ReadLn (file,line);
if line=myconstant then...

"Would this work in Delphi? Actually, I have no idea myself. I can see that the line "if
line=myconstant then" compiles into a machine language call to UStrEqual, but I have no
idea if this is a binary compare or a correct Unicode string comparison that handles the
fact that two identical strings may use different byte values (precomposed vs.
decomposed characters)."

"It does not seem to use the Windows API, so my guess is that it is a binary comparison,
meaning that the above code snippet would not always work ... I tried to Google an
answer for this, but did not succeed. Maybe Delphi UnicodeString normally stores the
normalized form of a string, but what if the UnicodeString value is read using
TStream.Read? That will not normalize the string, and thus it cannot be compared byte-
wise to a normalized Unicode string."

Delphi Unicode Migration for Mere Mortals: Stories & Advice from the Front Lines

Embarcadero Technologies - 24 -

You may recall that we encountered the issue of normalization in the previous section on
the size of Strings and Chars, and learned that the RTL does not directly support
normalization, yet. So I think that the answer to Lars's question is that the expression
line=myconstant may evaluate to False, even when the two normalized strings contain
identical values.

On the other hand, there are a number of string comparison functions in the SysUtils unit
that call the CompareString Windows API, and this function (actually there are two
functions, an ANSI version and a Unicode version) performs the comparison based on
normalized strings. The following code demonstrates the issue, as well as the solution:

var
 s1, s2: String;
begin
 ListBox1.Items.Clear;
 s1 := 'Hell'#$006F + #$0308' W'#$006F + #$0308'rld';
 s2 := 'Hellö Wörld';
 ListBox1.Items.Add(s1);
 ListBox1.Items.Add(s2);
 ListBox1.Items.Add(BoolToStr(s1 = s2, True));
 ListBox1.Items.Add(BoolToStr(AnsiCompareStr(s1, s2) = 0, True));

The contents of ListBox1 are shown in the following figure.

SETS OF CHAR
You may recall that earlier in this paper, I quoted an anonymous contributor, one who
found their conversion straightforward, as saying, "I wrote a D2007 CharInSet [function]
and used that where needed." What they were alluding to is the fact that sets of Char
don't really make sense any more.

The reason for this is simple. Sets in Delphi can contain, at a maximum, 256 elements, and
Char is now two bytes, not one.

If you actually try to declare a set of Char, you will see the following warning:

W1050 WideChar reduced to byte char in set expressions. Consider using 'CharInSet'
function in 'SysUtils' unit.

You have two options here. You can either change your declaration to set of AnsiChar, or
you can use CharInSet, as recommended by the compiler. Actually, CharInSet, like so

Delphi Unicode Migration for Mere Mortals: Stories & Advice from the Front Lines

Embarcadero Technologies - 25 -

many of Delphi's String functions, is overloaded, providing you with both single byte and
WideChar versions. Here is how it is declared in the SysUtils unit:

function CharInSet(C: AnsiChar; const CharSet: TSysCharSet): Boolean; overload;
inline;
function CharInSet(C: WideChar; const CharSet: TSysCharSet): Boolean; overload;
inline;

As you can see from these declarations, CharInSet returns a Boolean value if the character
that you pass it is in the set you pass it. This second parameter, TSysCharSet, is declared
as follows:

TSysCharSet = set of AnsiChar;

POINTER OPERATIONS AND BUFFERS
Probably one of the single most significant and challenging aspects of Unicode migration
involves code that makes use of characters in pointer operations and arrays of characters
as buffers. This was reflected repeatedly by comments made by the contributors to this
paper. (Just imagine what havoc will occur if an implicit string conversion is applied to a
string being used as a byte array.)

For example, Olaf Monien of Delphi Experts (www.DelphiExperts.net) wrote, "[porting]
code that heavily deals with PChars, buffers and pointer arithmetic ... is usually expensive
as you have to revisit every single line of code." Apparently confirming this notion, an
anonymous contributor who reported that their migration was rather easy, noted, "I've
always been a bit scared of PChar, that might have helped."

Lars Dybdahl echoed the issue of code complexity when he wrote, "We had some very old
code, using pointers and external components, which was really difficult to convert." This
type of code has to be examined line-by-line.

If you don't use pointers or buffers a whole lot (and I am one of these people), you might
wonder why developers use these constructs in the first place. The answer is speed and
features.

Many of the people who use these techniques are either doing complex operations where
speed is essential, are performing tasks for which there is (or was) no alternative, or are
using techniques developed in the early days of Delphi (or Turbo Pascal). (Even when new
techniques or classes arise to replace some of this old-style coding, some developers are
likely to continue using these techniques out of force of habit, even at the expense of
maintainability. This is just a personal observation, and not a value judgment.)

Actually, the complexity of this type of code is not related to pointers and buffers per se.
The problem is due to Chars being used as pointers. So, now that the size of Strings and

Delphi Unicode Migration for Mere Mortals: Stories & Advice from the Front Lines

Embarcadero Technologies - 26 -

Chars in bytes has changed, one of the fundamental assumptions that much of this code
embraces is no longer valid: That individual Chars are one byte in length.

