
Colorado Software Summit: October 26 – 31, 2003 © Copyright 2003, Object Systems Group

Bill Dudney — J2EE AntiPatterns Page 1

J2EE AntiPatterns
Bill Dudney
Object Systems Group
bill@dudney.net

mailto:bill@dudney.net

Colorado Software Summit: October 26 – 31, 2003 © Copyright 2003, Object Systems Group

Bill Dudney — J2EE AntiPatterns Page 2

Agenda
What is an AntiPattern?
What is a Refactoring?
AntiPatterns & Refactorings

Persistence
Service Based Architecture
JSP & Servlet
EJB Entity
EJB Session
Message Driven Beans
Web Service

Colorado Software Summit: October 26 – 31, 2003 © Copyright 2003, Object Systems Group

Bill Dudney — J2EE AntiPatterns Page 3

What Is an AntiPattern?
Recurring Solution with negative outcome

i.e. "I’ve done the wrong thing lots of times, don’t repeat my
mistakes"

Consists of:
Name
Catalog Items

• Also Known As
• Refactorings
• Anecdotal Evidence

Background
General Form

Colorado Software Summit: October 26 – 31, 2003 © Copyright 2003, Object Systems Group

Bill Dudney — J2EE AntiPatterns Page 4

What Is an AntiPattern?
(Continued)

Symptoms & Consequences
Typical Causes
Known Exceptions
Refactorings
Variations
Example
Related Solutions

Colorado Software Summit: October 26 – 31, 2003 © Copyright 2003, Object Systems Group

Bill Dudney — J2EE AntiPatterns Page 5

AntiPattern – Covered Items
Name
General Form
Symptoms & Consequences
Refactorings
Example

Colorado Software Summit: October 26 – 31, 2003 © Copyright 2003, Object Systems Group

Bill Dudney — J2EE AntiPatterns Page 6

What Is Refactoring?
A means to improve the design of existing software without
breaking (i.e. rewriting) every piece of code that uses the
refactored code.
Consists Of:

Before and After Avatar
• Sometimes UML
• Sometimes Code

Motivation
• To get out of the AntiPatterns

Mechanics
Example

Colorado Software Summit: October 26 – 31, 2003 © Copyright 2003, Object Systems Group

Bill Dudney — J2EE AntiPatterns Page 7

Persistence AntiPatterns
Dredge – Don’t fetch the whole database
Stifle – Don’t ignore JDBC performance
techniques

Colorado Software Summit: October 26 – 31, 2003 © Copyright 2003, Object Systems Group

Bill Dudney — J2EE AntiPatterns Page 8

AntiPattern: Dredge
General Form

Long Lists of EJB Entities
Deep Graphs of EJB Entities

Symptoms & Consequences
Huge Memory Footprint
Poor Performance

Refactorings
Light Query

Colorado Software Summit: October 26 – 31, 2003 © Copyright 2003, Object Systems Group

Bill Dudney — J2EE AntiPatterns Page 9

Dredge – Example

Colorado Software Summit: October 26 – 31, 2003 © Copyright 2003, Object Systems Group

Bill Dudney — J2EE AntiPatterns Page 10

Refactoring: Light Query
Before

Colorado Software Summit: October 26 – 31, 2003 © Copyright 2003, Object Systems Group

Bill Dudney — J2EE AntiPatterns Page 11

Refactoring: Light Query
After

Colorado Software Summit: October 26 – 31, 2003 © Copyright 2003, Object Systems Group

Bill Dudney — J2EE AntiPatterns Page 12

Light Query – Mechanics
Identify the lists your application must
display

Its usually best to start with a simple one, a list
that displays a single entity
It might make sense to start with a more
complex list if it is causing serious performance
problems

Locate the existing logic that generates the
list

Colorado Software Summit: October 26 – 31, 2003 © Copyright 2003, Object Systems Group

Bill Dudney — J2EE AntiPatterns Page 13

Light Query – Mechanics
Introduce a light DTO to represent the
custom row.
Introduce or modify DTO and/or Session
Façade

Make sure to use a light weight mechanism to
get the data such as JDBC or your R/O mapping
tools mechanism for light weight queries to
populate the light DTOs

Colorado Software Summit: October 26 – 31, 2003 © Copyright 2003, Object Systems Group

