
The SQL Injection and Signature Evasion

Protecting Web Sites Against SQL Injection

SQL injection is one of the most common attack strategies
employed by attackers to steal identity and other sensitive
information from Web sites. By inserting unauthorized database

commands into a vulnerable Web site, an attacker may gain
unrestricted access to the entire contents of a backend database.

Network firewalls, IPS, and even some dedicated Web application
firewall technologies attempt to identify SQL injection via

traditional signature-based protections. Signature protections
attempt to identify and block SQL injection-related text patterns
within Web traffic flows. Unfortunately, real world experience has
proven that reliance upon signatures alone is not enough to

defeat SQL Injection.

This paper provides a detailed description of the SQL attack
process by taking the reader though a hypothetical attack on a
healthcare Web site. The paper then demonstrates a range of SQL

injection evasion techniques that are commonly employed to
circumvent traditional signature-based protections provided by
network firewalls and intrusion prevention systems. The paper
concludes that reliance upon signature protections alone to

defeat SQL injection is not practical.

The Top 5 On-Line Identity Theft Attacks White Paper

Page 2 Imperva, Inc.

SQL Injection
SQL injection attacks expose sensitive database information by taking advantage of input validation
vulnerabilities in Web site user interface software. In theory, Web sites validate all input, including character
length and type, prior to sending queries to a backend database. However, if input validation is not carried
out properly for each and every input (of which there may be thousands), an attacker may manipulate
elements in a Web request to alter subsequent queries sent to a back-end database. The results of these
unauthorized queries are then displayed as part of the HTML response generated by the Web site.

Consider the following simple example of a SQL Injection attack on a healthcare Web site.

A module in the healthcare site lists Social Security Numbers (SSNs) of family members
according to gender. The module is invoked with the following URL.

http://www.superhealth.com/show_members.asp?gender=m

The normal query subsequently sent to the database by the Web application looks like the
following.

select SSN, NAME from PATIENTS where FAMILY = XXX and gender = ‘m’

In this query, XXX represents the family identifier extracted from the database upon login. If
the module is susceptible to SQL injection on the “gender” parameter, then the attacker may
manipulate it by “injecting” additional characters as follows.

http://www.superhealth.com/show_members.asp?gender=m’ or 1=1 or ‘1’=’1

This URL effectively sends the following unauthorized query to the database.

select SSN, NAME from PATIENTS where FAMILY = XXX and gender = ‘m’
or 1=1 or ‘1’=’1’

This query retrieves identification information for all patients in the entire database. The
information is then displayed to the attacker by the Web application.

Variations on this technique can display social security numbers even if the original query does not
address a table containing this social security numbers. The ability of SQL injection to achieve bulk
retrieval of thousands of user names at once makes it one of the most dangerous identity theft threats.

Defending against SQL Injection with Signatures
Network firewalls, Intrusion Prevention Systems (IPS), and even some dedicated Web application firewalls
attempt to defend against SQL injection using only signature protections. Signature mechanisms inspect
network traffic flows looking for text strings or “signatures” that match known attacks. Certain strings are
common to SQL injection and are therefore used as attack detection signatures. For example, the “or 1=1”
string applied in the example above is a classic SQL injection string1

 and is therefore commonly applied as
a signature. Most signature-based security products would easily identify this attack using this signature.

1 The “or 1=1” string is applied as a SQL where override. It extends a SQL query from a single database record to include an
entire column.

 SQL Injection and Signature Evasion White Paper

Imperva, Inc. Page 3

Unfortunately, today’s attackers are well aware of signature detection technologies and are not deterred
by initial failure of the classic “or 1=1” string. A range of evasion techniques are commonly applied to
circumvent signature-based security. The remainder of this document describes a few of those techniques
with a series of examples.

Note – Many examples described in this paper apply to MS-SQL Server. A few apply to MySQL and Oracle.
The reader must not conclude that one database or another is more or less vulnerable based upon the
ratio of examples herein. Many examples could be constructed for any database. The basics concepts of
these techniques, however, remain the same for all databases.