Since this type of code is so problematic for Unicode conversion (and maintenance in
general), and will require detailed examination, a good argument can be made for
refactoring this code where possible. In short, remove the Char types from these
operations, and switch to another, more appropriate data type. For example, Olaf Monien
wrote, "I wouldn't recommend using byte oriented operations on Char (or String) types. If
you need a byte-buffer, then use ‘Byte’ as [the] data type: buffer: array[0..255] of Byte;."

For example, in the past you might have done something like this:

var
 Buffer: array[0..255] of AnsiChar;
begin
 FillChar(Buffer, Length(Buffer), 0);

If you merely want to convert to Unicode, you might make the following change:

var
 Buffer: array[0..255] of Char;
begin
 FillChar(Buffer, Length(buffer) * StringElementSize(Buffer), 0);

On the other hand, a good argument could be made for dropping the use of an array of
Char as your buffer, and switch to an array of Byte, as Olaf suggests. This may look like this
(which is similar to the first segment, but not identical to the second, due to the size of the
buffer):

var
 Buffer: array[0..255] of Byte;
begin
 FillChar(Buffer, Length(buffer) * StringElementSize(Buffer), 0);

Or, alternatively:

var
 Buffer: array[0..255] of Byte;
begin
 FillChar(Buffer, Length(buffer) * SizeOf(Buffer), 0);

The advantage of these last two examples is that you have what you really wanted in the
first place, a buffer that can hold byte-sized values. (And Delphi will not try to apply any
form of implicit string conversion since it's working with bytes and not code units.) And, if
you want to do pointer math, you can use PByte. PByte is a pointer to a Byte.

The one place where changes like may not be possible is when you are interfacing with an
external library that expects a pointer to a character or character array. In those cases, they
really are asking for a buffer of characters, and these are normally AnsiChar types.

Delphi Unicode Migration for Mere Mortals: Stories & Advice from the Front Lines

Embarcadero Technologies - 27 -

In addition to using arrays of Byte, you should consider the TBytes type, which is a
dynamic array of Byte. TBytes is declared in the SysUtils unit, and looks like this:

TBytes = array of Byte;

Before leaving this subject, it seems appropriate to share a few words from Allen Bauer,
Chief Scientist at Embarcadero Technologies. In his blog
(http://blogs.embarcadero.com/abauer/2008/01/24/38852), he wrote, "Because [we could
do pointer math with] PChar ... many developers (ourselves included) would do crazy
things such as casting a pointer of one type to a PChar and then do some pointer
arithmetic. ...What this has done is created cases where some code is littered either with a
lot of pointers cast to PChars or the direct use of PChar pointers even when the data being
manipulated isn’t specifically byte-sized characters. In other words, PChars were used to
manipulate byte-buffers of arbitrary data."

"During the development of [RAD Studio 2009], we discovered some of our own code was
doing a lot of the above things. (I told you we’ve all done it!) Using the PChar trick was
simply the only thing available and made a lot of the code simpler and a little easier to
read. ...In looking at the code, it was clear that the intent was to access this data buffer as
an array of bytes, and was merely using a PChar as a convenience for accessing as an array
or performing simple arithmetic."

"If you declare a typed pointer while [the $POINTERMATH compiler directive] is on, any
variable of that type will allow all the scaled pointer arithmetic and array indexing you like.
...PByte is declared with that directive on. This means that all the places that are using the
PChar type simply for the byte-pointer and byte-array access, can now use the PByte type
instead and none of the existing code statements and logic needs to change. A simple
search and replace over the source is what is needed. Sure, we could have changed the
PChar references to PAnsiChar, but that simply serves to perpetuate the lack of clarity over
what the intent of the code actually is."

READING AND WRITING EXTERNAL DATA
External files and streams are other areas that require attention during Unicode migration.
Ray Konopka of Raize Software, a company that makes award-winning components and
tools for Delphi developers, puts the issue in perspective. And although he is talking about
SaveToFile and LoadFromFile for list controls, his comments apply to many situations
where files or streams are written to or read from.

FILE IO AND TEXT ENCODING
"Most list controls provide a SaveToFile method and a LoadFromFile method," Ray writes.
"These methods will typically compile under RAD Studio 2009 without any problems at all.
Even at runtime, the methods will appear to work correctly. That is, until you actually put a
Unicode character in one of the items."

Delphi Unicode Migration for Mere Mortals: Stories & Advice from the Front Lines

Embarcadero Technologies - 28 -

"Calling SaveToFile will even appear to work correctly, but by default files created using
SaveToFile are ANSI encoded and that means that any Unicode characters will be stored
incorrectly in the file. Calling LoadFromFile to populate the list from the previously saved
file will not work correctly because the actual Unicode character data will be lost."