Bill Dudney — J2EE AntiPatterns Page 14

AntiPattern: Stifle
General Form

Lack of JDBC batch processing

Symptoms & Consequences
Poor Database Performance
Unhappy Users – loss of confidence

Refactorings
Pack

Colorado Software Summit: October 26 – 31, 2003 © Copyright 2003, Object Systems Group

Bill Dudney — J2EE AntiPatterns Page 15

Stifle – Example
// Extract and loop through account data
while(accountIter.hasNext())
{
...
Statement statement = conn.createStatement();
int rowsAffected =
statement.executeUpdate("UPDATE ACCOUNT SET
...");

...
}

Colorado Software Summit: October 26 – 31, 2003 © Copyright 2003, Object Systems Group

Bill Dudney — J2EE AntiPatterns Page 16

Refactoring: Pack
Before

After

Colorado Software Summit: October 26 – 31, 2003 © Copyright 2003, Object Systems Group

Bill Dudney — J2EE AntiPatterns Page 17

Pack – Mechanics
Change your looped statement execution to
addBatch calls

Remember to set a batch size and execute the
batch ever size steps

Call executeBatch on the statement
Make sure to execute the batch on a regular
basis so that it does not get too big

Deploy & Test

Colorado Software Summit: October 26 – 31, 2003 © Copyright 2003, Object Systems Group

Bill Dudney — J2EE AntiPatterns Page 18

Service-Based Architecture
AntiPatterns

Stove Pipe – Don’t rebuild the technical
details for every service
Client Completes Service – Don’t build
services that are incomplete

Colorado Software Summit: October 26 – 31, 2003 © Copyright 2003, Object Systems Group

Bill Dudney — J2EE AntiPatterns Page 19

AntiPattern: Stove Pipe
General Form

Lots of private technical services oriented
methods
Duplicated implementation effort across services

Symptoms & Consequences
Service is large with many methods not directly
related to the interface
Inconsistent implementations across various
services of the technical services
Development time is negatively impacted

Colorado Software Summit: October 26 – 31, 2003 © Copyright 2003, Object Systems Group

Bill Dudney — J2EE AntiPatterns Page 20

AntiPattern: Stove Pipe
Refactorings

Build Technical Services Layer

Colorado Software Summit: October 26 – 31, 2003 © Copyright 2003, Object Systems Group

Bill Dudney — J2EE AntiPatterns Page 21

Stove Pipe – Example

Colorado Software Summit: October 26 – 31, 2003 © Copyright 2003, Object Systems Group

Bill Dudney — J2EE AntiPatterns Page 22

Refactoring: Build Technical
Services Layer

Before

Colorado Software Summit: October 26 – 31, 2003 © Copyright 2003, Object Systems Group

Bill Dudney — J2EE AntiPatterns Page 23

Refactoring: Build Technical
Services Layer

After

Colorado Software Summit: October 26 – 31, 2003 © Copyright 2003, Object Systems Group

Bill Dudney — J2EE AntiPatterns Page 24

Build Technical Services Layer
– Mechanics (1 of 3)

Review current services for duplicate private
methods.

This can be very difficult especially if the services were
implemented by different groups
Look for similar names
Look for similar functionality

Start with the simplest functionality that is
duplicated
Apply Fowler’s Extract Interface refactoring

Instead of making your service implement the interface,
use it, you should use the new interface as a
replacement for the duplicate code.

Colorado Software Summit: October 26 – 31, 2003 © Copyright 2003, Object Systems Group

Bill Dudney — J2EE AntiPatterns Page 25

Build Technical Services Layer
– Mechanics (2 of 3)

Implement the newly defined service
interface

Start with moving the method from the business
service’s implementation to the technical
service’s implementation
You can use Fowler’s Move Method here
Many any necessary changes to get the business
service to use the new technical service

Deploy and Test

Colorado Software Summit: October 26 – 31, 2003 © Copyright 2003, Object Systems Group

Bill Dudney — J2EE AntiPatterns Page 26

Build Technical Services Layer
– Mechanics (3 of 3)

After all tests pass, review the other business
services with implementations of the technical
service and refactor them to use the new technical
service

This is a modified version of Move Method. Instead of
physically moving the code, you will comment it out,
then use the technical service.
Some adjustment may need to be made to the technical
service to accommodate the various implementations –
remember that you are striving for a uniform
implementation that all services share.