Recognizing Signature Protections
Upon initial failure of SQL injection attempts without evasion, the attacker can assume that signature
protection is in place. To confirm this assumption, a series of tests are run. The first step is to identify a Web
site location where an arbitrary string that is unlikely to trigger a signature can be inserted without invoking a
server error. Testing for arbitrary string insertion eliminates cases in which non-signature security
mechanisms are the source of the problem. For instance, inserting an alphabetic string instead of an integer
into a numerical parameter may trigger a type mismatch error on the server. When detailed errors are hidden,
this error can not be differentiated from the error generated by the signature mechanism.

The insertion of such an arbitrary string into the HTTP request can be done in a variety of ways.

• Since signature protection operates on all Web pages in the site, any free input field on any page
suffices. Examples include search fields and form submissions.

• If no free input fields are presented, any string format parameters can be examined.

• If no string fields exist in the system, a new parameter can be added to a request and is likely to be
ignored by the application. Note that some application security products would block such a
request. For example:

…&id=43&testparam=ARBITRARY

• When SQL Injection has already been detected and assuming no signature exists for the SQL
comment characters -- or /* */, a working simple injection can be built and the suspicious pattern
placed inside a comment. For example:

…&dbid=originalid' -- ARBITRARY

• When SQL Injection has already been detected and no signature exists on the word AND, a
suspicious pattern may be place inside a string literal. For example:

…&dbid=originalid' AND 'ARBITRARY'='ARBITRARY'

Eventually, in almost every application, a location can be found where an arbitrary string can be inserted
without causing any other error.

Now, the second stage of the test can take place. The attacker tries to verify whether signature protections are
indeed in place. This is simply done by replacing the arbitrary string with a string that is likely to trigger the
signature mechanism. For example, if the site is protected most of the following requests will yield an error.

The Top 5 On-Line Identity Theft Attacks White Paper

Page 4 Imperva, Inc.

• UNION SELECT

• OR 1=1

• EXEC SP_ (or EXEC XP_)

Having confirmed that signature protection is in place, the next step is to enumerate the SQL injection
signature list. This involves a methodical trial and error process. One by one, the attacker tries the SQL
injection strings that he normally needs to carry out an attack. Those that do not cause an error are listed
as safe. Those that are blocked are broken down into components until the exact string or regular
expression is identified. This may sound like a never-ending project, but it normally does not take too
long to identify the specific signatures that may disturb an attack.

Basic Evasion Techniques
With a list of signatures use to protect the Web site in hand, most attackers apply basic evasion
techniques before proceeding to more advanced techniques. A few of these basic techniques are
presented below.

Encoding
Encoding tricks have proven useful throughout the history of computer attacks. The reasons for this are
many. Some security products simply fail to decode properly. Others decode properly, but performance
requirements limit what can be done in real time. One way or another, a variety of encoding techniques
such as URL Encoding and UTF-8 are often used to hide attacks from the prying eyes of signature
detection technologies.

White Spaces Diversity
Many of the signatures used to prevent SQL Injection attacks are a sequence of two or more expressions
separated by a white space. The reason for this is simple, a single word signatures such as SELECT, would
generate an avalanche of false positives. The expression UNION SELECT, however, is unique to the SQL
world making it a better signature. This, however, introduces the opportunity for white space evasion. If the
signature is not carefully defined, the attacker may avoid detection while preserving the integrity of his
attack by replacing the single space between words with two spaces, a space plus a tab, or a comment.

IP Fragmentation and TCP Segmentation
Another evasion technique seeks to hide an attack from signature mechanisms by dividing the string into
multiple packet fragments. If the signature mechanism does not reassemble the packet fragments, it does
not match the attack string to a signature since each packet, inspected individually, will only include part
of the attack string.

Advanced Evasion Techniques
If none of the previous basic evasion techniques are successful, the attacker will move on to more
advanced techniques. The advanced techniques presented below, can be applied to evade virtually any
signature-based security device.

OR 1=1 Signature Evasion

One of the common SQL injection signature categories defend against on the classic “or 1=1” attack
described above. Signatures are often built as a regular expression, aimed at catching as many possible
variations of the “or 1=1” attack. Sadly (or luckily, for attackers), many can be tricked by using equivalents
such as the following.