Ray continues, "The solution, of course, is to specify the encoding that is used for the text
file. To do this, the component author needs to provide overloaded versions of SaveToFile
and LoadFromFile (as well as SaveToStream and LoadFromStream) that take an Encoding
parameter."

"This solution is okay, but it does require that the developer using the component pick an
appropriate encoding. A developer could pick a Unicode based encoding such as UTF-8
for all files and be done with it. But this would mean that even lists that contain just ANSI-
based characters would get stored in a UTF8 file, which is not really necessary. What would
really be nice is to save the file using UTF-8 encoding [or some other encoding] only when
it was needed."

What Ray is referring to here is that almost all of the SaveToFile, LoadFromFile,
SaveToStream, and LoadFromStream calls (and other similar calls) now accept an
encoding as an optional second parameter. If you do not specifically define an encoding,
the default encoding will be used.

You define an encoding using either properties or class functions of the TEncoding class,
which appears in the SysUtils unit. Examples of TEncoding classes that are available to you
include ASCII, UTF8, and Unicode.

The need to control the encoding of a file or stream was echoed by one of the anonymous
contributors. "We save all of our configuration information in text streams and when
compiled in 2009, the Unicode [encoding] increased the file size from 90k to 130k," they
wrote. "We noticed that the TChart text (a TeeChart class) was saved using single byte
characters so we [encoded] the multi-byte characters to single bytes" which saved the
extra disk space.
Ray Konopka went even further, saying, "We did not want to always store the text files as
UTF-8 files. Instead, we wanted to handle the files much like the Delphi IDE. That is, if a
unit contains a Unicode character, then the file is saved as a UTF-8 file. However, if the
contents of the unit just contain ANSI characters then the file is stored using the default
encoding."

Here is the code sample that Ray contributed to demonstrate this approach:

{$IFDEF UNICODE}
 UseANSI := lstPreview.Items.Text =
 UnicodeString(AnsiString(lstPreview.Items.Text));

 if UseANSI then

Delphi Unicode Migration for Mere Mortals: Stories & Advice from the Front Lines

Embarcadero Technologies - 29 -

 lstPreview.SaveToFile(dlgSave.FileName, TEncoding.Default)
 else
 lstPreview.SaveToFile(dlgSave.FileName, TEncoding.UTF8);

{$ELSE}
 lstPreview.SaveToFile(dlgSave.FileName);
{$ENDIF}

Ray explains, "If a list contains Unicode characters, then converting the Items.Text to an
AnsiString and back to a UnicodeString will [return a string] different than the original
Unicode string, which means that we need to encode the file with UTF-8. If the string
conversion results in no loss of data, then the strings will match and the file can be saved
as ANSI."

Embarcadero has published a list of the IO routines that can accept a TEncoding
reference, permitting you to specify the encoding to use. This can be located at

http://docwiki.embarcadero.com/RADStudio/en/Using_TEncoding_for_Unicode_Files

J.D. Mullin, R&D Project Manager for the Advantage Database Server (published by
Sybase iAnywhere) was also kind enough to share his technique for restoring previously
persisted information. Like the anonymous contributor who wanted to save a file in ANSI
format, J.D. wanted to ensure that ANSI data that was previously saved was restored
correctly. "Reading ANSI string data from a stream into a string buffer will not work," he
writes. "You need to explicitly read [the data] into a temporary ANSI buffer first."

Here is his code sample that demonstrates this technique:

function SReadString(S: TStream): String;
var
 sLen: LongInt;
 temp: AnsiString;
begin
 sLen := SReadLongint(S);
 SetLength(temp, sLen);
 s.ReadBuffer(temp[1], sLen);
 result := temp;
end;

J.D. explains, "The reason the temporary ANSI buffer is necessary is because ReadBuffer
automatically determines the type of the destination buffer and acts accordingly. If you
had stored ANSI data in the file or stream, you need to read it into an ANSI buffer, not a
Unicode buffer. If you pass a Unicode buffer to ReadBuffer, it is going to think you stored
Unicode data and will read it out as such."

Lars Dybdahl also had insight into reading and writing files. He wrote, "Many of our
existing I/O routines were designed to handle UTF-8 encoding in Delphi 2007, and this
means that a lot of the logic and data storage was about manipulating UTF-8 in
AnsiStrings."

Delphi Unicode Migration for Mere Mortals: Stories & Advice from the Front Lines

Embarcadero Technologies - 30 -

"The solution was to remove all UTF-8 conversion inside the algorithm, and just apply it at
the I/O point, so that all text handling used UnicodeString. For instance, TStringList
worked well with UTF-8 in Delphi 2007, but in Delphi 2009 it uses UnicodeString. You
should convert UTF-8 to UnicodeString as soon as possible, and definitely before putting it
into a TStringList."

There are two more techniques that we need to discuss before concluding this section on
reading and writing data. But before we do that, there is a topic, mentioned only briefly
earlier in this paper, that needs additional explanation. That topic is byte order mark, or
BOM.