Colorado Software Summit: October 26 – 31, 2003 © Copyright 2003, Object Systems Group

Bill Dudney — J2EE AntiPatterns Page 27

AntiPattern: Client Completes
Service

General Form
Client Code includes service functionality

• This can include items such as data validation, security checking
or things related to technical services covered in the last
AntiPattern

Symptoms & Consequences
Some client side artifacts (JSPs, front controllers etc.)
contain server-side code
Potentially different behavior when invoking a service via
a Web-service interface and a user interface

Refactorings
Move Method Cross Tier

Colorado Software Summit: October 26 – 31, 2003 © Copyright 2003, Object Systems Group

Bill Dudney — J2EE AntiPatterns Page 28

Client Completes Service –
Example

<%!
List errors = null;
if(value.intValue() > 5) {
errors = (List)

session.getAttribute(“errors”);
errors.add(“Invalid value”);

}
%>

Colorado Software Summit: October 26 – 31, 2003 © Copyright 2003, Object Systems Group

Bill Dudney — J2EE AntiPatterns Page 29

Refactoring: Move Method
Cross Tier

Before

After

Colorado Software Summit: October 26 – 31, 2003 © Copyright 2003, Object Systems Group

Bill Dudney — J2EE AntiPatterns Page 30

Move Method Cross Tier –
Mechanics

Locate server side code in client artifacts
The artifacts can range from simple Java Beans to
JavaScript in a JSP or HTML page

Move code to Service Implementation
This can be difficult because of the widely varying client
side artifacts that the implementation can be in.
For JavaBeans and Servlets you can use Fowler’s Move
Method
For JSPs you can use a modified Move Method

• The code in the JSP has to be consolidated into a method first.

Deploy & Test

Colorado Software Summit: October 26 – 31, 2003 © Copyright 2003, Object Systems Group

Bill Dudney — J2EE AntiPatterns Page 31

JSP AntiPattern
Too Much Data in Session – Not sure? Stick
it in the session.

Colorado Software Summit: October 26 – 31, 2003 © Copyright 2003, Object Systems Group

Bill Dudney — J2EE AntiPatterns Page 32

AntiPattern: Too Much Data
in Session

General Form
Lots of calls to getAttribute and setAttribute
Treatment of the Session as a global data space

Symptoms & Consequences
Bugs related to different types being under the
same key
Maintenance Headaches

Refactorings
Beanify

Colorado Software Summit: October 26 – 31, 2003 © Copyright 2003, Object Systems Group

Bill Dudney — J2EE AntiPatterns Page 33

Too Much Data in Session –
Example

<% session.getAttribute(“firstName”); %>
...
<% session.getAttribute(“lastName”); %>
...
<% session.getAttribute(“middleInitial”); %>

Colorado Software Summit: October 26 – 31, 2003 © Copyright 2003, Object Systems Group

Bill Dudney — J2EE AntiPatterns Page 34

Refactoring: Beanify
Before

<%
Boolean validUser = (Boolean)session.
getAttribute("validUser");
String buttonTitle = "Login";
String url = "Login.jsp";
if(null != validUser && validUser.booleanValue()) {

buttonTitle = "Logout";
url = "Logout.jsp";

}
%>

Colorado Software Summit: October 26 – 31, 2003 © Copyright 2003, Object Systems Group

Bill Dudney — J2EE AntiPatterns Page 35

Refactoring: Beanify
After

<jsp:useBean id="userCtx" class="ibank.web.UserContext"/>

...

${userCtx.loginTitle}

Colorado Software Summit: October 26 – 31, 2003 © Copyright 2003, Object Systems Group

Bill Dudney — J2EE AntiPatterns Page 36

Beanify – Mechanics (1 of 2)
Create a JavaBean to hold the data
Add an attribute to the bean for every
unique key used in setAttribute or
getAttribute
Add a jsp:useBean to the JSP
Remove all calls to getAttribute and replace
them with expression language statements

Colorado Software Summit: October 26 – 31, 2003 © Copyright 2003, Object Systems Group

Bill Dudney — J2EE AntiPatterns Page 37

Beanify – Mechanics (2 of 2)
Remove all calls to setAttribute

If you are using the Delegate Controller pattern
place the state change logic into your controller
If you are not using Delegate Controller consider
refactoring to include this pattern and in the
mean time use the jsp:setProperty tag

Deploy and Test

Colorado Software Summit: October 26 – 31, 2003 © Copyright 2003, Object Systems Group