 SQL Injection and Signature Evasion White Paper

Imperva, Inc. Page 5

OR 'Unusual' = 'Unusual’

Yet, some of the better signature detection systems will still identify such a simple equivalent. Therefore, the
attacker must find a way to make the two expressions look different to the signature device while retaining
the same SQL meaning. A very simple trick is to add the character N prior to the second string as follows:

OR 'Simple' = N'Simple'

This character tells the SQL Server that the string should be treated as nvarchar. This doesn’t change
anything in the SQL comparison, but definitely makes it different for any signature driven mechanism.

An even better approach would break one of the strings into two, concatenating it at the SQL level. This will
render useless any mechanism which compares the strings on both sides of the = sign.

OR 'Simple' = 'Sim'+'ple'

One of the above mentioned techniques is likely to evade most any signature mechanism. Yet, some
vendors might choose a much more general regular expression to cope with this attack. For example a
signature that looks for the “or” word followed by an “=” anywhere a message. Such a generic signature is
likely to lead to false positives since some combination of “or” and “=” is likely to legitimately occur within
normal Web content and/or software. But even if it did not lead to false positives, it can also be easily
evaded by simply finding an expression which evaluates as true, without including the equal sign. For
instance, replacing the equal sign with the SQL word “LIKE” (a partial compare) achieves the desired result.

OR 'Simple' LIKE 'Sim%'

Alternatively, the attacker might choose to use “<”or “>” operators.

OR 'Simple' > 'S'

OR 'Simple' < 'X'

OR 2 > 1

Or, the attacker may apply “IN” or “BETWEEN” statements.

OR 'Simple' IN ('Simple')

OR 'Simple' BETWEEN 'R' AND 'T'

The opportunities go on and on. SQL is a very rich language, and for every signature invented, a new
evasion technique can be developed. Trying to add signatures to cover all of the above presented
techniques is bound to fail and will damage performance. Another possibility is, of course, to define
signatures that are extremely general, such as an 'OR' followed anywhere by any SQL keyword or Meta
character. This, however, results in many false positives. Consider the following URL.

http://site/order.asp?ProdID=5&Quantity=4

Although far from being an invalid URL, it triggers a false positive alert for such a general signature.
Clearly, this is not a solution.

The Top 5 On-Line Identity Theft Attacks White Paper

Page 6 Imperva, Inc.

Evading Signatures with White Spaces
As mentioned previously, signatures commonly include white spaces. Stings such as “UNION SELECT” or
'EXEC SP_' provide relatively accurate signatures. Other signatures, aimed at neutralizing “or 1=1” false
positives, may include strings such as 'OR ' (an OR followed by a white space).

In a previous section the basic technique of replacing the number or type of white spaces was discussed.
Many modern signature mechanisms, however, have evolved to properly handle any combination of white
spaces. As a result, a new technique has been developed to counter these newer signature mechanisms.
The new technique takes advantage of vendor specific SQL parsing decisions to create valid SQL
statements without using spaces or by inserting arbitrary characters between them. The techniques here
differ from one database to another, yet share the same principles.

The fundamental idea behind the new technique, which operates on databases that perform a rather
loose (and more user-friendly) SQL parsing, is to simply drop the white spaces. With Microsoft SQL
Server, for instance, spaces between SQL keywords and number or string literals can be completely
omitted, allowing an easy evasion of signatures such as 'OR '. For example,

…OrigText' OR 'Simple' = 'Simple'

may be replaced by,

…OrigText'OR'Simple'='Simple'

The two represent completely equivalent SQL, but the second contains no white spaces. Any space-based
signature is evaded. This, however, will not work for injections such as 'UNION SELECT', since there must
be a separation between the two keywords. The solution is, therefore, to find a way to separate them with
something other than a white space. A good example of this technique is presented by the C-like
comment syntax available in most database servers. For example, one common syntax uses a “/*” to start
a comment and “*/” to end it. This means that a valid SQL statement may be constructed as follows.

SELECT *

FROM tblProducts /* List of Prods */

WHERE ProdID = 5

This idea can be applied by injection code as follows.