THE BYTE ORDER MARK
Byte order mark is a preamble that may appear in text files, and, when present, it serves to
identify the file's encoding. If you use Delphi's SaveToFile methods (or similar methods
where encodings can be specified, Delphi will write a BOM, if appropriate, as the first
couple of bytes of the file. This can be demonstrated with the following code sample:

procedure TForm1.SaveWithEncodingClick(Sender: TObject);
var
 sl: TStringList;
begin
 sl := TStringList.Create;
 try
 sl.Text := TextEdit.Text;
 ListBox1.Items.Clear;
 ListBox1.Items.AddStrings(sl);
 if EncodingComboBox.Items[EncodingComboBox.ItemIndex] = 'ASCII' then
 sl.SaveToFile('c:\temp.txt', TEncoding.ASCII)
 else
 if EncodingComboBox.Items[EncodingComboBox.ItemIndex] = 'UTF-8' then
 sl.SaveToFile('c:\temp.txt', TEncoding.UTF8)
 else
 if EncodingComboBox.Items[EncodingComboBox.ItemIndex] =
 'UTF-16 LE (Little-endian)' then
 sl.SaveToFile('c:\temp.txt', TEncoding.Unicode)
 else
 if EncodingComboBox.Items[EncodingComboBox.ItemIndex] =
 'UTF-16 BE (Big-endian)' then
 sl.SaveToFile('c:\temp.txt', TEncoding.BigEndianUnicode);
 finally
 sl.Free;
 end;
end;

When the file is viewed by a low-level hex file viewer (HexMad, in this case) with the ASCII
encoding, the file looks like that shown here:

Delphi Unicode Migration for Mere Mortals: Stories & Advice from the Front Lines

Embarcadero Technologies - 31 -

With the UTF-8 encoding, the file looks like the following:

The EF BB BF is the byte order mark (BOM), and in this case, it identifies the file as a UTF-8
Unicode file. By comparison, when the Unicode encoding (UTF-16) is selected (which
defaults to little-endian), the file looks like the following. (You can read the BOM using the
TEncoding.GetPreamble method.):

And it looks like this with UTF-16 BE (big-endian) selected:

Delphi Unicode Migration for Mere Mortals: Stories & Advice from the Front Lines

Embarcadero Technologies - 32 -

You’ll notice that the Unicode (UTF-16) preambles are only two bytes in length. With the
little-endian (the default), the preamble is FF FE, and with big-endian, it is reversed (FE FF).

THE BOM IS OPTIONAL
On page 91 of his book Delphi 2009 Handbook, Marco Cantù writes, "The number one
recommendation, whenever saving to a file, is to save the BOM, to make it clear in which
format it is. This is no more difficult to achieve when working in memory, because even if
you don't remember the actual format, Delphi's streaming code adds the proper BOM
even to a memory stream."

As you saw earlier in this chapter, the act of defining an encoding is sufficient to ensure
that the proper BOM is written. When reading the file or stream, he continues, it is not
necessary to specify an encoding, since Delphi will infer it from the BOM that was created
when the data was written. He notes that it is particularly important not to specify an
encoding when reading a file that you created with a specific encoding, since Delphi will
let you write data using one encoding, and then not raise an exception if you attempt to
read that data with a different encoding (but the data will likely be incorrect).

Things can get a little more messy because BOMs are not a prerequisite for Unicode data
files. As Lars Dybdahl points out, "Many tools and applications cannot read files that
include a BOM. A good example is when your application creates a configuration file for a
Linux server application that will fail when reading the BOM. You may even experience
XML readers that can only read UTF-8 encoded XML files if they do not have a BOM.
Similarly, if you are writing text into a binary structure, like a blob field in a database, the
reader may not understand a BOM."

As a result, you might encounter a file created by some other source that includes no
BOM, even though it is a form of Unicode. This potentially thorny issue was also noted by
contributors J.D. Mullin and Louis Kessler. Louis posted the following direct question on
Stack Overflow: "How can I best guess the encoding when the bom (byte order mark) is
missing?" The answers he received led him to CharSet Detector, an open source module
by Nikolaj Yakowlew that examines the patterns of characters in a file and predicts the
encoding. Though I haven't personally tested CharSet Detector, if you need something
like this you can investigate it further at http://chsdet.sourceforge.net/.

Delphi Unicode Migration for Mere Mortals: Stories & Advice from the Front Lines

Embarcadero Technologies - 33 -

In concluding this section on reading and writing data, I would be remiss if I didn't at least
mention the availability of a pair of new stream reading and writing classes in Delphi 2009
and later. The TStreamWriter and TStreamReader classes are functionally identical to their
.NET counterparts. Importantly, both permit you to define the encoding that you want to
use when writing to or reading from a stream.

USING EXTERNAL LIBRARIES AND THIRD-PARTY COMPONENTS
As the preceding discussions have highlighted, there are many different areas that may
require attention when migrating your own source code. Fortunately, you presumably
enjoy a number of advantages that will help you approach this task. You are likely
intimately familiar with the code, it is written in either your style or that defined by your
company's policy, and you have access to all of the source code.