Bill Dudney — J2EE AntiPatterns Page 38

Servlet AntiPattern
Template Text In Servlet – looked like a
good idea at the time…

Colorado Software Summit: October 26 – 31, 2003 © Copyright 2003, Object Systems Group

Bill Dudney — J2EE AntiPatterns Page 39

AntiPattern: Template Text in
Servlet

General Form
Large Servlet classes with lots of static HTML in
the form of strings

Symptoms & Consequences
Low ratio of business logic to HTML
Maintenance Headaches

Refactorings
Use JSPs

Colorado Software Summit: October 26 – 31, 2003 © Copyright 2003, Object Systems Group

Bill Dudney — J2EE AntiPatterns Page 40

Refactoring: Use JSPs
Before

Colorado Software Summit: October 26 – 31, 2003 © Copyright 2003, Object Systems Group

Bill Dudney — J2EE AntiPatterns Page 41

Refactoring: Use JSPs
After

Colorado Software Summit: October 26 – 31, 2003 © Copyright 2003, Object Systems Group

Bill Dudney — J2EE AntiPatterns Page 42

Use JSPs – Mechanics (1 of 3)
Save a copy of the HTML output from your
Servlet

You can skip this step if you have a good set of
tests

Create a new JSP and copy all the obviously
static HTML out of the Servlet and paste it
into the JSP

Make note of dynamic content creation as you
proceed. This dynamic behavior will have to be
melded with the JSP via a JavaBean.

Colorado Software Summit: October 26 – 31, 2003 © Copyright 2003, Object Systems Group

Bill Dudney — J2EE AntiPatterns Page 43

Use JSPs – Mechanics (2 of 3)
Define a JavaBean to be populated by the Servlet
and used by the JSP.

This bean will hold the data and possibly some of the
behavior from the Servlet
You might have to apply Fowler’s Move Method to get
some of the functionality in the Servlet into the bean

Add a jsp:useBean action to the new JSP to use
the freshly created bean.
Change the Servlet to create and populate the
bean and place it under request scope in the
session.

Colorado Software Summit: October 26 – 31, 2003 © Copyright 2003, Object Systems Group

Bill Dudney — J2EE AntiPatterns Page 44

Use JSPs – Mechanics (3 of 3)
Comment out the static generation code
from the Servlet
Change the Servlet to forward to the JSP
Deploy and Test

You can use the copy of the HTML output you
saved earlier as a visual guide to the validity of
your refactoring

Colorado Software Summit: October 26 – 31, 2003 © Copyright 2003, Object Systems Group

Bill Dudney — J2EE AntiPatterns Page 45

EJB Entity AntiPatterns
DTO Explosion – A DTO for every occasion
Coarse Behavior – Too many abstractions in
one place

Colorado Software Summit: October 26 – 31, 2003 © Copyright 2003, Object Systems Group

Bill Dudney — J2EE AntiPatterns Page 46

AntiPattern: DTO Explosion
General Form

EJB Entities providing more than one DTO
• Usually one for each view or use case the Entity is involved in

Many many DTOs

Symptoms & Consequences
Huge maintenance overhead in synchronizing the various
DTOs with Entity changes.
Reduced usability of Entities because they are tied to a
particular view types

Refactorings
Localize Access

Colorado Software Summit: October 26 – 31, 2003 © Copyright 2003, Object Systems Group

Bill Dudney — J2EE AntiPatterns Page 47

Refactoring: Localize Access
Before

Colorado Software Summit: October 26 – 31, 2003 © Copyright 2003, Object Systems Group

Bill Dudney — J2EE AntiPatterns Page 48

Refactoring: Localize Access
After

Colorado Software Summit: October 26 – 31, 2003 © Copyright 2003, Object Systems Group

Bill Dudney — J2EE AntiPatterns Page 49

Localize Access – Mechanics
Identify EJB Entities making view oriented
DTO
Change the Entities to local
Use Move Method to move the DTO creation
code to your session façade

This method will have to be updated to work
with an instance of the Entity
You might also consider creating a DTO factory

Deploy and Test

Colorado Software Summit: October 26 – 31, 2003 © Copyright 2003, Object Systems Group

Bill Dudney — J2EE AntiPatterns Page 50

AntiPattern: Coarse Behavior
General Form

Huge bloated EJB Entities following old style
(EJB 1.x) patterns like Composite Entity