…&ProdID=2 UNION /**/ SELECT name …

Any signature attempting to detect a “UNION” followed by any amount of white spaces, followed by a
“SELECT”, will fail to detect this attack. Moreover, in most cases the “/**/” can replace the spaces
allowing evasion of more sensitive signatures such as “SELECT ” or “INSERT ” (a SQL keyword followed
by a single space), which have been noted to be used by some SQL signature protection mechanisms.
The previous example would then appear as follows.

…&ProdID=2/**/UNION/**/SELECT/**/name …

 SQL Injection and Signature Evasion White Paper

Imperva, Inc. Page 7

This technique can be used in Oracle SQL Injections as an OR 1=1 replacement. Although Oracle
does not allow omission of white spaces, it does allow replacing them with a comment. This
leads to the following exploit.

…OrigText'/**/OR/**/'Simple'='Simple'

This technique is also exploited for evasion (especially for Web application firewalls that check the
signatures on the parameter value only) when two separate parameters are inserted into the SQL
statement. Imagine a login page with the following request.

http://site/login.asp?User=X&Pass=Y

This request then generates the following query.

SELECT * FROM Users

WHERE User='X' AND Pass='Y'

In this case, the comment beginning can be injected into one parameter and the termination injected
into the other.

…login.asp?User=X'OR'1'/*&Pass=Y*/='1

This results in the following query, which easily logs the attacker into the Web site.

SELECT * FROM Users

WHERE User='X'OR'1'/* AND Pass='*/='1'

As with the previously described techniques for 'OR 1=1' evasion, there is no good signature-based
solution here. SQL keywords such as “SELECT” and “INSERT” may be applied as signatures, but as
with the “OR” keyword, the result is false positives. Imagine a “Contact Us” form in an ecommerce site
where the customer has typed “I have selected the product, but then had a problem.” This triggers a
signature match on the word “select”, with no attack in progress. Adding more generic signatures
increases the frequency of false positives attackers. At the same time, attackers have a never ending
list of evasion alternatives to choose from.

Evading Any String Pattern
Although standalone keywords are likely to generate false positives, some sites may choose to apply
such signatures while limiting site functionality so that no free user inputs are available. For instance,
the main portion of a banking site may not allow free text user inputs. In this case, other techniques for
breaking strings into parts are needed.

Again, many options are available. The first technique goes back to the C-like comments. Although C-
like comments do not work as a replacement for a white space in MySQL, they can be used to break
words into parts. For instance, the following represents valid MySQL syntax.

…UN/**/ION/**/ SE/**/LECT/**/ …

Another very promising prospect returns the discussion to string concatenation. Most databases allow the
user to execute a SQL query through one or more statements, like built in operations or stored
procedures, that receive a SQL query as a string. All that the attacker needs to do, therefore, is to build a

The Top 5 On-Line Identity Theft Attacks White Paper

Page 8 Imperva, Inc.

SQL injection that allows the execution of such a string. Once the exploit is created, all signatures can be
evaded simply by using string concatenation within the suspicious string.

A simple example is demonstrated with MS SQL's built in EXEC command. This command can also be used
as a function, receiving any SQL statement as a string. The string can be concatenated as follows.

…; EXEC('INS'+'ERT INTO…')

Since the word INSERT was split into two parts, no signature mechanism is able to detect it. The SQL,
however, rebuilds the string, allowing it to execute as planned. As with our other examples, this is not a
singular example. A similar attack, on MS SQL can be done with a stored procedure named
SP_EXECUTESQL. This is a new version of the outdated—yet still functioning—SP_SQLEXEC procedure.
Both will receive a string containing an SQL query and execute it. Naturally, this problem is not limited to
MS SQL. Other databases suffer from the same problem.

An interesting twist on this attack, relies upon a hexadecimal encoding of the string to be executed2. The
string “SELECT” can be represented by the hexadecimal number 0x73656c656374, which will not be
detected by any signature protection mechanism. This, combined with the loose-syntax nature of SQL,
allows execution of many supposedly signature protected statements.

Another good MYSQL example, relates to the OPENROWSET statement. Since OPENROWSET receives a
string parameter, a concatenated attack query may be inserted without being detected by a signature
mechanism. This technique was published3

 years ago, yet most signature based products fail to detect it.