When it comes to external libraries and third-party components, however, you may have
none of these benefits. You may not even have the source code, leaving you at the mercy
of forces beyond your control.

I am specifically going to address three distinct areas related to code outside of your
control in this section. I am going to begin with a look at the Windows API. Next, I'll
discuss third-party components. The final section will discuss external libraries for which
you do have source code, those that were written by you and/or your team, or that you
obtained from an open source resource.

WINDOWS API
It's a given that your code does not operate in a vacuum. It always relies on other code
"out there." At a minimum, this includes the operating system and the modules that make
it work. With respect to Windows, we call these libraries the Windows API, or application
programming interface.

As far as Unicode support goes, the news is good. Windows, at least since Windows 2000,
has fully supported Unicode, and even earlier versions were aware of multi-byte characters.
In addition, most of the Windows API associated with strings is implemented with at least
two versions of each routine, one for strings that use Windows code pages (ANSI) and one
for wide strings. This is immediately apparent if you examine an import unit such as
windows.pas, which imports both A and W versions of the string-related routines.

Here is a typical example of a set of external declarations in the windows unit:

function GetModuleFileName; external kernel32 name 'GetModuleFileNameW';
function GetModuleFileNameA; external kernel32 name 'GetModuleFileNameA';
function GetModuleFileNameW; external kernel32 name 'GetModuleFileNameW';

Delphi Unicode Migration for Mere Mortals: Stories & Advice from the Front Lines

Embarcadero Technologies - 34 -

What this is saying is that the GetModuleFileName, a function that will return the fully
qualified name of an executable (regardless of whether it is a console application, windows
application, or DLL), has three versions. There is the GetModuleFileNameA (ANSI) version,
which takes a ANSI character buffer (in which the path is stored), the
GetModuleFileNameW (wide) version, which takes a UTF-16 character buffer, and
GetModuleFileName, an alias for the W version. As you can see in the above code
snippet, the GetModuleFileName version actually calls the W version.

What is interesting to note is that in pre-Delphi 2009 versions of windows.pas, you would
find the following declaration:

function GetModuleFileName; external kernel32 name 'GetModuleFileNameA';
function GetModuleFileNameA; external kernel32 name 'GetModuleFileNameA';
function GetModuleFileNameW; external kernel32 name 'GetModuleFileNameW';

So, what this is really saying is that we've had access to both the ANSI and multi-byte
version of most of the string-related function calls for some time, the difference being that
the wide version is now the default.

In general, this means that when there is both an ANSI and a wide version of a Windows
API call, and you are using the native String, Char, and PChar types (Unicode enabled),
your existing code should migrate just fine. Consider the following code sample:

var
 Path: array [0..255] of Char;
begin
 GetModuleFileName(HInstance, Path, Sizeof(Path));
 Label1.Caption := Path;

This code works, and compiles, both in Delphi 2009 and later versions, as well as in prior
versions of Delphi. With Delphi 2009 and later, your code is calling the wide version, and in
earlier versions you are getting the ANSI call.

On the other hand, if the necessities of your conversion lead you to take the AnsiString
route (replacing String declarations with AnsiString, Char with AnsiChar, and so on), you
will need to examine your Windows API calls and change them over to explicitly call the
ANSI versions. For example:

var
 Path: array [0..255] of AnsiChar;
begin
 GetModuleFileNameA(HInstance, Path, Sizeof(Path));
 Label1.Caption := Path;

In those cases where a suitable ANSI version of the Windows API call does not exist, you
will have to take a different approach. For example, converting or casting your
incompatible data types to something supported by the available routines. Frankly,

Delphi Unicode Migration for Mere Mortals: Stories & Advice from the Front Lines

Embarcadero Technologies - 35 -

however, I am not aware of any particular Windows API calls where such an adjustment is
necessary.

THIRD-PARTY TOOLS
Unlike the Windows API, which is integral to our applications, third-party components are
a convenience that we embrace to save development time and improve our application's
features. And they are a double-edged sword.

When we rely on a third-party component to provide a significant amount of functionality
for an application, we are entering into a relationship with that third-party vendor. When it
comes time for us to migrate our application to a later version of Delphi, our application's
migration must go hand-in-hand with that of the vendor.

Fortunately, there are some very talented and reliable vendors in the Delphi third-party
components space. For example, four of the contributors to this paper, David Berneda
(Steema Software), Ray Konopka (Raize Software), J.D. Mullin (Sybase iAnywhere), and
Nard Moseley (Digital Metaphors) have not only updated their company's offerings to
support Delphi 2009 and later, but they have done so in a way that maintains compatibility
with earlier versions of Delphi. This is why these companies have continued to succeed
and earn the devotion of their loyal customers.

On the other hand, there are no guarantees. Over the years, some third-party vendors
have disappeared from the scene. And if your application relied on the components of
one of these vendors, the results can range from inconvenient to disastrous.