Symptoms & Consequences
Increased Complexity
• Difficult Maintenance
• Increased Development Time

Refactorings
Extract Entity

Colorado Software Summit: October 26 – 31, 2003 © Copyright 2003, Object Systems Group

Bill Dudney — J2EE AntiPatterns Page 51

Refactoring: Extract Entity
Before

Colorado Software Summit: October 26 – 31, 2003 © Copyright 2003, Object Systems Group

Bill Dudney — J2EE AntiPatterns Page 52

Refactoring: Extract Entity
After

Colorado Software Summit: October 26 – 31, 2003 © Copyright 2003, Object Systems Group

Bill Dudney — J2EE AntiPatterns Page 53

Extract Entity – Mechanics
(1 of 2)

Apply Extract Interface for each POJO your
composite Entity aggregates

These interfaces become your new EJBs interfaces
Update each POJO to become a local EJB Entity

Use CMP where ever possible
If you can’t use CMP, you will have to move the JDBC
code from the existing composite to each of the newly
created Entities
If you were using a relational object mapping tool (R/O)
and you can’t go to CMP, then you have to integrate the
R/O persistence with your containers CMP, or roll your
own with BMP

Colorado Software Summit: October 26 – 31, 2003 © Copyright 2003, Object Systems Group

Bill Dudney — J2EE AntiPatterns Page 54

Extract Entity – Mechanics
(2 of 2)

Modify or create a session façade to provide
clients with the existing functionality

If you have to create a session façade, then you
should look at the Façade refactoring in Chapter
6 of the J2EE AntiPatterns book & the Session
Façade pattern in the Core J2EE patterns book.

Deploy and Test

Colorado Software Summit: October 26 – 31, 2003 © Copyright 2003, Object Systems Group

Bill Dudney — J2EE AntiPatterns Page 55

EJB Session AntiPatterns
Bloated Session – The kitchen sink
Transparent Façade – Straight to the entity
source

Colorado Software Summit: October 26 – 31, 2003 © Copyright 2003, Object Systems Group

Bill Dudney — J2EE AntiPatterns Page 56

AntiPattern: Bloated Session
General Form

Large API with many methods
Symptoms & Consequences

Methods acting on different abstractions
• i.e. part of the API works on orders, another works on

accounts
Hard to understand and use API
• Increased maintenance

Refactorings
Interface Partitioning

Colorado Software Summit: October 26 – 31, 2003 © Copyright 2003, Object Systems Group

Bill Dudney — J2EE AntiPatterns Page 57

Refactoring: Interface
Partitioning

Before

Colorado Software Summit: October 26 – 31, 2003 © Copyright 2003, Object Systems Group

Bill Dudney — J2EE AntiPatterns Page 58

Refactoring: Interface
Partitioning

After

Colorado Software Summit: October 26 – 31, 2003 © Copyright 2003, Object Systems Group

Bill Dudney — J2EE AntiPatterns Page 59

Interface Partitioning –
Mechanics (1 of 2)

Identify each abstraction the service is
acting on

Group the methods related to these other
services together
You can start with the method names as a
possible grouping mechanism, i.e. placeOrder,
getOrderStatus, etc.

Apply Extract Interface for each group

Colorado Software Summit: October 26 – 31, 2003 © Copyright 2003, Object Systems Group

Bill Dudney — J2EE AntiPatterns Page 60

Interface Partitioning –
Mechanics (2 of 2)

Build a service around each new interface
Start with the simplest interface

Refactor the original service to delegate the
new service
Refactor Clients to use the new service

This step should be done but is not required.

Deploy and Test

Colorado Software Summit: October 26 – 31, 2003 © Copyright 2003, Object Systems Group

Bill Dudney — J2EE AntiPatterns Page 61

AntiPattern: Transparent
Façade

General Form
Session directly delegates to underlying entity

Symptoms & Consequences
Tight Coupling between Session and Entity
Poor performance
Increased Maintenance

Refactoring
Right-size Session Façade

Colorado Software Summit: October 26 – 31, 2003 © Copyright 2003, Object Systems Group

Bill Dudney — J2EE AntiPatterns Page 62

Refactoring: Right-size
Session Façade

Before

After

Colorado Software Summit: October 26 – 31, 2003 © Copyright 2003, Object Systems Group

Bill Dudney — J2EE AntiPatterns Page 63

Right-size Session Façade –
Mechanics

Determine what coarse grained behavior belongs on the
Session Façade

You can start with clients of the existing façade: What methods do
they use, and what do the clients do with the data they get back?