One may argue that the number of statements that can be used for such a technique is limited within each
database. Although this is true to some extent, it is also true that consistent construction of signatures is
not likely.

An excellent example is provided by MS SQL, which contains unlisted stored procedures for execution of
SQL queries. Microsoft's implementation of prepared statements in MS SQL Server is actually done using
several internal, unlisted, stored procedures. When running a prepared statement, a stored procedure
named sp_prepare runs first, preparing the statement, and then a stored procedure named sp_execute is
run in order to execute the query. With these procedures not appearing in any SQL Server listing, they are
obviously likely to be missing from any SQL Injection signature database. Obviously, similar
undocumented procedures and functions exist in other databases.

Signatures Alone are not Enough
Hopefully, at this point one conclusion is clear. Signatures are not effective against SQL Injection as a
standalone solution. Any attempt to create a signature base for all SQL Injection attacks is bound to fail for
one of two reasons – poor performance or false positives.

The inherent flexibility of the SQL language provides attackers with a never ending toolkit of evasion options.
Even if coverage for all possible evasion techniques were possible, the task would require construction of
several hundred complex, regular expression-based signatures for each database type. Although this would
deliver reasonable accuracy, it is not practical from a performance perspective. Hundreds of signatures per
database type results in over one thousand signatures for a diverse organization with several database types.

2 Described in “(More) Advanced SQL Injection” by Chris Anley
3 “Manipulating Microsoft SQL Server Using SQL Injection”, Cesar Cerrudo

 SQL Injection and Signature Evasion White Paper

Imperva, Inc. Page 9

This is in addition to existing signatures for other attacks. The performance price in terms of throughput and
latency is simply unacceptable for such a large number of signatures.

The second approach is to generate few, very generic signatures. With MSSQL Server such a policy might
include the following keywords (and their matching encodings of course).

SELECT, INSERT, CREATE, DELETE, FROM, WHERE, OR, AND, LIKE, EXEC, SP_,
XP_, SQL, ROWSET, OPEN, BEGIN, END, DECLARE

It would also include relevant Meta characters and their encodings.

; -- + ' () = > < @

This, however, can only work on a specifically built application running in a lab. In the real world, this
minimized set of signatures is bound to block more users than hackers. Signatures are useful as an
attack indicator, but as definitive attack detection technology – they need help.

Preventing SQL Injection with the SecureSphere Web Application Firewall
One approach to reliably identifying SQL injection is to look for multiple pieces of corroborating evidence.
For example, a security manager with the task of tracking security alerts may notice a SQL injection
signature alert from his intrusion detection system. He might then look for corresponding anomalies in
his database log files. If he finds unusual database activity occurring in parallel with SQL related Web
signatures, he can be sure that an attack is in progress. The identification of two or more independent
SQL injection indicators virtually eliminates the risk of false positives. He may now block the user with
confidence. This is exactly the approach taken by the SecureSphere Web Application Firewall – only
without the need for a full time security manager! It combines an advanced signature-based intrusion
prevention system (IPS) with Imperva’s Dynamic Profiling. Security violations from each of these
technology layers are automatically correlated to achieve a degree of accuracy that cannot be matched by
using signature protections alone4.

Advanced IPS Identifies SQL Injection Characters
SecureSphere’s advanced IPS includes advanced SQL injection signatures designed to detect any
combination of characters related to SQL injection. SecureSphere’s advanced SQL Injection signatures,
along with other database attack signatures, are provided and updated weekly by Imperva’s international
security research organization, the Application Defense center.

The “or 1=1” string discussed in the healthcare example above is an obvious attack that SecureSphere IPS
immediately blocks with an exact signature match. However, to deal with the range of evasion techniques
described previously, SecureSphere takes a more sophisticated approach.