I know many developers who will not commit to a third-party component set unless they
have the option to purchase the source code, and that source code is provided in such as
way that the developer can continue using that source code in the event that the third-
party vendor is no longer able to support the product.

Having source code is not always the solution, but it is a darn good start. On the other
hand, if no source code is available, you are left with only two alternatives. You can remove
the components from your application, or you can resign yourself to continuing to
maintain the application in the most current version of Delphi those components
supported. Removing components from an application is painful, to say the least. Getting
stuck permanently in an older version of your compiler is horrible, and is usually only
acceptable if the application itself is nearing the end of its lifecycle.

NON-COMMERCIAL EXTERNAL LIBRARIES
The final set of libraries that I'll address are those libraries for which you have source code,
but which are not commercially supported. These include libraries that were created by
you or your team, as well as open source libraries.

Delphi Unicode Migration for Mere Mortals: Stories & Advice from the Front Lines

Embarcadero Technologies - 36 -

With respect to custom libraries, those created in-house, the migration issues are very
similar to those of any other application, with an additional twist. You not only need to
address the Unicode support internal to the library, but manage the API as well. For
example, you may want to introduce both ANSI and wide versions of exported functions
that need to pass String and Char data in parameters.

For open source libraries, the issues are the same, yet with one more concern. In most
cases, these libraries are covered under a GNU public license, or some similar agreement.
Before you start investing time in migrating a non-commercial library that you do not own
the rights to, make sure that you read the license agreement that accompanied it, and
verify that you can abide by whatever terms that license dictates. (Contributor Steffen
Friismose suggests that, if the license is a GNU public license, or something similar to it,
you can often get around licensing issues by contributing you migration work to the
project.)

DATABASE-RELATED ISSUES
Database applications that do not need to store or display Unicode strings typically
migrate to Unicode-enabled Delphi with ease. For those applications that must handle
Unicode strings, things are a bit more complicated, as you will learn a little later in this
section.

But to start, let's begin with a change that is not specifically Unicode related, but one that
nonetheless you might encounter as you migrate an older database application to Delphi
2009 and later. This issue is related to bookmarks.

A bookmark is a reference to a record location in a TDataSet, and it is used for navigation
(using a bookmark to identify a record to which you might want to return later). There are
two bookmark issues introduced in Delphi 2009. The string-based bookmark
(TBookmarkStr) is deprecated, and should not be used. The second is that the TBookmark
type has changed.

J.D. Mullin explains it this way: "[Embarcadero] has changed the TBookmark type from a
pointer to TBytes. This will not affect most applications that simply use the GetBookmark[,
GotoBookmark, and] FreeBookmark TDataSet methods. If, however, you are doing
anything "goofy" with the pointer you get from GetBookmark, beware. Many of our
automated tests needed to be modified to consume the bookmarks in a more
generic/standard fashion."

I'm not entirely sure what kind of "goofy" things you might be inclined to do with a
TBookmark. Nonetheless, J.D.'s point is well taken. A bookmark is intended to mark a
record position in a TDataSet, a position to which you can quickly return by calling
GotoBookmark. If you are using it for some other purpose, test your code carefully.

Delphi Unicode Migration for Mere Mortals: Stories & Advice from the Front Lines

Embarcadero Technologies - 37 -

Turning our attention back to Unicode migration, as it relates to database applications,
unfortunately things get a bit difficult. You may recall that early in this paper, I quoted a
contributor who wrote, "The biggest problem I had [with migrating to Delphi 2009] was
that the application had already been made Unicode compatible using WideStrings."
Apparently this complexity is not unique.

In his book Delphi 2009 Handbook, Marco Cantù notes that pre-Delphi 2009 Unicode
support in the TDataSet and TFields classes was provided using the TWideString type.
Since Delphi 2009 the multi-byte string types have been declared as Strings (or even
explicitly as UnicodeStrings).
While this update makes the reading and writing of Unicode data in the TField classes
consistent with the UnicodeString data type, and eliminates some potential data
conversion issues, some of the class and member names in the TDataSet arena remain
confusing. For example, there is no TUnicodeStringField type, and the TStringField class
still stores its value as an AnsiString value. If you want a Unicode TField, you use
TWideStringField (which, as mentioned in the preceding paragraph, is stored as a
UnicodeString in Delphi 2009 and later).

Much of this will not affect the typical database application. For example, if your database
wasn't Unicode-enabled prior to Delphi 2009, you did not need the WideString classes,
such as TWideStringField, and therefore will not need to accommodate their conversion to
UnicodeStrings.

On the other hand, if you implemented Unicode support for your database prior to Delphi
2009, you will have to examine how you are using your WideString types, and ensure that
you are doing so consistently with those UnicodeString definitions that appear in Delphi
2009 and later.