Move the functionality from the clients to the façade
You might be able to apply Move Method here

Refactor all clients to use the coarse grained behavior
Some of the functionality might have been implemented more than
once

Deploy and Test

Colorado Software Summit: October 26 – 31, 2003 © Copyright 2003, Object Systems Group

Bill Dudney — J2EE AntiPatterns Page 64

Message Driven EJB
AntiPattern

Overloading Destinations – Why go through
the trouble of another destination?

Colorado Software Summit: October 26 – 31, 2003 © Copyright 2003, Object Systems Group

Bill Dudney — J2EE AntiPatterns Page 65

AntiPattern: Overloading
Destinations

General Form
Message Driven Bean that processes more than
one type of message in its onMessage method

Symptoms & Consequences
Poor performance
Difficult Maintenance
Bloat over time

Refactorings
One Message One Bean

Colorado Software Summit: October 26 – 31, 2003 © Copyright 2003, Object Systems Group

Bill Dudney — J2EE AntiPatterns Page 66

Refactoring: One Message
One Bean

Before

After

Colorado Software Summit: October 26 – 31, 2003 © Copyright 2003, Object Systems Group

Bill Dudney — J2EE AntiPatterns Page 67

One Message One Bean –
Mechanics (1 of 2)

For each message type your bean is processing,
introduce a new bean
Move each block of code that is dealing with each
message type into the various beans

You can use Move Method here, with the change that
you are not moving a whole method, just the content of
an ifblock

Modify deployment descriptor to deploy the new
beans

In this step you will have to introduce all the new topics
and/or queues requires as well

Colorado Software Summit: October 26 – 31, 2003 © Copyright 2003, Object Systems Group

Bill Dudney — J2EE AntiPatterns Page 68

One Message One Bean –
Mechanics (2 of 2)

Refactor clients to use the new beans
This step will involve changing the topic/queue
posted to

Deploy and Test
Any unit tests for the old message driven bean
can likely have Move Method applied to them to
move the test to a different test class

Colorado Software Summit: October 26 – 31, 2003 © Copyright 2003, Object Systems Group

Bill Dudney — J2EE AntiPatterns Page 69

Web Service AntiPatterns
Omniscient Object – Everything to everyone
Single Schema Dream – We’ll make all the
clients conform to this one schema

Colorado Software Summit: October 26 – 31, 2003 © Copyright 2003, Object Systems Group

Bill Dudney — J2EE AntiPatterns Page 70

AntiPattern: Omniscient
Object

General Form
Large service implementation that spans
business abstractions
Very similar to the Bloated Session AntiPattern

Symptoms & Consequences
Multiple Document Types Exchanged
• Increased complexity and thus maintenance

Reuse more difficult
Refactorings

Interface Partitioning

Colorado Software Summit: October 26 – 31, 2003 © Copyright 2003, Object Systems Group

Bill Dudney — J2EE AntiPatterns Page 71

Refactoring from Omniscient
Object

Slightly modified, since the WSDL in addition
to the interfaces and implementation will
have to be modified
The idea is the same, but the details will
differ because of the additional artifacts
associated with the Web service

Colorado Software Summit: October 26 – 31, 2003 © Copyright 2003, Object Systems Group

Bill Dudney — J2EE AntiPatterns Page 72

AntiPattern: Single Schema
Dream

General Form
Schema changes often to accommodate new
clients
Large if...else if blocks

Symptoms & Consequences
Increased complexity in the service
Frequent client breakage

Refactorings
Introduce Schema Adaptor

Colorado Software Summit: October 26 – 31, 2003 © Copyright 2003, Object Systems Group

Bill Dudney — J2EE AntiPatterns Page 73

Refactoring: Introduce
Schema Adaptor

Before

Colorado Software Summit: October 26 – 31, 2003 © Copyright 2003, Object Systems Group

Bill Dudney — J2EE AntiPatterns Page 74

Refactoring: Introduce
Schema Adaptor

After

Colorado Software Summit: October 26 – 31, 2003 © Copyright 2003, Object Systems Group

Bill Dudney — J2EE AntiPatterns Page 75

Introduce Schema Adaptor –
Mechanics (1 of 2)

Implement the Schema Adaptor
All this really has to do is find the client specific
XSL file and invoke the JAXP API

Define and organize client specific
transformations

The organization needs to be such that you can
retrieve the client specific transformations from
the adaptor

Colorado Software Summit: October 26 – 31, 2003 © Copyright 2003, Object Systems Group

Bill Dudney — J2EE AntiPatterns Page 76

Introduce Schema Adaptor –
Mechanics (1 of 2)

Define client specific schemas
The schema adaptor will need access to the
schemas as well, in order to validate the
documents

Update the Web service to use the schema
adaptor.