First, SecureSphere applies a reasonably-sized list of generic signatures that detect virtually any SQL
injection attack. For example, suppose the attacker attempts to evade the “or 1=1” signature with an
equivalent such as “Unusual = Unusual”. The threat is identified by a special SecureSphere IPS signature
that looks for any combination of “or” and “=” within URL parameters and a Signature Violation Alert is
issued. However, since “or” and “=” are common elements of legitimate parameters, a match on this

4 SecureSphere also includes network firewall and protocol compliance security technologies for protection against other attack
vectors such as zero-day Web worms and application layer DoS attacks.

The Top 5 On-Line Identity Theft Attacks White Paper

Page 10 Imperva, Inc.

signature cannot be blocked without occasional false positives. To clarify the nature of this alert, more
corroborating evidence is needed. SecureSphere collects such evidence through Dynamic Profiling.

Dynamic Profiling Identifies Unusual Parameters
SecureSphere’s Dynamic Profiling technology examines live traffic to automatically create a comprehensive
model or “profile” of the site. Specific elements of the profile include dynamic URLs, http methods, cookies,
parameter names, parameter lengths, and parameter types. The profile then serves as a positive-model
security policy for the Web application. By continuously comparing user interactions to the profile,
SecureSphere can detect any unusual Web or database activity. As the Web site changes over time, advanced
learning algorithms automatically update the profiles to eliminate any need for manual tuning.

Figure 1 presents a SecureSphere Dynamic Profile of the “gender” parameter corresponding to the healthcare
example above. The model identifies the parameter as a required parameter consisting of Latin characters
with a maximum length of one character. The insertion of more than one character into the parameter (OR
Unusual = Unusual) conflicts with the profile and a SecureSphere Parameter Length Violation Alert is
triggered.

At this point in our example, SecureSphere has been able to detect two different security violations within the
same Web request: an IPS violation and a Dynamic Profile violation. Even if the attacker has used evasion
techniques (OR Unusual = Unusual instead of OR 1=1) to avoid outright blocking by the signature-based IPS,
the Dynamic Profile violation may be used to validate the attack. All that is necessary is to link these events to
the same user. SecureSphere’s Correlated Attack Validation delivers that capability.

Correlated Attack Validation Confirms the Attack
SecureSphere’s Correlated Attack Validation (CAV) correlates multiple events, such as profile violations,
application signatures, number of occurrences and user name, to more accurately identify SQL injections. If a
user triggers multiple violations that match an attack pattern, malicious intent is confirmed with high
accuracy. In the example above, CAV correlates a SQL Injection signature violation (even a low accuracy
signature such as “or” combined with “=”) with the parameter length violation to validate that an attack is
indeed in progress. By linking multiple violations to the same user, SecureSphere is able to accurately identify
attacks even when sophisticated evasion techniques are used.

More Information
The examples above only scratch the surface of SecureSphere capabilities. Any combination of SecureSphere
security technology layers (Dynamic Profile, application attack signatures, protocol validation, network
firewall) may be applied individually or correlated to defeat a range of attack vectors without risk of false
positives. For more information see http://www.imperva.com/products/securesphere/resources.asp.

Figure 1: SecureSphere automatically builds a model of each Web application parameter

 SQL Injection and Signature Evasion White Paper

Imperva, Inc. Page 11

References
1. Basic SQL Injection Overview

Imperva's on-line glossary

http://www.imperva.com/application_defense_center/glossary/

2. Blindfolded SQL Injection

By Ofer Maor and Amichai Shulman

http://www.imperva.com/application_defense_center/papers/

3. (More) Advanced SQL Injection

By Chris Anley

http://www.nextgenss.com/papers/more_advanced_sql_injection.pdf

4. Manipulating Microsoft SQL Server Using SQL Injection

By Cesar Cerrudo

http://www.appsecinc.com/presentations/Manipulating_SQL_Server_Using_SQL_Injection.pdf

US Headquarters International Headquarters
950 Tower Lane 125 Menachem Begin Street
Suite 1550 Tel Aviv 67010
Foster City, CA 94404 Israel
Tel: (650) 345-9000 Tel: +972-3-684-0100
Fax: (650) 345-9004 Fax: +972-3-684-0200

© 2007 Imperva, Inc. All rights reserved. Imperva and SecureSphere are registered trademarks of Imperva, Inc.
All other brand or product names are trademarks or registered trademarks of their respective holders.