For example, Marco notes that the TDataSet.GetFieldNames method in Delphi 2006 and
2007 returned a TWideStrings value (Delphi 2009 Handbook, page 333). If you called that
method, and assigned the value to a TWideStrings variable, a WideString to
UnicodeString type conversion will now occur during that assignment if you compile your
application in Dephi 2009 or later. He recommends that you "rewrite your code, locating
any occurrence of the TWideStrings and TWideStringList classes and moving them to the
preferred TStrings and TStringList types."

It is interesting that there were very few comments from the contributors about database
migration. I hope that this means that most Unicode migrations of database applications
encounter few issues related to the database side of things. In fact, the final two
comments about database Unicode migration come from Lars Dybdahl.

One of these is a recommendation. Lars recommends, "Make sure that your database
tools understand Unicode before migrating your database fields to Unicode." In other

Delphi Unicode Migration for Mere Mortals: Stories & Advice from the Front Lines

Embarcadero Technologies - 38 -

words, if your tools do not understand Unicode, you should not start putting Unicode data
into the database.

Preventing the injection of Unicode characters into a non-Unicode database (which would
produce a data loss) may require a little bit of preventative planning. Specifically, what if
you are permitting your users to edit data using data aware controls? Most of these
controls support WideString data.

Here is what I suggest. Once your application is running in Delphi 2009 or later, see what
happens when you intentionally add a Unicode character to your database through your
user interface. Furthermore, verify what happens when you try to do something with that
data, such as display it in a report.

Let's face it, we cannot always validate a user's data entry, and it may turn out that a user
entering Unicode data is no less of a problem that a user entering, say, the wrong date.
Garbage in, garbage out.

On the other hand, if the introduction of Unicode data into your application causes
unacceptable behavior, such as access violations, you may have to change how you collect
your data, verifying that it is valid before actually inserting it into your database. For
example, you might need to use a ClientDataSet as an intermediate layer between your
user interface and your underlying database. ClientDataSets support TWideStringFields,
which can cache your user's data while it awaits validation.

When you are done collecting data, and before writing the data in the ClientDataSet to
your underlying database, you could test your string-related fields for valid data. You could
even use a trick similar to the one that Ray Konopka shared earlier in this paper, where you
convert the TWideStringField data to AnsiString and back, verifying that no data loss
occurred in the conversion, in which case, the data is ready to write to your database.

Finally, Lars shares one of the migration challenges specific to data access that his team
encountered as a direct result of Delphi's Unicode support. Lars wrote: "Doing Firebird
Unicode with IBX meant that a patch needed to be applied to IBX, but the hardest part
was blobs. Sometimes they contain binary stuff, and sometimes they contain text, and with
Delphi 2007, it really doesn't matter and [the] AsString [method] was suitable for both ...”

"But now, they need to be treated completely separately, in order to get the text fields as
UTF-16 UnicodeString, and the binary stuff as RawByteString. The solution was to
duplicate a lot of blob-related procedures, one for RawByteString and one for String, and
then use the appropriate procedure on the appropriate fields - and we also had to
introduce small functions that get the blobs correctly out of IBX."

While Lars’s observation was specific to Firebird and the IBX driver his team was using, it
offers an interesting lesson in Unicode migration. As we learned in the preceding section,

Delphi Unicode Migration for Mere Mortals: Stories & Advice from the Front Lines

Embarcadero Technologies - 39 -

when you are relying upon code outside the realm of your application, you may encounter
problems not of your own doing. Nonetheless, these deficiencies need to be addressed if
your migration is going to be successful.

CONCLUSIONS
Nard Moseley wrote, "Moving to Unicode seems scary at first - the unknown always is. And
moving to Unicode did require us to learn some new concepts - always painful. But the
fact is that most source code requires little to no modifications. Even areas such as
database access and many Windows API calls will just work. By following the
recommendations of the Delphi team and using tools such as the Delphi compiler
warnings and the search facility, moving to Unicode can be a painless straight forward
process."

As I reflect on the input of the many contributors to this paper, I have to caution that not
all Unicode migrations will go as easily as Nard’s quote suggests. It all depends on the
complexity of the application, what it does, what it interfaces with, to what extend previous
Unicode migrations have been applied (using the older WideString type), among other
issues.

But the important point is that, whether your application is one of the easy conversions or
one of the challenging conversions, when you are done, you will have extended the life of
your application significantly. Not only will you be able to provide you application with an
updated look and feel, such as support for Windows 7 features, but you will have readied
your application for future enhancements planned for Delphi, such as cross platform
compilation and 64-bit native code.

ACKNOWLEDGMENTS
This paper was truly a work inspired, supported, and realized by many. I am deeply
grateful to each and every individual who helped make it a reality. From Embarcadero
Technologies, I want to thank Mike Rozlog, Senior Director of Delphi Solutions, for
proposing that I write a Unicode migration paper, and Tim Del Chiaro, who worked
diligently to get things done. I also want to thank Seppy Bloom and Thom Gerdes, Delphi
team members at Embarcadero Technologies, for providing technical assistance and
contributions during the writing of this paper.