Colorado Software Summit: October 26 – 31, 2003 © Copyright 2003, Object Systems Group

Bill Dudney — J2EE AntiPatterns Page 77

References
J2EE AntiPatterns
Bill Dudney, Stephen Asbury, Joseph Krozak, Kevin Wittkopf
John Wiley & Sons; First edition (August 11, 2003)
ISBN: 0-47114-615-3

Jakarta Pitfalls: Time-Saving Solutions for Struts,
Ant, JUnit, and Cactus (Java Open Source Library)
Bill Dudney, Jonathan Lehr
John Wiley & Sons; (July 2003)
ISBN: 0-47144-915-6

	J2EE AntiPatterns
	Agenda
	What Is an AntiPattern?
	What Is an AntiPattern? (Continued)
	AntiPattern – Covered Items
	What Is Refactoring?
	Persistence AntiPatterns
	AntiPattern: Dredge
	Dredge – Example
	Refactoring: Light Query
	Refactoring: Light Query
	Light Query – Mechanics
	Light Query – Mechanics
	AntiPattern: Stifle
	Stifle – Example
	Refactoring: Pack
	Pack – Mechanics
	Service-Based Architecture AntiPatterns
	AntiPattern: Stove Pipe
	AntiPattern: Stove Pipe
	Stove Pipe – Example
	Refactoring: Build Technical Services Layer
	Refactoring: Build Technical Services Layer
	Build Technical Services Layer – Mechanics (1 of 3)
	Build Technical Services Layer – Mechanics (2 of 3)
	Build Technical Services Layer – Mechanics (3 of 3)
	AntiPattern: Client Completes Service
	Client Completes Service – Example
	Refactoring: Move Method Cross Tier
	Move Method Cross Tier – Mechanics
	JSP AntiPattern
	AntiPattern: Too Much Data in Session
	Too Much Data in Session – Example
	Refactoring: Beanify
	Refactoring: Beanify
	Beanify – Mechanics (1 of 2)
	Beanify – Mechanics (2 of 2)
	Servlet AntiPattern
	AntiPattern: Template Text in Servlet
	Refactoring: Use JSPs
	Refactoring: Use JSPs
	Use JSPs – Mechanics (1 of 3)
	Use JSPs – Mechanics (2 of 3)
	Use JSPs – Mechanics (3 of 3)
	EJB Entity AntiPatterns
	AntiPattern: DTO Explosion
	Refactoring: Localize Access
	Refactoring: Localize Access
	Localize Access – Mechanics
	AntiPattern: Coarse Behavior
	Refactoring: Extract Entity
	Refactoring: Extract Entity
	Extract Entity – Mechanics (1 of 2)
	Extract Entity – Mechanics(2 of 2)
	EJB Session AntiPatterns
	AntiPattern: Bloated Session
	Refactoring: Interface Partitioning
	Refactoring: Interface Partitioning
	Interface Partitioning – Mechanics (1 of 2)
	Interface Partitioning – Mechanics (2 of 2)
	AntiPattern: Transparent Façade
	Refactoring: Right-size Session Façade
	Right-size Session Façade – Mechanics
	Message Driven EJB AntiPattern
	AntiPattern: Overloading Destinations
	Refactoring: One Message One Bean
	One Message One Bean – Mechanics (1 of 2)
	One Message One Bean – Mechanics (2 of 2)
	Web Service AntiPatterns
	AntiPattern: Omniscient Object
	Refactoring from Omniscient Object
	AntiPattern: Single Schema Dream
	Refactoring: Introduce Schema Adaptor
	Refactoring: Introduce Schema Adaptor
	Introduce Schema Adaptor – Mechanics (1 of 2)
	Introduce Schema Adaptor – Mechanics (1 of 2)
	References