I am also indebted to the many contributors who shared details about their Unicode
efforts, as well as support and guidance in developing this paper. In alphabetical order,
these contributors are: David Berneda, Marco Cantù, Rej Cloutier, Roger Connell, Mariano
Vincent de Urquiza, Lars Dybdahl, Steffen Friismose, Louis Kessler, Ray Konopka, Olaf
Monien, Nard Moseley, J.D. Mullin, Jasper Potjer, Steve, Bob Swart, Jacob Thurman, as
well as several people who wished to remain anonymous.

Delphi Unicode Migration for Mere Mortals: Stories & Advice from the Front Lines

Embarcadero Technologies - 40 -

I also want to thank Loy Anderson of Jensen Data Systems for helping to proofread and
copy edit this paper. Last, but not least, I want to thank Lars Dybdahl, Steffen Friismose,
Takeshi Arisawa of Embarcadero Technologies, for their insightful technical reviews of
drafts of this paper.

REFERENCES
The following are a variety of resources that you may benefit from looking at. I regret that I
did not create a complete list of every blog, paper, or posting that I read concerning
Unicode. Fortunately, many of the more memorable are listed here.

BLOGS AND PAPERS COVERING UNICODE, DELPHI, AND
SOFTWARE ISSUES
http://blogs.embarcadero.com/abauer/2008/01/28/38853
http://blogs.embarcadero.com/abauer/2008/01/10/38847
http://blogs.embarcaderor.com/abauer/2008/01/09/38845
http://www.micro-isv.asia/2009/03/make-sure-your-web-site-is-always-displayed-with-the-
right-characters/
http://www.micro-isv.asia/2009/03/why-not-use-utf-8-for-everything/
http://www.micro-isv.asia/2008/12/choose-the-right-file-format-for-your-delphi-source-
code/
http://www.micro-isv.asia/2008/10/delphi-2009-string-performance-in-a-nutshell/
http://www.micro-isv.asia/2008/10/needless-string-checks-with-ensureunicodestring/
http://www.micro-isv.asia/2008/09/speed-benefits-of-using-the-native-win32-string-type/
http://jdmullin.blogspot.com/2008/09/tips-when-porting-delphi-application-to_16.html
http://www.bobswart.nl/Weblog/Blogs.aspx?RootId=2:2947
Delphi in a Unicode World Part I: What is Unicode, Why do you need it, and How do you
work with it in Delphi? by Nick Hodge
http://edn.embarcadero.com/article/38437
Delphi in a Unicode World Part II: New RTL Features and Classes to Support Unicode by
Nick Hodge
http://edn.embarcadero.com/article/38498
Delphi in a Unicode World Part III: Unicodifying Your Code by Nick Hodge
http://edn.embarcadero.com/article/38693
Delphi and Unicode (a White Paper) by Marco Cantù
http://www.embarcadero.com/images/dm/technical-papers/delphi-and-unicode-marco-
cantu.pdf
http://thedorictemple.blogspot.com
http://www.beholdgenealogy.com/blog

MICROSOFT WEB PAGE THAT DISCUSSES CODE PAGES
http://msdn.microsoft.com/en-us/library/dd317752(VS.85).aspx

Delphi Unicode Migration for Mere Mortals: Stories & Advice from the Front Lines

Embarcadero Technologies - 41 -

THE UNICODE CONSORTIUM
http://unicode.org/

BOOKS
Delphi 2009 Handbook (2009, Marco Cantù), available from Amazon.com and Lulu.com.
Delphi 2009 Development Essentials (2009, Bob Swart), available from Lulu.com

ABOUT THE AUTHOR
Cary Jensen is President of Jensen Data Systems, Inc., a Houston-based company that
provides software training, development, consulting, and mentoring. He is an award-
winning, best-selling co-author of twenty books, including books on Advantage Database
Server, Delphi, Kylix, Oracle JDeveloper, JBuilder, and Paradox. He is a popular speaker at
conferences, workshops, and training seminars throughout North America and Europe.
Cary has a Ph.D. in Human Factors Psychology from Rice University, specializing in human-
computer interaction.

COMMENTS AND CONTRIBUTIONS
It is my sincere wish to update this paper in this future. I warmly welcome comments,
corrections, and contributions, which may be used to improve or expand this paper in the
future. If you have something you would like to offer, please email it to me at
cjensen@jensendatasystems.com. Please use the subject line "Unicode migration." I will
reply to any email I receive within one week. If you do not receive a reply, your email
slipped through the cracks. Please resend.

Embarcadero Technologies, Inc. is the leading provider of software tools that empower
application developers and data management professionals to design, build, and run
applications and databases more efficiently in heterogeneous IT environments. Over 90 of
the Fortune 100 and an active community of more than three million users worldwide rely
on Embarcadero’s award-winning products to optimize costs, streamline compliance, and
accelerate development and innovation. Founded in 1993, Embarcadero is headquartered
in San Francisco with offices located around the world. Embarcadero is online at
www.embarcadero.com.

